Design criteria for implantable, heat-generating devices such as the total artificial heart require the determination of safe thresholds for chronic heating. This involves in-vivo experiments in which tissue temperature distributions are obtained in response to known heat sources. Prior to experimental studies, simulation using a mathematical model can help optimize the design of experiments. In this paper, a theoretical analysis of heat transfer is presented that describes the dynamic, one-dimensional distribution of temperature from a heated surface. Loss of heat by perfusion is represented by temperature-independent and temperature-dependent terms that can reflect changes in local control of blood flow. Model simulations using physiologically appropriate parameter values indicate that the temperature elevation profile caused by a heated surface adjacent to tissue may extend several centimeters into the tissue. Furthermore, sensitivity analysis indicates the conditions under which temperature profiles are sensitive to changes in thermal diffusivity and perfusion parameters. This information provides the basis for estimation of model parameters in different tissues and for prediction of the thermal responses of these tissues.

1.
Adams
W. M.
,
Higgins
P. D.
,
Siegfried
L.
,
Paliwal
B. R.
, and
Steeves
R. A.
, “
Chronic Response of Normal Porcine Fat and Muscle to Focused Ultrasound Hyperthermia
,”
Radiation Research
, Vol.
104
,
1985
, pp.
140
152
.
2.
Altieri
F. D.
, and
Watson
J. T.
, “
Implanted Ventricular Assist Systems
,”
Artificial Organs
, Vol.
11
,
1987
, pp.
237
246
.
3.
Bard, Y., Nonlinear Parameter Estimation, Academic Press, New York, 1974.
4.
Beck, J. V., and Arnold, K. J., Parameter Estimation in Engineering and Science, Wiley, New York, 1979.
5.
Ben-Shacher
G.
,
Sivakof
M. D.
,
Bernard
S. L.
,
Dahms
B. B.
, and
Riemenshnider
T. A.
, “
Acute Continuous Argon-Laser Induced Tissue Effects in the Isolated Canine Heart
,”
American Heart Journal
, Vol.
110
,
1985
, pp.
65
70
.
6.
Chato
J. C.
, “
Heat Transfer to Blood Vessels
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
101
,
1980
, pp.
110
118
.
7.
Cheong
W. F.
,
Thomsen
S.
,
Pearce
J. A.
,
von Eschenbach
A. C.
, and
Welch
A. J.
, “
Correlation of Temperatures With Laser-Induced Damage Defined by Birefringent Studies in Urinary Bladder
,”
Laser Surg. Med.
, Vol.
9
(
Suppl. 1
),
1989
, p.
6
6
.
8.
Davies
C.
,
Fukumura
F.
,
Fukamachi
K.
,
Muramoto
K.
,
Himley
S.
,
Massiello
A.
, and
Harasaki
H.
, “
Adaptation of Tissue to Chronic Heat Load
,”
ASAIO Abstracts
, Vol.
23
,
1994
, p.
7
7
.
9.
Erdelyi, A., ed., Tables of Integral Transforms, Vol. I, McGraw-Hill, New York, 1954, p. 246, Eq. (10).
10.
Fukumura, F., Harasaki, H., Davies, C., Fukamachi, K., Muramoto, K., and Butler, K., “Chronic Effects of Heating on Local Tissue Reaction and Heat Dissipation in Calves,” ASAIO Abstracts, 1993, p. 105.
11.
Heagness, J. R., and Van Antwerp, M., The Artificial Heart: Prototypes, Policies, and Patients, Institute of Medicine, National Academy Press, Washington, DC, 1991.
12.
Higgins
P. D.
, and
Jafari
F.
, “
Thermal Distributions in Spherical Regions With Variable Thermal Conductivity
,”
IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control
, Vol.
33
,
1986
, pp.
21
26
.
13.
Hindmarsh, A. C., and Sherman, A. H., “LSODES: Livermore Solver for Ordinary Differential Equations With General Sparse Jacobian Matrices,” Lawrence Livermore National Laboratories, Livermore, CA, 1982.
14.
Jafari
F.
, and
Higgins
P. D.
, “
Thermal Modeling in Cylindrical Coordinates Using Effective Conductivity
,”
IEEE Transactions on UFFC
, Vol.
36
,
1989
, pp.
191
196
.
15.
Pennes
H. H.
, “
Analysis of Tissue and Arterial Blood Temperatures in the Resting Human Forearm
,”
Journal of Applied Physiology
, Vol.
1
,
1948
, pp.
93
122
.
16.
Schiesser, W. E., Computational Mathematics in Engineering and Applied Science, CRC Press, Boca Raton, FL, 1994.
17.
Shitzer, A., and Eberhardt, R. C., eds., Heat Transfer in Medicine and Biology, Vol. 1, Plenum Press, New York, 1985, pp. 137–164.
18.
Shitzer
A.
,
Eberhart
R. C.
, and
Eisenfeld
J.
, “
Estimation of Tissue Blood Perfusion Rate From Diffusable Indicator Measurements: A Sensitivity Analysis
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
102
,
1980
, pp.
258
264
.
19.
Thomsen
S.
,
Pearce
J. A.
, and
Cheong
W.-F.
, “
Changes in Birefringence as Markers of Thermal Damage in Tissues
,”
IEEE Transactions on BME
, Vol.
36
,
1989
, pp.
1174
1179
.
20.
Utoh
J.
, and
Harasaki
H.
, “
Prolonged Heat Effects on Human Erythrocytes
,”
Clinical Science
, Vol.
12
,
1992
, pp.
707
714
.
21.
Utoh
J.
,
Brown
J. E.
, and
Harasaki
H.
, “
Effects of Heat on Fragility and Morphology of Human and Calf Erythrocytes
,”
Journal of Clinical Investigation
, Vol.
XXX
,
1992
, pp.
305
313
.
22.
Utoh
J.
, and
Harasaki
H.
, “
Effects of Temperature on Phagocytosis of Human and Calf Polymorphonuclear Leukocytes
,”
Artificial Organs
, Vol.
16
,
1992
, pp.
377
381
.
23.
Wei
D.
,
Saidel
G. M.
, and
Jones
S. C.
, “
Optimal Design of a Thermistor Probe for Surfaces Measurement of Cerebral Blood Flow
,”
IEEE Trans. on Biomed. Eng.
, Vol.
37
,
1990
, pp.
1159
1172
.
24.
Weinbaum
S.
,
Jiji
L. M.
, and
Lemons
D. E.
, “
Theory and Experiment for the Effect of Vascular Microstructure on Surface Tissue Heat Transfer—Part I: Anatomical Foundation and Model Conceptualization
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
106
,
1984
, pp.
321
330
.
25.
Davies, C., unpublished results, 1996.
This content is only available via PDF.
You do not currently have access to this content.