Abstract

Predicting the behavior of a saturated rock with variations in pore fluid pressure during geo-energy production and storage, deep geological disposal of nuclear wastes, etc. with skeletal mechanical behavior in the linear elastic range is carried out using the isothermal theory of poroelasticity that incorporates Biot's effective stress principle. For conditions that are not within linear elasticity, other effective stress coefficients are used. Several experimental methods for determining Biot's and other effective stress coefficients have been documented in the literature. The objective of this study is to review the fundamentals of these techniques, their advantages and disadvantages, and to include several case studies. Current techniques for Biot's coefficient are based on different premises: jacketed and unjacketed bulk moduli or compressibility values; volume changes of the bulk and pore fluid from a drained triaxial test on a saturated sample; isotropic-isochoric compression tests on a saturated sample; matching volumetric strains for dry and saturated samples; estimation of the Biot coefficient from other poroelastic parameters; and approximation of the jacketed bulk modulus from ultrasonic wave velocities and/or unjacketed bulk modulus from the mineralogical compositions. Other effective stress coefficients are based on matching failure envelopes for dry and saturated samples and variations of rock properties (such as volumetric strain, permeability, and ultrasonic wave velocities) with respect to confining stress and pore pressure. This article discusses variations in Biot's and other effective stress coefficients produced using the different techniques and how factors such as pore geometry, test conditions, stress path, and test temperature affect the coefficients.

References

1.
Biot
,
M. A.
,
1941
, “
General Theory of Three‐Dimensional Consolidation
,”
J. Appl. Phys.
,
12
(
2
), pp.
155
164
.10.1063/1.1712886
2.
Biot
,
M. A.
, and
Willis
,
D. G.
,
1957
, “
The Elastic Coefficients of the Theory of Consolidation
,”
ASME J. Appl. Mech.
,
24
(
4
), pp.
594
601
.10.1115/1.4011606
3.
Fan
,
X.
,
Li
,
G.
,
Shah
,
S. N.
,
Tian
,
S.
,
Sheng
,
M.
, and
Geng
,
L.
,
2015
, “
Analysis of a Fully Coupled Gas Flow and Deformation Process in Fractured Shale Gas Reservoirs
,”
J. Nat. Gas Sci. Eng.
,
27
, pp.
901
913
.10.1016/j.jngse.2015.09.040
4.
Jin
,
L.
, and
Zoback
,
M.
,
2019
, “
Depletion-Induced Poroelastic Stress Changes in Naturally Fractured Unconventional Reservoirs and Implications for Hydraulic Fracture Propagation
,” SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers, Calgary, AB, Canada, Sept. 30–Oct. 2, Paper No.
SPE-196215-MS
.10.2118/196215-MS
5.
Segall
,
P.
,
Grasso
,
J. R.
, and
Mossop
,
A.
,
1994
, “
Poroelastic Stressing and Induced Seismicity Near the Lacq Gas Field, Southwestern France
,”
J. Geophys. Res. Solid Earth
,
99
(
B8
), pp.
15423
15438
.10.1029/94JB00989
6.
Bui
,
B.
, and
Tutuncu
,
A.
,
2013
, “
Biot Tensor Approach for Improved Lifecycle Well Integrity
,”
Proceedings of 47th U.S. Rock Mechanics/Geomechanics Symposium, American Rock Mechanics Association
, San Francisco, CA, June 23–26, Paper No.
ARMA-2013341
.https://onepetro.org/ARMAUSRMS/proceedingsabstract/ARMA13/All-ARMA13/ARMA-2013-341/121036
7.
Selvadurai
,
A.
,
P. S.
,
Zhang
,
D.
, and
Kang
,
Y.
,
2018
, “
Permeability Evolution in Natural Fractures and Their Potential Influence on Loss of Productivity in Ultra-Deep Gas Reservoirs of the Tarim Basin, China
,”
J. Nat. Gas Sci. Eng.
,
58
, pp.
162
177
.10.1016/j.jngse.2018.07.026
8.
Zhang
,
D.
,
Kang
,
Y.
,
Selvadurai
,
A. P. S.
, and
You
,
L.
,
2020
, “
Experimental Investigation of the Effect of Salt Precipitation on the Physical and Mechanical Properties of a Tight Sandstone
,”
Rock Mech. Rock Eng.
,
53
(
10
), pp.
4367
4380
.10.1007/s00603-019-02032-y
9.
Azeemuddin
,
M.
,
Khan
,
K.
,
Khan
,
M. N.
,
Abdulraheem
,
A.
,
Rahim
,
Z.
, and
Al-Qahtani
,
M. Y.
,
2002
, “
Experimental Determination of Elastic Anisotropy and Biot's Constant in a Saudi Arabian Reservoir Sandstone
,” Proceedings of Abu Dhabi International Petroleum Exhibition and Conference, Society of Petroleum Engineers, Abu Dhabi, UAE, Oct. 13–16, Paper No.
SPE-78503-MS
.10.2118/78503-MS
10.
Kasani
,
H. A.
, and
Chalaturnyk
,
R. J.
,
2017
, “
Coupled Reservoir and Geomechanical Simulation for a Deep Underground Coal Gasification Project
,”
J. Nat. Gas Sci. Eng.
,
37
, pp.
487
501
.10.1016/j.jngse.2016.12.002
11.
Rutqvist
,
J.
, and
Tsang
,
C. F.
,
2005
, “
Coupled Hydromechanical Effects of CO2 Injection
,”
Dev. Water Sci.
,
52
, pp.
649
679
.10.1016/S0167-5648(05)52050-1
12.
Vilarrasa
,
V.
,
Olivella
,
S.
, and
Carrera
,
J.
,
2011
, “
Geomechanical Stability of the Caprock During CO2 Sequestration in Deep Saline Aquifers
,”
Energy Procedia
,
4
, pp.
5306
5313
.10.1016/j.egypro.2011.02.511
13.
Haimson
,
B.
, and
Fairhurst
,
C.
,
1969
, “
Hydraulic Fracturing in Porous-Permeable Materials
,”
J. Pet. Technol.
,
21
(
07
), pp.
811
817
.10.2118/2354-PA
14.
Li
,
S.
,
Li
,
X.
, and
Zhang
,
D.
,
2016
, “
A Fully Coupled Thermo-Hydro-Mechanical, Three-Dimensional Model for Hydraulic Stimulation Treatments
,”
J. Nat. Gas Sci. Eng.
,
34
, pp.
64
84
.10.1016/j.jngse.2016.06.046
15.
Kohl
,
T.
,
Evansi
,
K. F.
,
Hopkirk
,
R. J.
, and
Rybach
,
L.
,
1995
, “
Coupled Hydraulic, Thermal and Mechanical Considerations for the Simulation of Hot Dry Rock Reservoirs
,”
Geothermics
,
24
(
3
), pp.
345
359
.10.1016/0375-6505(95)00013-G
16.
Wessling
,
S.
,
Junker
,
R.
,
Rutqvist
,
J.
,
Silin
,
D.
,
Sulzbacher
,
H.
,
Tischner
,
T.
, and
Tsang
,
C. F.
,
2009
, “
Pressure Analysis of the Hydromechanical Fracture Behaviour in Stimulated Tight Sedimentary Geothermal Reservoirs
,”
Geothermics
,
38
(
2
), pp.
211
226
.10.1016/j.geothermics.2008.10.003
17.
Mouli-Castillo
,
J.
,
Wilkinson
,
M.
,
Mignard
,
D.
,
McDermott
,
C.
,
Haszeldine
,
R. S.
, and
Shipton
,
Z. K.
,
2019
, “
Inter-Seasonal Compressed-Air Energy Storage Using Saline Aquifers
,”
Nat. Energy
,
4
(
2
), pp.
131
139
.10.1038/s41560-018-0311-0
18.
Sánchez
,
M.
,
Shastri
,
A.
, and
Le
,
T. M.
,
2014
, “
Coupled Hydromechanical Analysis of an Underground Compressed Air Energy Storage Facility in Sandstone
,”
Geotech. Lett.
,
4
(
2
), pp.
157
164
.10.1680/geolett.13.00068
19.
Guo
,
R.
,
Xu
,
H.
,
Plúa
,
C.
, and
Armand
,
G.
,
2020
, “
Prediction of the Thermal-Hydraulic-Mechanical Response of a Geological Repository at Large Scale and Sensitivity Analyses
,”
Int. J. Rock Mech. Min. Sci.
,
136
, p.
104484
.10.1016/j.ijrmms.2020.104484
20.
Guo
,
R.
,
Thatcher
,
K. E.
,
Seyedi
,
D. M.
, and
Plúa
,
C.
,
2020
, “
Calibration of the Thermo-Hydro-Mechanical Parameters of the Callovo-Oxfordian Claystone and the Modelling of the ALC Experiment
,”
Int. J. Rock Mech. Min. Sci.
,
132
, p.
104351
.10.1016/j.ijrmms.2020.104351
21.
Nguyen
,
T. S.
, and
Selvadurai
,
A. P. S.
,
1995
, “
Coupled Thermal-Mechanical-Hydrological Behaviour of Sparsely Fractured Rock: Implications for Nuclear Fuel Waste Disposal
,”
Int. J. Rock Mech. Min. Sci.
,
32
(
5
), pp.
465
479
.10.1016/0148-9062(95)00036-G
22.
Radakovic-Guzina
,
Z.
, and
Damjanac
,
B.
,
2019
, “
Sensitivity Analyses of Long-Term Stability of APM Conceptual Repository Designs in Crystalline and Sedimentary Rock Settings
,” Itasca Consulting Group, Report for Nuclear Waste Management Organization (NWMO), Minneapolis, MN, Report No. NWMO-TR-2019-08.
23.
Barbour
,
A. J.
,
Xue
,
L.
,
Roeloffs
,
E.
, and
Rubinstein
,
J. L.
,
2019
, “
Leakage and Increasing Fluid Pressure Detected in Oklahoma's Wastewater Disposal Reservoir
,”
J. Geophys. Res. Solid Earth
,
124
(
3
), pp.
2896
2919
.10.1029/2019JB017327
24.
Zhai
,
G.
,
Shirzaei
,
M.
, and
Manga
,
M.
,
2020
, “
Elevated Seismic Hazard in Kansas Due to High‐Volume Injections in Oklahoma
,”
Geophys. Res. Lett.
,
47
(
5
), p. e2019GL085705.10.1029/2019GL085705
25.
Chen
,
Y.
,
Selvadurai
,
A. P. S.
, and
Liang
,
W.
,
2019
, “
Computational Modelling of Groundwater Inflow During a Longwall Coal Mining Advance: A Case Study From the Shanxi Province, China
,”
Rock Mech. Rock Eng.
,
52
(
3
), pp.
917
934
.10.1007/s00603-018-1603-1
26.
Li
,
X.
,
Feng
,
Y.
,
El Mohtar
,
C. S.
, and
Gray
,
K. E.
,
2019
, “
Transient Modeling of Borehole Breakouts: A Coupled Thermo-Hydro-Mechanical Approach
,”
J. Pet. Sci. Eng.
,
172
, pp.
1014
1024
.10.1016/j.petrol.2018.09.008
27.
Roshan
,
H.
, and
Rahman
,
S. S.
,
2011
, “
Analysis of Pore Pressure and Stress Distribution Around a Wellbore Drilled in Chemically Active Elastoplastic Formations
,”
Rock Mech. Rock Eng.
,
44
(
5
), pp.
541
552
.10.1007/s00603-011-0141-x
28.
Kim
,
J.
, and
Selvadurai
,
A. P. S.
,
2015
, “
Ground Heave Due to Line Injection Sources
,”
Geomech. Energy Environ.
,
2
, pp.
1
14
.10.1016/j.gete.2015.03.001
29.
Schwartzkopff
,
A. K.
,
Sainoki
,
A.
, and
Elsworth
,
D.
,
2021
, “
Numerical Simulation of an in-Situ Fluid Injection Experiment Into a Fault Using Coupled X-FEM Analysis
,”
Rock Mech. Rock Eng.
,
54
(
3
), pp.
1027
1053
.10.1007/s00603-020-02301-1
30.
Neuzil
,
C. E.
,
2003
, “
Hydromechanical Coupling in Geologic Processes
,”
Hydrogeol. J.
,
11
(
1
), pp.
41
83
.10.1007/s10040-002-0230-8
31.
Van der Kamp
,
G.
, and
Gale
,
J. E.
,
1983
, “
Theory of Earth Tide and Barometric Effects in Porous Formations With Compressible Grains
,”
Water Resour. Res.
,
19
(
2
), pp.
538
544
.10.1029/WR019i002p00538
32.
Selvadurai
,
A. P. S.
,
Suvorov
,
A. P.
, and
Selvadurai
,
P. A.
,
2015
, “
Thermo-Hydro-Mechanical Processes in Fractured Rock Formations During a Glacial Advance
,”
Geosci. Model Dev.
,
8
(
7
), pp.
2167
2185
.10.5194/gmd-8-2167-2015
33.
Cheng
,
A. H. D.
,
2016
,
Poroelasticity
, Vol.
877
,
Springer International Publishing
,
Switzerland
.
34.
Selvadurai
,
A. P. S., and
Suvorov
,
A. P.
,
2017
,
Thermo-Poroelasticity and Geomechanics
,
Cambridge University Press
, Cambridge,
UK
.
35.
Carcione
,
J. M.
,
2015
, “
Wave Fields in Real Media: Wave Propagation in Anisotropic
,”
Anelastic, Porous and Electromagnetic Media
, 3rd ed.,
Elsevier, Amsterdam, The Netherlands
.
36.
Lee
,
M. W.
,
2006
, “
Explicit Use of the Biot Coefficient in Predicting Shear‐Wave Velocity of Water‐Saturated Sediments
,”
Geophys. Prospect.
,
54
(
2
), pp.
177
185
.10.1111/j.1365-2478.2006.00524.x
37.
Selvadurai
,
A. P. S.
, and
Najari
,
M.
,
2017
, “
The Thermo‐Hydro‐Mechanical Behavior of the Argillaceous Cobourg Limestone
,”
J. Geophys. Res. Solid Earth
,
122
(
6
), pp.
4157
4171
.10.1002/2016JB013744
38.
Selvadurai
,
A. P. S.
, and
Najari
,
M.
,
2013
, “
On the Interpretation of Hydraulic Pulse Tests on Rock Specimens
,”
Adv. Water Resour.
,
53
, pp.
139
149
.10.1016/j.advwatres.2012.11.008
39.
Selvadurai
,
A. P. S.
, and
Suvorov
,
A. P.
,
2014
, “
Thermo-Poromechanics of a Fluid-Filled Cavity in a Fluid-Saturated Geomaterial
,”
Proc. Math. Phys. Eng. Sci.
,
470
(
2163
), p.
20130634
.10.1098/rspa.2013.0634
40.
Schrefler
,
B. A.
,
2002
, “
Mechanics and Thermodynamics of Saturated/Unsaturated Porous Materials and Quantitative Solutions
,”
ASME Appl. Mech. Rev.
,
55
(
4
), pp.
351
388
.10.1115/1.1484107
41.
Steeb
,
H.
, and
Renner
,
J.
,
2019
, “
Mechanics of Poro-Elastic Media: A Review With Emphasis on Foundational State Variables
,”
Transp. Porous Media
,
130
(
2
), pp.
437
461
.10.1007/s11242-019-01319-6
42.
Selvadurai
,
A. P. S.
,
2007
, “
The Analytical Method in Geomechanics
,”
ASME Appl. Mech. Rev.
,
60
(
3
), pp.
87
106
.10.1115/1.2730845
43.
Rudnicki
,
J. W.
,
2001
, “
Coupled Deformation-Diffusion Effects in the Mechanics of Faulting and Failure of Geomaterials
,”
ASME Appl. Mech. Rev.
,
54
(
6
), pp.
483
502
.10.1115/1.1410935
44.
Kasani
,
H. A.
,
2019
, “
Current Laboratory Techniques for Measuring Biot's Coefficient of Rock: A Review
,”
Proceedings of 14th International Congress on Rock Mechanics and Rock Engineering (ISRM 2019)
,
da Fontoura
et al., eds.,
Foz do Iguassu
,
Brazil
, Sept. 13–18, Paper No.
ISRM-14CONGRESS-2019-181
.https://onepetro.org/isrmcongress/proceedingsabstract/CONGRESS19/All-CONGRESS19/ISRM-14CONGRESS-2019-181/510789
45.
Cariou
,
S.
,
Duan
,
Z.
,
Davy
,
C.
,
Skoczylas
,
F.
, and
Dormieux
,
L.
,
2012
, “
Poromechanics of Partially Saturated COx Argillite
,”
Appl. Clay Sci.
,
56
, pp.
36
47
.10.1016/j.clay.2011.11.021
46.
Vlahinić
,
I.
,
Jennings
,
H. M.
,
Andrade
,
J. E.
, and
Thomas
,
J. J.
,
2011
, “
A Novel and General Form of Effective Stress in a Partially Saturated Porous Material: The Influence of Microstructure
,”
Mech. Mater.
,
43
(
1
), pp.
25
35
.10.1016/j.mechmat.2010.09.007
47.
Yuan
,
H.
,
Agostini
,
F.
,
Duan
,
Z.
,
Skoczylas
,
F.
, and
Talandier
,
J.
,
2017
, “
Measurement of Biot's Coefficient for COx Argillite Using Gas Pressure Technique
,”
Int. J. Rock Mech. Min. Sci.
,
92
, pp.
72
80
.10.1016/j.ijrmms.2016.12.016
48.
Suvorov
,
A. P.
, and
Selvadurai
,
A. P. S.
,
2019
, “
The Biot Coefficient for an Elasto-Plastic Material
,”
Int. J. Eng. Sci.
,
145
, p.
103166
.10.1016/j.ijengsci.2019.103166
49.
Detournay
,
E
Cheng
,., and A. H. D.,
1993
, “
Fundamentals of Poroelasticity
,”
Comprehensive Rock Engineering: Principles, Practice and Projects
(In Analysis and Design Methods), Vol.
II
,
C.
Fairhurst
, ed.,
Pergamon Press
, Oxford, UK, pp.
113
171
.
50.
Wang
,
H. F.
,
2000
,
Theory of Poroelasticity With Applications to Geomechanics and Hydrogeology
,
Princeton University Press
, Princeton, NJ.
51.
Cowin
,
S. C.
, and
Benalla
,
M.
,
2011
, “
Graphical Illustrations for the Nur-Byerlee-Carroll Proof of the Formula for the Biot Effective Stress Coefficient in Poroelasticity
,”
J. Elast.
,
104
(
1–2
), pp.
133
141
.10.1007/s10659-011-9324-7
52.
Terzaghi
,
K.
,
1923
, “
Die Berechnung Der Durchlassigkeitsziffer Des Tones Aus Dem Verlauf Der Hydrodynamischen Spannungserscheinungen
,”
Akad. Wiss. Wien Sitzungsber. Mathnaturwissensch. Klasse IIa
,
142
, pp. 125–138.
53.
Selvadurai
,
A. P. S.
,
2019
, “
The Biot Coefficient for a Low Permeability Heterogeneous Limestone
,”
Contin. Mech. Thermodyn.
,
31
(
4
), pp.
939
953
.10.1007/s00161-018-0653-7
54.
Selvadurai
,
A. P. S.
,
2019
, “
A Multi-Phasic Perspective of the Intact Permeability of the Heterogeneous Argillaceous Cobourg Limestone
,”
Sci. Rep.
,
9
(
1
), p.
17388
.10.1038/s41598-019-53343-7
55.
Selvadurai
,
A. P. S.
,
2021
, “
Irreversibility of Soil Skeletal Deformations: The Pedagogical Limitations of Terzaghi's Celebrated Model for Soil Consolidation
,”
Comput. Geotech.
,
135
, p.
104137
.10.1016/j.compgeo.2021.104137
56.
Rice
,
J. R.
, and
Cleary
,
M. P.
,
1976
, “
Some Basic Stress Diffusion Solutions for Fluid‐Saturated Elastic Porous Media With Compressible Constituents
,”
Rev. Geophys.
,
14
(
2
), pp.
227
241
.10.1029/RG014i002p00227
57.
Nur
,
A.
, and
Byerlee
,
J.
,
1971
, “
An Exact Effective Stress Law for Elastic Deformation of Rock With Fluids
,”
J. Geophys. Res.
,
76
(
26
), pp.
6414
6419
.10.1029/JB076i026p06414
58.
Berryman
,
J. G.
,
1992
, “
Effective Stress for Transport Properties of Inhomogeneous Porous Rock
,”
J. Geophys. Res. Solid Earth
,
97
(
B12
), pp.
17409
17424
.10.1029/92JB01593
59.
Mavko
,
G.
,
Mukerji
,
T.
, and
Dvorkin
,
J.
,
2009
, “
The Rock Physics Handbook
,”
Tools for Seismic Analysis of Porous Media
,
Cambridge University Press
,
Cambridge, UK
.
60.
Selvadurai
,
A. P. S.
,
Selvadurai
,
P. A.
, and
Nejati
,
M.
,
2019
, “
A Multi-Phasic Approach for Estimating the Biot Coefficient for Grimsel Granite
,”
Solid Earth
,
10
(
6
), pp.
2001
2014
.10.5194/se-10-2001-2019
61.
Selvadurai
,
A. P. S.
,
2021
, “
On the Poroelastic Biot Coefficient for a Granitic Rock
,”
Geosciences
,
11
(
5
), p.
219
.10.3390/geosciences11050219
62.
Hassanzadegan
,
A.
,
2013
, “
Thermomechanical and Poromechanical Behavior of Flechtinger Sandstone
,” Ph.D. thesis,
der Technischen Universitat
,
Berlin, Germany
.
63.
Ingraham
,
M. D.
,
Bauer
,
S. J.
,
Issen
,
K. A.
, and
Dewers
,
T. A.
,
2017
, “
Evolution of Permeability and Biot Coefficient at High Mean Stresses in High Porosity Sandstone
,”
Int. J. Rock Mech. Min. Sci.
,
96
, pp.
1
10
.10.1016/j.ijrmms.2017.04.004
64.
Hu
,
C.
,
Agostini
,
F.
,
Skoczylas
,
F.
, and
Egermann
,
P.
,
2018
, “
Effects of Gas Pressure on Failure and Deviatoric Stress on Permeability of Reservoir Rocks: Initial Studies on a Vosges Sandstone
,”
Eur. J. Environ. Civ. Eng.
,
22
(
8
), pp.
1004
1022
.10.1080/19648189.2016.1229231
65.
Makhnenko
,
R. M.
, and
Labuz
,
J. F.
,
2013
, “
Unjacketed Bulk Compressibility of Sandstone in Laboratory Experiments
,”
Poromechanics V – Proceedings of Fifth Biot Conference on Poromechanics
, Vienna, Austria, July 10–12, pp.
481
488
.10.1061/9780784412992.057
66.
Makhnenko
,
R. Y.
,
2013
, “
Deformation of Fluid-Saturated Porous Rock
,” Ph.D. thesis,
University of Minnesota
,
MN
.
67.
Hart
,
D. J.
,
2000
, “
Laboratory Measurements of Poroelastic Constants and Flow Parameters and Some Associated Phenomena
,” Ph.D. thesis,
University of Wisconsin-Madison
,
WI
.
68.
Zhang
,
Y.
,
Hao
,
S.
,
Bai
,
L.
,
Yu
,
Z.
,
Zhang
,
J.
, and
Fang
,
J.
,
2018
, “
Thermomechanical Behavior of Late Indo-Chinese Granodiorite Under High Temperature and Pressure
,”
J. Eng.
,
2018
, pp.
1
15
.10.1155/2018/6793191
69.
Belmokhtar
,
M.
,
Delage
,
P.
,
Ghabezloo
,
S.
,
Tang
,
A. M.
,
Menaceur
,
H.
, and
Conil
,
N.
,
2017
, “
Poroelasticity of the Callovo–Oxfordian Claystone
,”
Rock Mech. Rock Eng.
,
50
(
4
), pp.
871
889
.10.1007/s00603-016-1137-3
70.
Braun
,
P.
,
Ghabezloo
,
S.
,
Delage
,
P.
,
Sulem
,
J.
, and
Conil
,
N.
,
2019
, “
Determination of Multiple Thermo-Hydro-Mechanical Rock Properties in a Single Transient Experiment: Application to Shales
,”
Rock Mech. Rock Eng.
,
52
(
7
), pp.
2023
2038
.10.1007/s00603-018-1692-x
71.
Hu
,
H.
,
Braun
,
P.
,
Delage
,
P.
, and
Ghabezloo
,
S.
,
2021
, “
Evaluation of Anisotropic Poroelastic Properties and Permeability of the Opalinus Clay Using a Single Transient Experiment
,”
Acta Geotech.
,
16
(
7
), pp.
2131
2142
.10.1007/s11440-021-01147-3
72.
da Silva
,
M. R.
,
Schroeder
,
C.
, and
Verbrugge
,
J. C.
,
2010
, “
Poroelastic Behaviour of a Water-Saturated Limestone
,”
Int. J. Rock Mech. Min. Sci.
,
47
(
5
), pp.
797
807
.10.1016/j.ijrmms.2010.04.004
73.
Kim
,
K.
, and
Makhnenko
,
R. Y.
,
2020
, “
Coupling Between Poromechanical Behavior and Fluid Flow in Tight Rock
,”
Transp. Porous Media
,
135
(
2
), pp.
487
512
.10.1007/s11242-020-01484-z
74.
Lau
,
J. S. O.
, and
Chandler
,
N. A.
,
2004
, “
Innovative Laboratory Testing
,”
Int. J. Rock Mech. Min. Sci.
,
41
(
8
), pp.
1427
1445
.10.1016/j.ijrmms.2004.09.008
75.
Lau
,
J. S. O.
,
Gorski
,
B.
,
Conlon
,
B.
, and
Anderson
,
T.
,
2001
, “
The Measurement of Thermoporoelastic Parameters of Granite Using a Triaxial Cell
,” Attachment to the Incorporation of Rock Pore Pressure in Repository Design and Excavation Stability Analysis, Ontario Power Generation, Nuclear Waste Management Division, Toronto, ON, Canada, Report No. 06819-REP-01200-10068-R00.
76.
Guéguen
,
Y.
,
Dormieux
,
L.
, and
Boutéca
,
M.
,
2004
, “
Fundamentals of Poromechanics
,”
Mechanics of Fluid-Saturated Rocks
,
Y.
Guéguen
,
M.
Bouteca
, eds.,
Elsevier
,
Amsterdam, The Netherlands
, pp.
1
54
.
77.
Kümpel
,
H. J.
,
1991
, “
Poroelasticity: Parameters Reviewed
,”
Geophys. J. Int.
,
105
(
3
), pp.
783
799
.10.1111/j.1365-246X.1991.tb00813.x
78.
Müller
,
T. M.
, and
Sahay
,
P. N.
,
2016
, “
Biot Coefficient is Distinct From Effective Pressure Coefficient
,”
Geophysics
,
81
(
4
), pp.
L27
L33
.10.1190/geo2015-0625.1
79.
Pimienta
,
L.
,
Fortin
,
J.
, and
Guéguen
,
Y.
,
2017
, “
New Method for Measuring Compressibility and Poroelasticity Coefficients in Porous and Permeable Rocks
,”
J. Geophys. Res. Solid Earth
,
122
(
4
), pp.
2670
2689
.10.1002/2016JB013791
80.
Ferrari
,
A.
,
Favero
,
V.
, and
Laloui
,
L.
,
2016
, “
One-Dimensional Compression and Consolidation of Shales
,”
Int. J. Rock Mech. Min. Sci.
,
88
, pp.
286
300
.10.1016/j.ijrmms.2016.07.030
81.
He
,
J.
,
Rui
,
Z.
, and
Ling
,
K.
,
2016
, “
A New Method to Determine Biot Coefficients of Bakken Samples
,”
J. Nat. Gas Sci. Eng.
,
35
, pp.
259
264
.10.1016/j.jngse.2016.08.061
82.
Ling
,
K.
,
He
,
J.
,
Pei
,
P.
,
Wang
,
S.
, and
Ni
,
X.
,
2016
, “
Comparisons of Biot Coefficients of Bakken Core Samples Measured by Three Methods
,”
Proceedings of 50th U.S. Rock Mechanics/Geomechanics Symposium, American Rock Mechanics Association
, Houston, TX, June 26–29, Paper No.
ARMA-2016-030
.https://onepetro.org/ARMAUSRMS/proceedingsabstract/ARMA16/All-ARMA16/ARMA-2016-030/124156
83.
Al-Tahini
,
A. M.
,
Abousleiman
,
Y. N.
, and
Brumley
,
J. L.
,
2005
, “
Acoustic and Quasi-Static Laboratory Measurement and Calibration of the Pore Pressure Prediction Coefficient in the Poroelastic Theory
,”
Proceedings of SPE Annual Technical Conference and Exhibition
, Society of Petroleum Engineers, Dallas, TX, Oct. 9–12, Paper No. SPE 95825.10.2118/95825-MS
84.
Blöcher
,
G.
,
Reinsch
,
T.
,
Hassanzadegan
,
A.
,
Milsch
,
H.
, and
Zimmermann
,
G.
,
2014
, “
Direct and Indirect Laboratory Measurements of Poroelastic Properties of Two Consolidated Sandstones
,”
Int. J. Rock Mech. Min. Sci.
,
67
, pp.
191
201
.10.1016/j.ijrmms.2013.08.033
85.
Nermoen
,
A.
,
Korsnes
,
R.
,
Christensen
,
H. F.
,
Trads
,
N.
,
Hiorth
,
A.
, and
Madland
,
M. V.
,
2013
, “
Measuring the Biot Stress Coefficient and is Implications on the Effective Stress Estimate
,”
Proceedings of 47th U.S. Rock Mechanics/Geomechanics Symposium, American Rock Mechanics Association
, San Francisco, CA, June 23–26, Paper No.
ARMA-2013-282
.https://onepetro.org/ARMAUSRMS/proceedingsabstract/ARMA13/All-ARMA13/ARMA-2013-282/120993
86.
Salemi
,
H.
,
Iglauer
,
S.
,
Rezagholilou
,
A.
, and
Sarmadivaleh
,
M.
,
2018
, “
Laboratory Measurement of Biot's Coefficient and Pore Pressure Influence on Poroelastic Rock Behaviour
,”
APPEA J.
,
58
(
1
), pp.
182
189
.10.1071/AJ17069
87.
Franquet
,
J. A.
, and
Abass
,
H. H.
,
1999
, “
Experimental Evaluation of Biot's Poroelastic Parameter - Three Different Methods
,” Vail Rocks 1999, 37th U.S. Symposium on Rock Mechanics (USRMS), American Rock Mechanics, Vail, CO, June 7–9, Paper No.
ARMA-99-0349
.https://onepetro.org/ARMAUSRMS/proceedingsabstract/ARMA99/All-ARMA99/ARMA-99-0349/130865?redirectedFrom=PDF
88.
Hill
,
R.
,
1952
, “
The Elastic Behaviour of a Crystalline Aggregate
,”
Proc. Phys. Soc.
,
65
(
5
), pp.
349
354
.10.1088/0370-1298/65/5/307
89.
Hashin
,
Z.
, and
Shtrikman
,
S.
,
1963
, “
A Variational Approach to the Elastic Behavior of Multiphase Minerals
,”
J. Mech. Phys. Solids
,
11
(
2
), pp.
127
140
.10.1016/0022-5096(63)90060-7
90.
Reuss
,
A.
,
1929
, “
Berechnung Der Fließgrenze Von Mischkristallen Auf Grund Der Plastizitätsbedingung Für Einkristalle
,”
J. Appl. Math. Mech.
,
9
(
1
), pp.
49
58
.10.1002/zamm.19290090104
91.
Voigt
,
W.
,
1928
,
Lehrbuch Der Kristallphysik
,
Teubner, Leipzig, Germany
.
92.
Alam
,
M. M.
,
Fabricius
,
I. L.
, and
Christensen
,
H. F.
,
2012
, “
Static and Dynamic Effective Stress Coefficient of Chalk
,”
Geophysics
,
77
(
2
), pp.
L1
L11
.10.1190/geo2010-0414.1
93.
Fortin
,
J.
, and
Guéguen
,
Y.
,
2021
, “
Porous and Cracked Rocks Elasticity: Macroscopic Poroelasticity and Effective Media Theory
,”
Math. Mech. Solids
,
26
(
8
), pp.
1158
1172
.10.1177/10812865211022034
94.
Borgomano
,
J. V. M.
,
Pimienta
,
L.
,
Fortin
,
J.
, and
Guéguen
,
Y.
,
2017
, “
Dispersion and Attenuation Measurements of the Elastic Moduli of a Dual‐Porosity Limestone
,”
J. Geophys. Res. Solid Earth
,
122
(
4
), pp.
2690
2711
.10.1002/2016JB013816
95.
Borgomano
,
J. V.
,
Pimienta
,
L. X.
,
Fortin
,
J.
, and
Guéguen
,
Y.
,
2019
, “
Seismic Dispersion and Attenuation in Fluid‐Saturated Carbonate Rocks: Effect of Microstructure and Pressure
,”
J. Geophys. Res. Solid Earth
,
124
(
12
), pp.
12498
12522
.10.1029/2019JB018434
96.
Borgomano
,
J. V.
,
Gallagher
,
A.
,
Sun
,
C.
, and
Fortin
,
J.
,
2020
, “
An Apparatus to Measure Elastic Dispersion and Attenuation Using Hydrostatic-and Axial-Stress Oscillations Under Undrained Conditions
,”
Rev. Sci. Instrum
,.,
91
(
3
), p.
034502
.10.1063/1.5136329
97.
Yin
,
H.
,
Borgomano
,
J. V.
,
Wang
,
S.
,
Tiennot
,
M.
,
Fortin
,
J.
, and
Guéguen
,
Y.
,
2019
, “
Fluid Substitution and Shear Weakening in Clay‐Bearing Sandstone at Seismic Frequencies
,”
J. Geophys. Res. Solid Earth
,
124
(
2
), pp.
1254
1272
.10.1029/2018JB016241
98.
Pimienta
,
L.
,
Fortin
,
J.
, and
Guéguen
,
Y.
,
2015
, “
Bulk Modulus Dispersion and Attenuation in Sandstones
,”
Geophysics
,
80
(
2
), pp.
D111
D127
.10.1190/geo2014-0335.1
99.
Bishop
,
A. W.
,
1976
, “
The Influence of System Compressibility on the Observed Pore-Pressure Response to an Undrained Change in Stress in Saturated Rock
,”
Geotechnique
,
26
(
2
), pp.
371
375
.10.1680/geot.1976.26.2.371
100.
Ghabezloo
,
S.
, and
Sulem
,
J.
,
2010
, “
Effect of the Volume of the Drainage System on the Measurement of Undrained Thermo-Poro-Elastic Parameters
,”
Int. J. Rock Mech. Min. Sci.
,
47
(
1
), pp.
60
68
.10.1016/j.ijrmms.2009.03.001
101.
Wissa
,
A. E.
,
1969
, “
Pore Pressure Measurements in Saturated Stiff Soils
,”
J. Soil Mech. Found. Div., Am. Soc. Civ. Eng.
,
95
(
4
), pp.
1063
1073
.10.1061/JSFEAQ.0001304
102.
Al-Wardy
,
W.
,
2003
, “
Analytical and Experimental Study of the Poroelastic Behaviour of Clean and Clay-Rich Sandstones
,” Ph.D. thesis, Imperial College London, London, UK.
103.
Green
,
D. H.
, and
Wang
,
H. F.
,
1986
, “
Fluid Pressure Response to Undrained Compression in Saturated Sedimentary Rock
,”
Geophysics
,
51
(
4
), pp.
948
956
.10.1190/1.1442152
104.
Paterson
,
M. S.
, and
Wong
,
T. F.
,
2005
,
Experimental Rock Deformation-The Brittle Field
,
Springer Science and Business Media, Berlin
.
105.
Song
,
I.
, and
Renner
,
J.
,
2008
, “
Hydromechanical Properties of Fontainebleau Sandstone: Experimental Determination and Micromechanical Modeling
,”
J. Geophys. Res. Solid Earth
,
113
(
B9
), epub.10.1029/2007JB005055
106.
Zimmerman
,
R. W.
,
Somerton
,
W. H.
, and
King
,
M. S.
,
1986
, “
Compressibility of Porous Rocks
,”
J. Geophys. Res. Solid Earth
,
91
(
B12
), pp.
12765
12777
.10.1029/JB091iB12p12765
107.
Zimmerman
,
R. W.
,
2000
, “
Coupling in Poroelasticity and Thermoelasticity
,”
Int. J. Rock Mech. Min. Sci
,.,
37
(
1–2
), pp.
79
87
.10.1016/S1365-1609(99)00094-5
108.
Dassanayake
,
A. B.
,
Fujii
,
Y.
,
Fukuda
,
D.
, and
Kodama
,
J. I.
,
2015
, “
A New Approach to Evaluate Effective Stress Coefficient for Strength in Kimachi Sandstone
,”
J. Pet. Sci. Eng.
,
131
, pp.
70
79
.10.1016/j.petrol.2015.04.015
109.
Baud
,
P.
,
Reuschlé
,
T.
,
Ji
,
Y.
,
Cheung
,
C. S.
, and
Wong
,
T. F.
,
2015
, “
Mechanical Compaction and Strain Localization in Bleurswiller Sandstone
,”
J. Geophys. Res. Solid Earth
,
120
(
9
), pp.
6501
6522
.10.1002/2015JB012192
110.
van Oort
,
E.
,
1994
, “
A Novel Technique for the Investigation of Drilling Fluid Induced Borehole Instability in Shales
,” Proceedings of Rock Mechanics in Petroleum Engineering, Delft, The Netherlands, Aug. 29–31, Paper No.
SPE-28064-MS
.10.2118/28064-MS
111.
Cui
,
Q.
,
2016
, “
Stress Dependent Compaction in Tight Reservoirs and its Impact on Long-Term Production
,” Ph.D. thesis,
Colorado School of Mines
, Golden, CO.
112.
Bernabe
,
Y.
,
1985
, “
Permeability and Pore Structure of Rocks Under Pressure
, Ph.D. thesis,
Massachusetts Institute of Technology
,
Cambridge, MA
.
113.
Bernabe
,
Y.
,
1986
, “
The Effective Pressure Law for Permeability in Chelmsford Granite and Barre Granite
,”
Int. J. Rock Mech. Min. Sci. Geomech. Abstr.
,
23
(
3
), pp.
267
275
.10.1016/0148-9062(86)90972-1
114.
Teufel
,
L. W.
, and
Warpinski
,
N. R.
,
1990
, “
Laboratory Determination of Effective Stress Laws for Deformation and Permeability of Chalk
,” Sandia National Labs, Albuquerque, NM, Report No.
SAND-90-1113C; CONF-9006181-1
.https://www.osti.gov/biblio/6903844
115.
Wang
,
Y.
,
Meng
,
F.
,
Wang
,
X.
,
Baud
,
P.
, and
Wong
,
T. F.
,
2018
, “
Effective Stress Law for the Permeability and Deformation of Four Porous Limestones
,”
J. Geophys. Res. Solid Earth
,
123
(
6
), pp.
4707
4729
.10.1029/2018JB015539
116.
Meng
,
F.
,
Baud
,
P.
,
Ge
,
H.
, and
Wong
,
T. F.
,
2019
, “
The Effect of Stress on Limestone Permeability and Effective Stress Behavior of Damaged Samples
,”
J. Geophys. Res. Solid Earth
,
124
(
1
), pp.
376
399
.10.1029/2018JB016526
117.
Chen
,
Z.
,
Zheng
,
L.
,
Li
,
M.
,
Xiao
,
W.
, and
Liu
,
Z.
,
2008
, “
The Effective Pressure Law for Permeability in Northern Hubei Low Permeability Sandstone Rock
,”
Proceedings of 14th World Conference on Earthquake Engineering
,
China
,
Beijing
, Oct. 12–17, pp.
12
17
.https://invenio.itam.cas.cz/record/9723/
118.
Morrow
,
C. A.
,
Zhang
,
B. C.
, and
Byerlee
,
J. D.
,
1986
, “
Effective Pressure Law for Permeability of Westerly Granite Under Cyclic Loading
,”
J. Geophys. Res. Solid Earth
,
91
(
B3
), pp.
3870
3876
.10.1029/JB091iB03p03870
119.
Box
,
G. P.
, and
Draper
,
N. R.
,
1987
,
Empirical Model-Building and Response Surfaces
,
Wiley
,
New York
.
120.
Li
,
M.
,
Bernabé
,
Y.
,
Xiao
,
W. I.
,
Chen
,
Z. Y.
, and
Liu
,
Z. Q.
,
2009
, “
Effective Pressure Law for Permeability of E‐Bei Sandstones
,”
J. Geophys. Res. Solid Earth
,
114
(
B7
), epub.10.1029/2009JB006373
121.
Warpinski
,
N. R.
, and
Teufel
,
L. W.
,
1994
, “
Effective-Stress-Law Behavior of Austin Chalk Rocks for Deformation and Fracture Conductivity
,” Sandia National Labs, Albuquerque, NM, Report No.
SAND-94-0012
.https://digital.library.unt.edu/ark:/67531/metadc1402879/
122.
Ma
,
X.
, and
Zoback
,
M. D.
,
2017
, “
Laboratory Experiments Simulating Poroelastic Stress Changes Associated With Depletion and Injection in Low‐Porosity Sedimentary Rocks
,”
J. Geophys. Res. Solid Earth
,
122
(
4
), pp.
2478
2503
.10.1002/2016JB013668
123.
Todd
,
T.
, and
Simmons
,
G.
,
1972
, “
Effect of Pore Pressure on the Velocity of Compressional Waves in Low‐Porosity Rocks
,”
J. Geophys. Res.
,
77
(
20
), pp.
3731
3743
.10.1029/JB077i020p03731
124.
Prasad
,
M.
, and
Manghnani
,
M. H.
,
1997
, “
Effects of Pore and Differential Pressure on Compressional Wave Velocity and Quality Factor in Berea and Michigan Sandstones
,”
Geophysics
,
62
(
4
), pp.
1163
1176
.10.1190/1.1444217
125.
Mulchandani
,
V.
, and
Sharma
,
R.
,
2017
, “
Sensitivity of Effective Pressure Towards Vp and Vs Using Biot's and Effective Stress Coefficients in Carbonate Reservoirs
,”
Proceedings of International Conference on Engineering Geophysics
, Society of Exploration Geophysicists, United Arab Emirates, Oct.
9–12
, pp. 344–347.10.1190/iceg2017-063
126.
Sharma
,
R.
,
2015
, “
Impact of Texture Heterogeneity on Elastic and Viscoelastic Properties of Carbonates
,” Ph.D. thesis,
Colorado School of Mines
,
Golden, CO
.
127.
Salemi
,
H.
,
Nourifard
,
N.
,
Iglauer
,
S.
,
Rezagholilou
,
A.
, and
Sarmadivaleh
,
M.
,
2019
, “
Acoustic Approach to Determine Biot Effective Stress Coefficient of Sandstone Using True Triaxial Cell (TTSC)
,” Proceedings of 13th Australia and New Zealand Conference on Geomechanics,
Acosta-Martinez
,
L.
, eds., Sydney, Australia, June 28–July 1, Paper No.
ARMA-2020-1048
.https://onepetro.org/ARMAUSRMS/proceedingsabstract/ARMA20/All-ARMA20/ARMA-2020-1048/448832
128.
Mavko
,
G.
, and
Vanorio
,
T.
,
2010
, “
The Influence of Pore Fluids and Frequency on Apparent Effective Stress Behavior of Seismic Velocities
,”
Geophysics
,
75
(
1
), pp.
N1
N7
.10.1190/1.3277251
129.
Vasquez
,
G. F.
,
Vargas Junior
,
E. D.
,
Ribeiro
,
C. J.
,
Leão
,
M.
, and
Justen
,
J. C.
,
2009
, “
Experimental Determination of the Effective Pressure Coefficients for Brazilian Limestones and Sandstones
,”
Rev. Bras. Geofis.
,
27
(
1
), pp.
43
53
.10.1590/S0102-261X2009000100004
130.
Xu
,
X.
,
Hofmann
,
R.
,
Batzle
,
M.
, and
Tshering
,
T.
,
2006
, “
Influence of Pore Pressure on Velocity in Low-Porosity Sandstone: Implications for Time-Lapse Feasibility and Pore-Pressure Study
,”
Geophys. Prospect.
,
54
(
5
), pp.
565
573
.10.1111/j.1365-2478.2006.00569.x
131.
Christensen
,
N. I.
, and
Wang
,
H. F.
,
1985
, “
The Influence of Pore Pressure and Confining Pressure on Dynamic Elastic Properties of Berea Sandstone
,”
Geophysics
,
50
(
2
), pp.
207
213
.10.1190/1.1441910
132.
Christensen
,
N. I.
,
1984
, “
Pore Pressure and Oceanic Crustal Seismic Structure
,”
Geophys. J. Int.
,
79
(
2
), pp.
411
423
.10.1111/j.1365-246X.1984.tb02232.x
133.
Geertsma
,
J.
,
1957
, “
The Effect of Fluid Pressure Decline on Volumetric Changes of Porous Rocks
,”
Pet. Trans., AIME
,
210
(
01
), pp.
331
340
.10.2118/728-G
134.
Wu
,
B.
,
2001
, “
Biot's Effective Stress Coefficient Evaluation: Static and Dynamic Approaches
,” Proc. ISRM International Symposium-Second Asian Rock Mechanics Symposium, International Society for Rock Mechanics and Rock Engineering, Beijing, China, Sept. 11–14, Paper No.
ISRM-ARMS2-2001-082
.https://onepetro.org/ISRMARMS/proceedingsabstract/ARMS201/All-ARMS201/ISRM-ARMS2-2001-082/169992
135.
Cosenza
,
P.
,
Ghoreychi
,
M.
,
De Marsily
,
G.
,
Vasseur
,
G.
, and
Violette
,
S.
,
2002
, “
Theoretical Prediction of Poroelastic Properties of Argillaceous Rocks From In Situ Specific Storage Coefficient
,”
Water Resour. Res.
,
38
(
10
), p.
25
.10.1029/2001WR001201
136.
Walsh
,
J. B.
,
1965
, “
The Effect of Cracks on the Compressibility of Rock
,”
J. Geophys. Res.
,
70
(
2
), pp.
381
389
.10.1029/JZ070i002p00381
137.
Walsh
,
J. B.
, and
Grosenbaugh
,
M. A.
,
1979
, “
A New Model for Analyzing the Effect of Fractures on Compressibility
,”
J. Geophys. Res. Solid Earth
,
84
(
B7
), pp.
3532
3536
.10.1029/JB084iB07p03532
138.
Kachanov
,
M.
,
1993
, “
Elastic Solids With Many Cracks and Related Problems
,”
Adv. Appl. Mech.
,
30
, pp.
259
445
.10.1016/S0065-2156(08)70176-5
139.
David
,
E. C.
, and
Zimmerman
,
R. W.
,
2011
, “
Elastic Moduli of Solids Containing Spheroidal Pores
,”
Int. J. Eng. Sci.
,
49
(
7
), pp.
544
560
.10.1016/j.ijengsci.2011.02.001
140.
Selvadurai
,
A. P. S.
, and
Suvorov
,
A. P.
,
2020
, “
The Influence of the Pore Shape on the Bulk Modulus and the Biot Coefficient of Fluid-Saturated Porous Rocks
,”
Sci. Rep.
,
10
(
1
), pp.
1
10
.10.1038/s41598-020-75979-6
141.
Li
,
Q.
,
Aguilera
,
R.
, and
Cinco-Ley
,
H.
,
2020
, “
A Correlation for Estimating the Biot Coefficient
,”
SPE Drill. Compl.
,
35
(
02
), pp.
151
163
.10.2118/195359-PA
142.
Tan
,
X.
, and
Konietzky
,
H.
,
2014
, “
Numerical Study of Variation in Biot Coefficient With Respect to Microstructure of Rocks
,”
Tectonophysics
,
610
, pp.
159
171
.10.1016/j.tecto.2013.11.014
143.
Tan
,
X.
,
Konietzky
,
H.
, and
Frühwirt
,
T.
,
2015
, “
Experimental and Numerical Study on Evolution of Biot's Coefficient During Failure Process for Brittle Rocks
,”
Rock Mech. Rock Eng.
,
48
(
3
), pp.
1289
1296
.10.1007/s00603-014-0618-5
144.
Chen
,
S.
,
Zhao
,
Z.
,
Chen
,
Y.
, and
Yang
,
Q.
,
2020
, “
On the Effective Stress Coefficient of Saturated Fractured Rocks
,”
Comput Geotech.
,
123
, p.
103564
.10.1016/j.compgeo.2020.103564
145.
Zhao
,
Z.
,
Chen
,
S.
,
Chen
,
Y.
, and
Yang
,
Q.
,
2021
, “
On the Effective Stress Coefficient of Single Rough Rock Fractures
,”
Int. J. Rock Mech. Min. Sci.
,
137
, p.
104556
.10.1016/j.ijrmms.2020.104556
146.
Coyner
,
K. B.
,
1984
, “
Effects of Stress, Pore Pressure, and Pore Fluids on Bulk Strain, Velocity, and Permeability in Rocks
,” Ph.D. thesis,
Massachusetts Institute of Technology
,
Cambridge, MA
.
147.
Hart
,
D. J.
, and
Wang
,
H. F.
,
1995
, “
Laboratory Measurements of a Complete Set of Poroelastic Moduli for Berea Sandstone and Indiana Limestone
,”
J. Geophys. Res. Solid Earth
,
100
(
B9
), pp.
17741
17751
.10.1029/95JB01242
148.
Hasanov
,
A. K.
,
Prasad
,
M.
, and
Batzle
,
M. L.
,
2017
, “
Simultaneous Measurements of Transport and Poroelastic Properties of Rocks
,”
Rev. Sci. Instrum.
,
88
(
12
), p.
124503
.10.1063/1.5018232
149.
Biot
,
M. A.
,
1955
, “
Theory of Elasticity and Consolidation for a Porous Anisotropic Solid
,”
J. Appl. Phys.
,
26
(
2
), pp.
182
185
.10.1063/1.1721956
150.
Carroll
,
M. M.
,
1979
, “
An Effective Stress Law for Anisotropic Elastic Deformation
,”
J. Geophys. Res. Solid Earth
,
84
(
B13
), pp.
7510
7512
.10.1029/JB084iB13p07510
151.
Cheng
,
A. D.
,
1997
, “
Material Coefficients of Anisotropic Poroelasticity
,”
Int. J. Rock Mech. Min. Sci.
,
34
(
2
), pp.
199
205
.10.1016/S0148-9062(96)00055-1
152.
Katsube
,
N.
,
1985
, “
The Constitutive Theory for Fluid-Filled Porous Materials
,”
ASME J. Appl. Mech.
,
52
(
1
), pp.
185
189
.10.1115/1.3168992
153.
Lehner
,
F. K.
,
2011
, “
The Linear Theory of Anisotropic Poroelastic Solids
,”
Mechanics of Crustal Rocks - CISM Courses and Lectures
,
Leroy
,
Y. M.
, and
Lehner
,
F. K.
, eds.,
Springer
,
Wien New York
, pp.
1
41
.
154.
Saurabh
,
S.
, and
Harpalani
,
S.
,
2018
, “
The Effective Stress Law for Stress-Sensitive Transversely Isotropic Rocks
,”
Int. J. Rock Mech. Min. Sci.
,
101
, pp.
69
77
.10.1016/j.ijrmms.2017.11.015
155.
Thompson
,
M.
, and
Willis
,
J. R.
,
1991
, “
A Reformation of the Equations of Anisotropic Poroelasticity
,”
ASME J. Appl. Mech.
,
58
(
3
), pp.
612
616
.10.1115/1.2897239
156.
Zhou
,
X.
, and
Ghassemi
,
A.
,
2019
, “
Biot's Effective Stress Coefficient Tensor Measurements on Mancos Shale
,”
Proceedings of 53rd U.S. Rock Mechanics/Geomechanics Symposium, American Rock Mechanics Association, ARMA
, New York, June 23–26, pp.
2019
0516
.https://onepetro.org/ARMAUSRMS/proceedingsabstract/ARMA19/All-ARMA19/ARMA-2019-0516/124868
157.
Zhou
,
X.
,
Ghassemi
,
A.
,
Riley
,
S.
, and
Roberts
,
J.
,
2017
, “
Biot's Effective Stress Coefficient of Mudstone Source Rocks
,”
Proceedings of 51st U.S. Rock Mechanics/Geomechanics Symposium, American Rock Mechanics Association
, San Francisco, CA, June 25–28, Report No.
ARMA-2017-0235
.https://onepetro.org/ARMAUSRMS/proceedingsabstract/ARMA17/All-ARMA17/ARMA-2017-0235/124216
158.
Hassanzadegan
,
A.
,
Guérizec
,
R.
,
Reinsch
,
T.
,
Blöcher
,
G.
,
Zimmermann
,
G.
, and
Milsch
,
H.
,
2016
, “
Static and Dynamic Moduli of Malm Carbonate: A Poroelastic Correlation
,”
Pure Appl. Geophys.
,
173
(
8
), pp.
2841
2855
.10.1007/s00024-016-1327-7
159.
Akbarzadeh
,
H.
, and
Chalaturnyk
,
R. J.
,
2014
, “
Structural Changes in Coal at Elevated Temperature Pertinent to Underground Coal Gasification: A Review
,”
Int. J. Coal Geol.
,
131
, pp.
126
146
.10.1016/j.coal.2014.06.009
160.
Klinkenberg
,
L. J.
,
1941
, “
The Permeability of Porous Media to Liquids and Gases
,”
Proceedings of Drilling and Production Practice
,
American Petroleum Institute
,
New York,
pp.
41
200
.
161.
Fang
,
Y.
,
Shi
,
Y.
,
Sheng
,
Y.
, and
Zhang
,
Z.
,
2018
, “
Modeling of Biot's Coefficient for a Clay-Bearing Sandstone Reservoir
,”
Arab. J. Geosci.
,
11
(
12
), pp.
1
17
.10.1007/s12517-018-3663-7
162.
Gokaraju
,
D.
,
Aldin
,
M.
,
Thombare
,
A.
,
Mitra
,
A.
,
Govindarajan
,
S.
, and
Patterson
,
R.
,
2018
, “
A Novel Method for Experimental Characterization of the Poroelastic Constants in Unconventional Formations
,”
Proceedings of Unconventional Resources Technology Conference
, Society of Exploration Geophysicists, American Association of Petroleum Geologists, Society of Petroleum Engineers, Houston, TX, July 23–25, pp.
3038
3051
.10.15530/URTEC-2018-2902907
163.
ASTM
International
,
2013
, “
Standard Practice for Using Significant Digits in Geotechnical Data
,”
ASTM International
,
West Conshohocken, PA, Paper No
. ASTM D6026-13.https://www.astm.org/d6026-21.html
You do not currently have access to this content.