We developed a three dimensional, four segment, eight-degree-of-freedom model for the analysis of paraplegic ambulation in a reciprocating gait orthosis (RGO). Model development was guided by experimental analysis of a spinal cord injured individual walking in an RGO with the additional assistance of arm crutches. Body forces and torques required to produce a dynamic simulation of the RGO gait swing phase were found by solving an optimal control problem to track the recorded kinematics and ground reaction forces. We found that high upper body forces are required, not only during swing but probably also during double support to compensate for the deceleration of the body during swing, which is due to the pelvic thrust necessary to swing the leg forward. Other simulations showed that upper body forces and body deceleration during swing can be reduced substantially by producing a ballistic swing. Functional neuromuscular stimulation of the hip musculature during double support would then be required, however, to establish the initial conditions needed in a ballistic swing.

1.
Alexander, R. M., 1992, “Simple Models of the Mechanics of Walking,” R. B. Stein, P. H. Peckham and D. B. Popovic, eds., Neural Prostheses: Replacing Motor Function After Disease or Disability, Oxford University Press, New York, pp. 191–201.
2.
Andrews
B. J.
,
Baxendale
R. H.
,
Barnett
R.
, et al.,
1988
, “
Hybrid FES Orthosis incorporating closed loop control and sensory feedback
,”
J Biomed Eng
, Vol.
10
, pp.
190
195
.
3.
Antonsson
E. K.
, and
Mann
R. W.
,
1985
, “
The Frequency Content of Gait
,”
J Biomech
, Vol.
18
, pp.
39
47
.
4.
Athans, M., and Falb, P. L., Optimal Control, McGraw-Hill, New York, 1966.
5.
Barnicle, K., Andrews, B. J., Phillips, G. F., and Chizeck, H. J., “A Hybrid Orthosis for Paraplegic Standing with Percutaneous Electrodes,” Proc. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, New Orleans, LA, 1988.
6.
Clauser, C. E., McConville, J. T., and Young, J. W., 1969, Weight. Volume, and Center of Mass of Segments of the Human Body, Aerospace Medical Research Laboratory, AMRL-TR-69-70.
7.
Douglas
R.
,
Larson
P. F.
,
D’Ambrosia
R.
, and
McCall
R. E.
,
1983
, “
The LSU Reciprocation-Gait Orthosis
,”
Orthopedics
, Vol.
6
, pp.
834
838
.
8.
Drillis
R.
,
Contini
R.
, and
Bluestein
M.
,
1964
, “
Body Segment Parameters. A Survey of Measurement Techniques
,”
Artificial Limbs
, Vol.
8
, pp.
44
66
.
9.
Gill, P. E., Murray, W., Saunders, M. A., and Wright, M. H., 1986, User’s Guide for NPSOL (Version 4.0): A Fortran Package for Nonlinear Programming, Department of Operations Research, Stanford University, Report No. SOL 86–2.
10.
Goh
C. J.
, and
Teo
K. L.
,
1988
, “
Control Parameterization: A Unified Approach to Optimal Control Problems with General Constraints
,”
Automatica
, Vol.
24
, pp.
3
18
.
11.
Hanavan, E. P., 1964, A Mathematical Model of the Human Body, Aerospace Medical Research Laboratories, Report No. AMRL-TR-64-102.
12.
Hollars, M. G., Rosanthal, D. E., and Sherman, M., 1990, SD/FAST User’s Manual, Symbolic Dynamics Inc., Mountain View, CA, User’s Manual.
13.
Inman, V. T., Ralston, H. J., and Todd, F., 1981, Human Walking, Williams & Wilkins, Baltimore.
14.
Jefferson
R. J.
, and
Whittle
M. W.
,
1990
, “
Performance of Three walking Orthoses for the Paralyzed: A Case Study using Gait Analysis
,”
Pros Orthot Int
, Vol.
14
, pp.
103
110
.
15.
Ju
M.-S.
, and
Mansour
J. M.
,
1988
, “
Simulation of the Double Limb Support Phase of Gait
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
110
, pp.
223
229
.
16.
Koopman, B., 1989, “The Three-Dimensional Analysis and Prediction of Human Walking,” Ph.D. Thesis, University of Twente.
17.
Kralj, A. R., and Bajd, T., 1989, Functional Electrical Stimulation: Standing and Walking after Spinal Cord Injury, CRC Press, Boca Raton, FL.
18.
Lanshammar
H.
,
1982
, “
On Precision Limits for Derivatives Numerically Calculated from Noisy Data
,”
J. Biomech.
, Vol.
15
, pp.
459
470
.
19.
Lesh
M. D.
,
Mansour
J. M.
, and
Simon
S. R.
,
1979
, “
A Gait Analysis Subsystem for Smoothing and Differentiation of Human Movement Data
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
101
, pp.
205
212
.
20.
Marsolais
E. B.
, and
Edwards
B. G.
,
1988
, “
Energy Costs of Walking and Standing with Functional Neuromuscular Stimulation and Long Leg Braces
,”
Arch. Phys. Med. Rehabil
, Vol.
69
, pp.
243
249
.
21.
Marsolais
E. B.
, and
Kobetic
R.
,
1987
, “
Functional Electrical Stimulation for Walking in Paraplegia
,”
J. Bone Joint Surg.
, Vol.
69-A
, pp.
728
733
.
22.
McGeer
T.
,
1990
, “
Passive Dynamic Walking
,”
Int. J. Robotics Res.
, Vol.
9
, pp.
62
82
.
23.
Mochon
S.
, and
McMahon
T. A.
,
1980
, “
Ballistic Walking: An Improved Model
,”
Math Biosci
, Vol.
52
, pp.
241
260
.
24.
Nemeth
G.
,
Ekholm
J.
,
Arborelius
U. P.
, et al.,
1983
, “
Influence of Knee Flexion on Isometric Hip Flexor Strength
,”
Scand J Rehab Med
, Vol.
15
, pp.
97
101
.
25.
Pandy, M. G., Anderson, F. C., and Hull, D. G., 1992, “A Parameter Optimization Approach for the Optimal Control of Large-Scale, Musculoskeletal Systems,’’ J Biomech Eng, Vol. (in press), pp.
26.
Phillips
C. A.
,
1989
, “
Functional Electrical Stimulation and Lower Extremity Bracing for Ambulation Exercise of the Spinal Cord Injured Individual: A Medically Prescribed System
,”
Phys. Ther.
, Vol.
69
, pp.
842
849
.
27.
Popovic
D.
,
Tomovic
R.
, and
Schwirtlich
L.
,
1989
, “
Hybrid Assistive System—The Motor Neuroprosthesis
,”
IEEE Trans. Biomed. Eng.
, Vol.
36
, pp.
729
736
.
28.
Rowell
D.
, and
Mann
R. W.
,
1989
, “
Human Movement Analysis
,”
Soma
, Vol.
3
, pp.
13
20
.
29.
Schultz
A.
,
Cromwell
R.
,
Warwick
D.
, and
Andersson
G.
,
1987
, “
Lumbar Trunk Muscle Use in Standing Isometric Heavy Exertions
,”
J Orthop Res
, Vol.
5
, pp.
320
329
.
30.
Sirisena
H. R.
, and
Tan
K. S.
,
1974
, “
Computation of Constrained Optimal Controls Using Parameterization Techniques
,”
IEEE Trans Auto Contr
, Vol.
AC-19
, pp.
431
433
.
31.
Solomonow
M.
,
Baratta
R.
,
Hirokawa
S.
, et al.,
1989
, “
The RGO Generation II: Muscle Stimulation Powered Orthosis as a Practical Walking System for Thoracic Paraplegics
,”
Orthopedics
, Vol.
12
, pp.
1309
1315
.
32.
Solomonow, W., 1992, “Biomechanics and Physiology of a Practical Functional Neuromuscular Stimulation Powered Walking Orthosis for Paraplegics,” R. B. Stein, P. H. Peckham, and D. B. Popovic, eds., Neural Prostheses: Replacing Motor Function After Disease or Disability, Oxford University Press, New York, pp. 202–232.
33.
Stallard
J.
,
Major
R. E.
,
Poiner
R.
, et al.,
1986
, “
Engineering Design Considerations of the ORLAU Parawalker and FES Hybrid System
,”
Eng. Med.
, Vol.
15
, pp.
123
129
.
34.
Tashman, S., 1992, “Experimental Analysis and Computer Modeling of Paraplegic Ambulation in a Reciprocating Gait Orthosis: Implications for the Design of Hybrid FNS/Orthotic Systems,” Ph.D. thesis, Stanford University.
35.
Tashman, S., and Zajac, F. E., 1992, “Control of Multijoint Lower-Limb Motor Tasks with Functional Neuromuscular Stimulation,” R. B. Stein, P. H. Peckham and D. B. Popovic, eds. Neural Prostheses: Replacing Motor Function After Disease or Disability, Oxford University Press, New York, pp. 252–278.
36.
Vannini and Rizzoli, 1989, The Vannini-Rizzoli Stabilizing Limb Orthosis, Officine Ortopediche Rizzoli S.P.A., Bologna, Italy, Vendor’s Product Description.
37.
Whittle
M. W.
,
Cochrane
G. M.
,
Chase
A. P.
, et al.,
1991
, “
A Comparative Trial of Two Walking Systems for Paralyzed People
,”
Paraplegia
, Vol.
29
, pp.
97
102
.
38.
Winter
D. A.
,
Sidwall
H. G.
, and
Hobson
D. A.
,
1974
, “
Measurement and Reduction of Noise in Kinematics and Locomotion
,”
J. Biomech
, Vol.
7
, pp.
157
159
.
39.
Yamaguchi, G. T., 1989, “Feasibility and Conceptual Design of Functional Neuromuscular Stimulation Systems for the Restoration of Natural Gaits to Paraplegics Based on Dynamic Musculoskeletal Models,” Ph.D. thesis, Stanford University.
40.
Yamaguchi
G. T.
, and
Zajac
F. E.
,
1990
, “
Restoring Unassisted Gait to Paraplegics Via Functional Neuromuscular Stimulation: A Computer Simulation Study
,”
IEEE Trans. Biomed. Eng.
, Vol.
37
, pp.
886
902
.
41.
Zajac, F. E., and Gordon, M. E., 1989, “Determining Muscle’s Force and Action in Multi-Articular Movement,” K. Pandolf, eds., Exercise Sport Sci. Rev., Williams & Wilkins, Baltimore, pp. 187–230.
42.
Zetterberg
C.
,
Andersson
G. B.
, and
Schultz
A. B.
,
1987
, “
The Activity of Individual Trunk Muscles During Heavy Physical Loading
,”
Spine
, Vol.
12
, pp.
1035
1040
.
This content is only available via PDF.
You do not currently have access to this content.