The flow of red blood cells (RBC) through a microvascular capillary bifurcation was modeled in a large scale system in which rigid circular tubes and bifurcations (diameter = .95 cm) simulated capillaries and capillary bifurcations, flexible disks (undeformed diameter = 0.75 cm) simulated RBC and glycerol simulated plasma. At low Reynolds numbers (0.01 to 0.1), pressure drop was measured in the tubes upstream and downstream from the bifurcation as well as across the bifurcation itself, for various flow splits at the bifurcation while the inflow in the upstream tube was held constant. Pressure gradient across the bifurcation is taken to be the average of the upstream and downstream pressure gradients if the additional pressure drop at the bifurcation due to the partitioning of flow and disks is negligible. For the case of glycerol alone, the ratio of pressure gradient (G) at the bifurcation to the one at the upstream region was always greater than expected and reached 1.14 when the flow in the side branch was zero. With introduction of flexible disks into the system, G at the bifurcation was as much as 10 times the G at the upstream region as disks came in contact with, or close to, the dividing line of the bifurcation and paused momentarily before they entered one or the other side of the bifurcation. The largest G was for even flow split at the bifurcation and the smallest G was for the case where the flow in the side branch was smallest. Therefore, for the range of tube hematocrits (0–30 percent) and flow splits tested here, a significant additional pressure drop at the bifurcation is observed.
Skip Nav Destination
Article navigation
November 1994
Research Papers
Additional Pressure Drop at a Bifurcation Due to the Passage of Flexible Disks in a Large Scale Model
Mohammad F. Kiani,
Mohammad F. Kiani
Department of Biophysics, University of Rochester, Rochester, NY 14642
Search for other works by this author on:
Giles R. Cokelet
Giles R. Cokelet
Department of Biophysics, University of Rochester, Rochester, NY 14642
Search for other works by this author on:
Mohammad F. Kiani
Department of Biophysics, University of Rochester, Rochester, NY 14642
Giles R. Cokelet
Department of Biophysics, University of Rochester, Rochester, NY 14642
J Biomech Eng. Nov 1994, 116(4): 497-501 (5 pages)
Published Online: November 1, 1994
Article history
Received:
March 17, 1993
Revised:
October 22, 1993
Online:
March 17, 2008
Citation
Kiani, M. F., and Cokelet, G. R. (November 1, 1994). "Additional Pressure Drop at a Bifurcation Due to the Passage of Flexible Disks in a Large Scale Model." ASME. J Biomech Eng. November 1994; 116(4): 497–501. https://doi.org/10.1115/1.2895801
Download citation file:
Get Email Alerts
Cited By
Characterizing In-Situ Metatarsal Fracture Risk During Simulated Workplace Impact Loading
J Biomech Eng (May 2023)
Related Articles
Slow Particulate Viscous Flow in Channels and Tubes—Application to Biomechanics
J. Appl. Mech (December,1971)
Numerical Study on Flows of Red Blood Cells With Liposome-Encapsulated Hemoglobin at Microvascular Bifurcation
J Biomech Eng (February,2008)
A Numerical Study of Plasma Skimming in Small Vascular Bifurcations
J Biomech Eng (February,1994)
Turbulence Modeling in Three-Dimensional Stenosed Arterial Bifurcations
J Biomech Eng (February,2007)
Related Proceedings Papers
Related Chapters
Introduction
Mechanical Blood Trauma in Circulatory-Assist Devices
Two-Dimension Simulation of a Red Blood Cell Partitioning in Microvascular Bifurcation
International Conference on Software Technology and Engineering (ICSTE 2012)
Hydraulic Resistance
Heat Transfer & Hydraulic Resistance at Supercritical Pressures in Power Engineering Applications