Abstract

This paper examines two different factors that will affect energy consumption for multi-rotor drones with more than four rotors. First, the choice of aerodynamic model for the rotor blades is examined. Two aerodynamic models, the blade element theory (BET) model and lumped blade (LB) model, are compared using vertical, roll, pitch, and yaw trajectories. The BET and LB models produced very different trajectories with identical inputs, especially in the vertical and yaw trajectories which differed by 87.9% and 52.5%, respectively. The BET and LB models also result in different energy usages with the LB model consistently predicting 36% more energy consumption. The second factor studied is the choice of rotor groupings. For a multi-rotor drone, different rotor groupings may result in different energy usages; two groupings are considered. The same four basic trajectories are compared. The results show that the two groupings have an energy difference of 4.7–4.9% for each of the roll, pitch, and yaw directions which implies that each grouping has a base energy consumption inherent to it. Then, possible energy compounding effects are explored by examining a complex trajectory. The complex trajectory yields a 9.26% energy difference between the two groupings but further examination reveals that the difference is due to differences in the final trajectory not energy compounding effects. Thus, it is concluded that the aerodynamic model and rotor groupings are two important factors that must be considered when energy consumption needs to be minimized.

References

1.
Achtelik
,
M. C.
,
Stumpf
,
J.
,
Gurdan
,
D.
, and
Doth
,
K.-M.
,
2011
, “
Design of a Flexible High Performance Quadcopter Platform Breaking the MAV Endurance Record With Laser Power Beaming
,”
2011 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
San Francisco, CA
,
IEEE
, pp.
5166
5172
.
2.
Cruz
,
P. J.
, and
Fierro
,
R.
,
2017
, “
Cable-Suspended Load Lifting by a Quadrotor UAV: Hybrid Model, Trajectory Generation, and Control
,”
Autonomous Rob.
,
41
(
8
), pp.
1629
1643
. 10.1007/s10514-017-9632-2
3.
Mueller
,
M. W.
, and
D’Andrea
,
R.
,
2016
, “
Relaxed Hover Solutions for Multicopters: Application to Algorithmic Redundancy and Novel Vehicles
,”
Int. J. Rob. Res.
,
35
(
8
), pp.
873
889
. 10.1177/0278364915596233
4.
Guerrero-Sánchez
,
M. E.
,
Abaunza
,
H.
,
Castillo
,
P.
,
Lozano
,
R.
, and
García-Beltrán
,
C. D.
,
2017
, “
Quadrotor Energy-Based Control Laws: A Unit-Quaternion Approach
,”
J. Intell. Rob. Syst.: Theory Appl.
,
88
(
2
), pp.
347
377
. 10.1007/s10846-017-0528-3
5.
Klausen
,
K.
,
Fossen
,
T. I.
, and
Johansen
,
T. A.
,
2017
, “
Nonlinear Control With Swing Damping of a Multirotor UAV With Suspended Load
,”
J. Intell. Rob. Syst.: Theory Appl.
,
88
(
2
), pp.
379
394
. 10.1007/s10846-017-0509-6
6.
Guerrero-Sánchez
,
M. E.
,
Mercado-Ravell
,
D. A.
,
Lozano
,
R.
, and
García-Beltrán
,
C. D.
,
2017
, “
Swing-Attenuation for a Quadrotor Transporting a Cable-Suspended Payload
,”
ISA Trans.
,
68
, pp.
433
449
. 10.1016/j.isatra.2017.01.027
7.
Goodarzi
,
F. A.
,
Lee
,
D.
, and
Lee
,
T.
,
2015
, “
Geometric Control of a Quadrotor UAV Transporting a Payload Connected Via Flexible Cable
,”
Int. J. Control. Autom. Syst.
,
13
(
6
), pp.
1486
1498
. 10.1007/s12555-014-0304-0
8.
Dai
,
S.
,
Lee
,
T.
, and
Bernstein
,
D. S.
,
2014
, “
Adaptive Control of a Quadrotor UAV Transporting a Cable-Suspended Load With Unknown Mass
,”
53rd IEEE Annual Conference on Decision and Control (CDC)
,
Los Angeles, CA
, pp.
6149
6154
.
9.
Faust
,
A.
,
Ruymgaart
,
P.
,
Salman
,
M.
,
Fierro
,
R.
, and
Tapia
,
L.
,
2014
, “
Continuous Action Reinforcement Learning for Control-Affine Systems With Unknown Dynamics
,”
IEEE/CAA J. Auto. Sinica
,
1
(
3
), pp.
323
336
. 10.1109/JAS.2014.7004690
10.
San Juan
,
V.
,
Santos
,
M.
, and
Andújar
,
J. M.
,
2018
, “
Intelligent UAV Map Generation and Discrete Path Planning for Search and Rescue Operations
,”
Complexity
,
2018
(Special Issue), pp.
1
17
. 10.1155/2018/6879419
11.
Trachte
,
J. E.
,
Toro
,
L. F. G.
, and
McFadyen
,
A.
,
2015
, “
Multi-Rotor With Suspended Load: System Dynamics and Control Toolbox
,”
IEEE Aerospace Conference Proceedings
,
Big Sky, MT
.
12.
Mahony
,
R.
,
Kumar
,
V.
, and
Corke
,
P.
,
2012
, “
Multirotor Aerial Vehicles: Modeling, Estimation, and Control of Quadrotor
,”
IEEE Robotics & Automation Magazine
,
19
(
3
), pp.
20
32
. 10.1109/MRA.2012.2206474
13.
Oscarson
,
O.
,
2015
, “
Design, Modeling and Control of An Octocopter
,”
Ph.D. thesis
,
KTH Royal Institute of Technology
.
14.
Yoon
,
H.-J.
,
Cichella
,
V.
, and
Hovakimyan
,
N.
,
2016
, “
Robust Adaptive Control Allocation for An Octocopter Under Actuator Faults
,”
In AIAA Guidance, Navigation and Control Conference
,
San Diego, CA
, pp.
1
16
.
15.
Jain
,
K. P.
,
Fortmuller
,
T.
,
Byun
,
J.
,
Makiharju
,
S. A.
, and
Mueller
,
M. W.
,
2019
, “
Modeling of Aerodynamic Disturbances for Proximity Flight of Multirotors
,”
International Conference on Unmanned Aircraft Systems ICUAS 2019
,
Atlanta, GA
,
IEEE
, pp.
1261
1269
.
16.
Rible
,
G. P.
,
Arriola
,
N. A.
, and
Ramos
,
M.
,
2020
, “
Modeling and Implementation of Quadcopter Autonomous Flight Based on Alternative Methods to Determine Propeller Parameters
,”
Adv. Sci., Technol. Eng. Syst.
,
5
(
5
), pp.
727
741
. 10.25046/aj050589
17.
Šoberl
,
D.
,
Bratko
,
I.
, and
Žabkar
,
J.
,
2020
, “
Learning to Control a Quadcopter Qualitatively
,”
J. Intell. Rob. Syst.: Theory Appl.
,
100
(
3
), pp.
1097
1110
. 10.1007/s10846-020-01228-7
18.
Hoffmann
,
G. M.
,
Huang
,
H.
,
Waslander
,
S. L.
, and
Tomlin
,
C. J.
,
2011
, “
Precision Flight Control for a Multi-Vehicle Quadrotor Helicopter Testbed
,”
Control. Eng. Pract.
,
19
(
9
), pp.
1023
1036
. 10.1016/j.conengprac.2011.04.005
19.
Bristeau
,
P. J.
,
Martin
,
P.
,
Salaün
,
E.
, and
Petit
,
N.
,
2009
, “
The Role of Propeller Aerodynamics in the Model of a Quadrotor UAV
,”
Proceedings of the European Control Conference
,
Budapest, Hungary
, pp.
683
688
.
20.
Walter
,
A.
,
McKay
,
M.
,
Niemiec
,
R. j.
, and
Gandhi
,
F.
,
2018
, “
Trim Analysis of a Classical Octocopter After Single-Rotor Failure
,”
AIAA/IEEE Electric Aircraft Technologies Symposium
,
Cincinnati, OH
, pp.
1
20
.
21.
Hoang
,
S.
,
Marsh
,
L.
,
Aliseda
,
A.
, and
Shen
,
I. Y.
,
2020
, “
Analysis of High Fidelity Modeling of Drone Dynamics and Aerodynamics for Reduced Energy Consumption
,”
32nd Conference on Mechanical Vibration and Noise (VIB)
,
Virtual, Online
,
American Society of Mechanical Engineers
.
22.
(NREL), N. R. E. L.
,
2014
.
Horizontal Axis Rotor Performance Optimization (HARP_Opt)
.
You do not currently have access to this content.