Analytical solutions have been obtained for the internal deformation and fluid-flow fields and the externally observable creep, stress relaxation, and constant strain-rate behaviors which occur during the unconfined compression of a cylindrical specimen of a fluid-filled, porous, elastic solid, such as articular cartilage, between smooth, impermeable plates. Instantaneously, the “biphasic” continuum deforms without change in volume and behaves like an incompressible elastic solid of the same shear modulus. Radial fluid flow then allows the internal fluid pressure to equilibrate with the external environment. The equilibrium response is controlled by the Young’s modulus and Poisson’s ratio of the solid matrix.

This content is only available via PDF.
You do not currently have access to this content.