Bioinspired superhydrophobic surfaces have attracted great interest from fundamental research to engineering applications. The stability, design, and regulation of superhydrophobicity, especially in a submerged environment, have been one of the main focuses of recent efforts. This review is dedicated to illustrating the fundamental characteristics of underwater superhydrophobicity, introducing novel and effective strategies for robust design and regulation, and to providing an overview of the state-of-the-art engineering applications in drag reduction and cavitation/boiling control. First, the underlying mechanisms of wetting transition on superhydrophobic surfaces submerged underwater induced by physical phenomena including pressurization, air diffusion, fluid flow, and condensation are reviewed. The influence of the closed/open state of entrapped air cavities is differentiated. Landmark experiments demonstrating wetting transition mechanisms are surveyed. Then, novel strategies for designing robust superhydrophobic surfaces are summarized, including hierarchical, reentrant, lubricant-infused, and mechanically durable structures. Moreover, strategies for superhydrophobicity regulation are introduced, which are classified into two types: self-healing and dewetting, based on the failure regime (surface damage or meniscus collapse). The current state-of-the-art engineering applications in drag reduction and cavitation/boiling control are comprehensively reviewed. Last but not least, remaining challenges for future research are given at the conclusion.

References

1.
Feng
,
L.
,
Li
,
S.
,
Li
,
Y.
,
Li
,
H.
,
Zhang
,
L.
,
Zhai
,
J.
,
Song
,
Y.
,
Liu
,
B.
,
Jiang
,
L.
, and
Zhu
,
D.
,
2002
, “
Super-Hydrophobic Surfaces: From Natural to Artificial
,”
Adv. Mater.
,
14
(
24
), pp.
1857
1860
.
2.
Blossey
,
R.
,
2003
, “
Self-Cleaning Surfaces–Virtual Realities
,”
Nat. Mater.
,
2
(
5
), pp.
301
306
.
3.
Nosonovsky
,
M.
, and
Bhushan
,
B.
,
2009
, “
Superhydrophobic Surfaces and Emerging Applications: Non-Adhesion, Energy, Green Engineering
,”
Curr. Opin. Colloid Interface Sci.
,
14
(
4
), pp.
270
280
.
4.
Yan
,
Y.
,
Gao
,
N.
, and
Barthlott
,
W.
,
2011
, “
Mimicking Natural Superhydrophobic Surfaces and Grasping the Wetting Process: A Review on Recent Progress in Preparing Superhydrophobic Surfaces
,”
Adv. Colloid Interface Sci.
,
169
(
2
), pp.
80
105
.
5.
Onda
,
T.
,
Shibuichi
,
S.
,
Satoh
,
N.
, and
Tsujii
,
K.
,
1996
, “
Super-Water-Repellent Fractal Surfaces
,”
Langmuir
,
12
(
9
), pp.
2125
2127
.
6.
Neinhuis
,
C.
, and
Barthlott
,
W.
,
1997
, “
Characterization and Distribution of Water-Repellent, Self-Cleaning Plant Surfaces
,”
Ann. Bot.
,
79
(
6
), pp.
667
677
.
7.
Barthlott
,
W.
, and
Neinhuis
,
C.
,
1997
, “
Purity of the Sacred Lotus, or Escape From Contamination in Biological Surfaces
,”
Planta
,
202
(
1
), pp.
1
8
.
8.
Hu
,
D.
,
Chan
,
B.
, and
Bush
,
J.
,
2003
, “
The Hydrodynamics of Water Strider Locomotion
,”
Nature
,
424
(
6949
), pp.
663
666
.
9.
Koch
,
K.
,
Bhushan
,
B.
, and
Barthlott
,
W.
,
2009
, “
Multifunctional Surface Structures of Plants: An Inspiration for Biomimetics
,”
Prog. Mater. Sci.
,
54
(
2
), pp.
137
178
.
10.
Feng
,
X.
, and
Jiang
,
L.
,
2006
, “
Design and Creation of Superwetting/Antiwetting Surfaces
,”
Adv. Mater.
,
18
(
23
), pp.
3063
3078
.
11.
Gao
,
X.
, and
Jiang
,
L.
,
2004
, “
Biophysics: Water-Repellent Legs of Water Striders
,”
Nature
,
432
(
7013
), p. 36.
12.
Hensel
,
R.
,
Helbig
,
R.
,
Aland
,
S.
,
Braun
,
H.
,
Voigt
,
A.
,
Neinhuis
,
C.
, and
Werner
,
C.
,
2013
, “
Wetting Resistance at Its Topographical Limit: The Benefit of Mushroom and Serif T Structures
,”
Langmuir
,
29
(
4
), pp.
1100
1112
.
13.
Barthlott
,
W.
,
Schimmel
,
T.
,
Wiersch
,
S.
,
Koch
,
K.
,
Brede
,
M.
,
Barczewski
,
M.
,
Walheim
,
S.
,
Weis
,
A.
,
Kaltenmaier
,
A.
,
Leder
,
A.
, and
Bohn
,
H.
,
2010
, “
The Salvinia Paradox: Superhydrophobic Surfaces With Hydrophilic Pins for Air Retention Under Water
,”
Adv. Mater.
,
22
(
21
), pp.
2325
2328
.
14.
Bohn
,
H.
, and
Federle
,
W.
,
2004
, “
Insect Aquaplaning: Nepenthes Pitcher Plants Capture Prey With the Peristome, a Fully Wettable Water-Lubricated Anisotropic Surface
,”
Proc. Natl. Acad. Sci. U.S.A.
,
101
(
39
), pp.
14138
14143
.
15.
Bixler
,
G.
,
Theiss
,
A.
,
Bhushan
,
B.
, and
Lee
,
S.
,
2014
, “
Anti-Fouling Properties of Microstructured Surfaces Bio-Inspired by Rice Leaves and Butterfly Wings
,”
J. Colloid Interface Sci.
,
419
(
1
), pp.
114
133
.
16.
de Gennes
,
P.
,
1985
, “
Wetting: Statics and Dynamics
,”
Rev. Mod. Phys.
,
57
(
3
), pp.
827
863
.
17.
Quéré
,
D.
,
2008
, “
Wetting and Roughness
,”
Annu. Rev. Mater. Res.
,
38
(
1
), pp.
71
99
.
18.
Cassie
,
A.
, and
Baxter
,
S.
,
1944
, “
Wettability of Porous Surfaces
,”
Trans. Faraday Soc.
,
40
(
1
), pp.
546
551
.
19.
Lafuma
,
A.
, and
Quéré
,
D.
,
2003
, “
Superhydrophobic States
,”
Nat. Mater.
,
2
(
7
), pp.
457
460
.
20.
Bartolo
,
D.
,
Bouamrirene
,
F.
,
Verneuil
,
E.
,
Buguin
,
A.
,
Silberzan
,
P.
, and
Moulinet
,
S.
,
2006
, “
Bouncing or Sticky Droplets: Impalement Transitions on Superhydrophobic Micropatterned Surfaces
,”
Europhys. Lett.
,
74
(
2
), p.
299
.
21.
Reyssat
,
M.
,
Pépin
,
A.
,
Marty
,
F.
,
Chen
,
Y.
, and
Quéré
,
D.
,
2006
, “
Bouncing Transitions on Microtextured Materials
,”
Europhys. Lett.
,
74
(
2
), p.
306
.
22.
Reyssat
,
M.
,
Yeomans
,
J.
, and
Quéré
,
D.
,
2008
, “
Impalement of Fakir Drops
,”
Europhys. Lett.
,
81
(
2
), p.
26006
.
23.
Wier
,
K.
, and
McCarthy
,
T.
,
2006
, “
Condensation on Ultrahydrophobic Surfaces and Its Effect on Droplet Mobility: Ultrahydrophobic Surfaces are Not Always Water Repellant
,”
Langmuir
,
22
(
6
), pp.
2433
2436
.
24.
Dorrer
,
C.
, and
Rühe
,
J.
,
2007
, “
Condensation and Wetting Transitions on Microstructured Ultrahydrophobic Surfaces
,”
Langmuir
,
23
(
7
), pp.
3820
3824
.
25.
Bobji
,
M.
,
Kumar
,
S.
,
Asthana
,
A.
, and
Govardhan
,
R.
,
2009
, “
Underwater Sustainability of the Cassie State of Wetting
,”
Langmuir
,
25
(
20
), pp.
12120
12126
.
26.
Poetes
,
R.
,
Holtzmann
,
K.
,
Franze
,
K.
, and
Steiner
,
U.
,
2010
, “
Metastable Underwater Superhydrophobicity
,”
Phys. Rev. Lett.
,
105
(
16
), p.
166104
.
27.
Wenzel
,
R.
,
1936
, “
Resistance of Solid Surfaces to Wetting by Water
,”
Ind. Eng. Chem.
,
28
(
8
), pp.
988
994
.
28.
Xue
,
Y.
,
Chu
,
S.
,
Lv
,
P.
, and
Duan
,
H.
,
2012
, “
Importance of Hierarchical Structures in Wetting Stability on Submersed Superhydrophobic Surfaces
,”
Langmuir
,
28
(
25
), pp.
9440
9450
.
29.
Callies
,
M.
, and
Quéré
,
D.
,
2005
, “
On Water Repellency
,”
Soft Matter
,
1
(
1
), pp.
55
61
.
30.
Ma
,
M.
, and
Hill
,
R.
,
2006
, “
Superhydrophobic Surfaces
,”
Curr. Opin. Colloid Interface Sci.
,
11
(
4
), pp.
193
202
.
31.
Li
,
X.
,
Reinhoudt
,
D.
, and
Crego-Calama
,
M.
,
2007
, “
What Do We Need for a Superhydrophobic Surface? A Review on the Recent Progress in the Preparation of Superhydrophobic Surfaces
,”
Chem. Soc. Rev.
,
36
(
8
), pp.
1350
1368
.
32.
Roach
,
P.
,
Shirtcliffe
,
N.
, and
Newton
,
M.
,
2008
, “
Progress in Superhydrophobic Surface Development
,”
Soft Matter
,
4
(
2
), pp.
224
240
.
33.
Bhushan
,
B.
, and
Jung
,
Y.
,
2011
, “
Natural and Biomimetic Artificial Surfaces for Superhydrophobicity, Self-Cleaning, Low Adhesion, and Drag Reduction
,”
Prog. Mater. Sci.
,
56
(
1
), pp.
1
108
.
34.
Bormashenko
,
E.
,
2015
, “
Progress in Understanding Wetting Transitions on Rough Surfaces
,”
Adv. Colloid Interface Sci.
,
222
(
1
), pp.
92
103
.
35.
McHale
,
G.
,
Newton
,
M.
, and
Shirtcliffe
,
N.
,
2010
, “
Immersed Superhydrophobic Surfaces: Gas Exchange, Slip and Drag Reduction Properties
,”
Soft Matter
,
6
(
4
), pp.
714
719
.
36.
Samaha
,
M.
,
Tafreshi
,
H.
, and
Gad-el-Hak
,
M.
,
2012
, “
Superhydrophobic Surfaces: From the Lotus Leaf to the Submarine
,”
C. R. Mec.
,
340
(
1
), pp.
18
34
.
37.
Rothstein
,
J.
,
2010
, “
Slip on Superhydrophobic Surfaces
,”
Annu. Rev. Fluid Mech.
,
42
(
1
), pp.
89
109
.
38.
Samaha
,
M.
, and
Gad-el-Hak
,
M.
,
2014
, “
Polymeric Slippery Coatings: Nature and Applications
,”
Polymers
,
6
(
5
), pp.
1266
1311
.
39.
Miljkovic
,
N.
, and
Wang
,
E.
,
2013
, “
Condensation Heat Transfer on Superhydrophobic Surfaces
,”
MRS Bull.
,
38
(
5
), pp.
397
406
.
40.
Zhang
,
P.
, and
Lv
,
F.
,
2015
, “
A Review of the Recent Advances in Superhydrophobic Surfaces and the Emerging Energy-Related Applications
,”
Energy
,
82
(
1
), pp.
1068
1087
.
41.
Shchukin
,
D.
,
Skorb
,
E.
,
Belova
,
V.
, and
Möhwald
,
H.
,
2011
, “
Ultrasonic Cavitation at Solid Surfaces
,”
Adv. Mater.
,
23
(
17
), pp.
1922
1934
.
42.
Mohamed
,
A.
,
Abdullah
,
A.
, and
Younan
,
N.
,
2015
, “
Corrosion Behavior of Superhydrophobic Surfaces: A Review
,”
Arabian J. Chem.
,
8
(
6
), pp.
749
765
.
43.
Ferrari
,
M.
, and
Benedetti
,
A.
,
2015
, “
Superhydrophobic Surfaces for Applications in Seawater
,”
Adv. Colloid Interface Sci.
,
222
(
1
), pp.
291
304
.
44.
Brennen
,
C.
,
1995
,
Cavitation and Bubble Dynamics
,
Oxford University Press
,
New York
.
45.
Carlborg
,
C.
, and
van der Wijngaart
,
W.
,
2010
, “
Sustained Superhydrophobic Friction Reduction at High Liquid Pressures and Large Flows
,”
Langmuir
,
27
(
1
), pp.
487
493
.
46.
Srinivasan
,
S.
,
Kleingartner
,
J.
,
Gilbert
,
J.
,
Cohen
,
R.
,
Milne
,
A.
, and
McKinley
,
G.
,
2015
, “
Sustainable Drag Reduction in Turbulent Taylor–Couette Flows by Depositing Sprayable Superhydrophobic Surfaces
,”
Phys. Rev. Lett.
,
114
(
1
), p.
014501
.
47.
Jung
,
Y.
, and
Bhushan
,
B.
,
2009
, “
Dynamic Effects Induced Transition of Droplets on Biomimetic Superhydrophobic Surfaces
,”
Langmuir
,
25
(
16
), pp.
9208
9218
.
48.
Jung
,
Y.
, and
Bhushan
,
B.
,
2008
, “
Wetting Behaviour During Evaporation and Condensation of Water Microdroplets on Superhydrophobic Patterned Surfaces
,”
J. Microsc.
,
229
(
1
), pp.
127
140
.
49.
Tsai
,
P.
,
Lammertink
,
R.
,
Wessling
,
M.
, and
Lohse
,
D.
,
2010
, “
Evaporation-Triggered Wetting Transition for Water Droplets Upon Hydrophobic Microstructures
,”
Phys. Rev. Lett.
,
104
(
11
), p.
116102
.
50.
Chen
,
X.
,
Ma
,
R.
,
Li
,
J.
,
Hao
,
C.
,
Guo
,
W.
,
Luk
,
B.
,
Li
,
S.
,
Yao
,
S.
, and
Wang
,
Z.
,
2012
, “
Evaporation of Droplets on Superhydrophobic Surfaces: Surface Roughness and Small Droplet Size Effects
,”
Phys. Rev. Lett.
,
109
(
11
), p.
116101
.
51.
Bormashenko
,
E.
,
Pogreb
,
R.
,
Whyman
,
G.
, and
Erlich
,
M.
,
2007
, “
Cassie–Wenzel Wetting Transition in Vibrating Drops Deposited on Rough Surfaces: Is the Dynamic Cassie-Wenzel Wetting Transition a 2D or 1D Affair?
,”
Langmuir
,
23
(
12
), pp.
6501
6503
.
52.
Deng
,
T.
,
Varanasi
,
K.
,
Hsu
,
M.
,
Bhate
,
N.
,
Keimel
,
C.
,
Stein
,
J.
, and
Blohm
,
M.
,
2009
, “
Nonwetting of Impinging Droplets on Textured Surfaces
,”
Appl. Phys. Lett.
,
94
(
13
), p.
133109
.
53.
Kwon
,
H.
,
Paxson
,
A.
,
Varanasi
,
K.
, and
Patankar
,
N.
,
2011
, “
Rapid Deceleration-Driven Wetting Transition During Pendant Drop Deposition on Superhydrophobic Surfaces
,”
Phys. Rev. Lett.
,
106
(
3
), p.
036102
.
54.
Zheng
,
Q.
,
Yu
,
Y.
, and
Zhao
,
Z.
,
2005
, “
Effects of Hydraulic Pressure on the Stability and Transition of Wetting Modes of Superhydrophobic Surfaces
,”
Langmuir
,
21
(
26
), pp.
12207
12212
.
55.
Emami
,
B.
,
Tafreshi
,
H.
,
Gad-el-Hak
,
M.
, and
Tepper
,
G.
,
2011
, “
Predicting Shape and Stability of Air–Water Interface on Superhydrophobic Surfaces With Randomly Distributed, Dissimilar Posts
,”
Appl. Phys. Lett.
,
98
(
20
), p.
203106
.
56.
Tolman
,
R.
,
1949
, “
The Effect of Droplet Size on Surface Tension
,”
J. Chem. Phys.
,
17
(
3
), pp.
333
337
.
57.
Zheng
,
Q.
,
Lv
,
C.
,
Hao
,
P.
, and
Sheridan
,
J.
,
2010
, “
Small is Beautiful, and Dry
,”
Sci. China-Phys. Mech. Astron.
,
53
(
12
), pp.
2245
2259
.
58.
Amirfazli
,
A.
, and
Neumann
,
A.
,
2004
, “
Status of the Three-Phase Line Tension
,”
Adv. Colloid Interface Sci.
,
110
(
3
), pp.
121
141
.
59.
Babak
,
V.
,
1999
, “
Generalised Line Tension Theory Revisited
,”
Colloids Surf., A
,
156
(
1
), pp.
423
448
.
60.
Lobaton
,
E.
, and
Salamon
,
T.
,
2007
, “
Computation of Constant Mean Curvature Surfaces: Application to the Gas–Liquid Interface of a Pressurized Fluid on a Superhydrophobic Surface
,”
J. Colloid Interface Sci.
,
314
(
1
), pp.
184
198
.
61.
Extrand
,
C. W.
,
2011
, “
Repellency of the Lotus Leaf: Resistance to Water Intrusion Under Hydrostatic Pressure
,”
Langmuir
,
27
(
11
), pp.
6920
6925
.
62.
Patankar
,
N.
,
2010
, “
Consolidation of Hydrophobic Transition Criteria by Using an Approximate Energy Minimization Approach
,”
Langmuir
,
26
(
11
), pp.
8941
8945
.
63.
Moulinet
,
S.
, and
Bartolo
,
D.
,
2007
, “
Life and Death of a Fakir Droplet: Impalement Transitions on Superhydrophobic Surfaces
,”
Eur. Phys. J. E
,
24
(
3
), pp.
251
260
.
64.
Luo
,
C.
,
Zheng
,
H.
,
Wang
,
L.
,
Fang
,
H.
,
Hu
,
J.
,
Fan
,
C.
,
Cao
,
Y.
, and
Wang
,
J.
,
2010
, “
Direct Three-Dimensional Imaging of the Buried Interfaces Between Water and Superhydrophobic Surfaces
,”
Angew. Chem., Int. Ed.
,
49
(
48
), pp.
9145
9148
.
65.
Papadopoulos
,
P.
,
Mammen
,
L.
,
Deng
,
X.
,
Vollmer
,
D.
, and
Butt
,
H.
,
2013
, “
How Superhydrophobicity Breaks Down
,”
Proc. Natl. Acad. Sci. U.S.A.
,
110
(
9
), pp.
3254
3258
.
66.
Luo
,
C.
,
Xiang
,
M.
,
Liu
,
X.
, and
Wang
,
H.
,
2011
, “
Transition From Cassie-Baxter to Wenzel States on Microline-Formed PDMS Surfaces Induced by Evaporation or Pressing of Water Droplets
,”
Microfluid. Nanofluid.
,
10
(
4
), pp.
831
842
.
67.
Sbragaglia
,
M.
,
Peters
,
A.
,
Pirat
,
C.
,
Borkent
,
B.
,
Lammertink
,
R.
,
Wessling
,
M.
, and
Lohse
,
D.
,
2007
, “
Spontaneous Breakdown of Superhydrophobicity
,”
Phys. Rev. Lett.
,
99
(
15
), p.
156001
.
68.
Courbin
,
L.
,
Denieul
,
E.
,
Dressaire
,
D.
,
Roper
,
M.
,
Ajdari
,
A.
, and
Stone
,
H.
,
2007
, “
Imbibition by Polygonal Spreading on Microdecorated Surfaces
,”
Nat. Mater.
,
6
(
9
), pp.
661
664
.
69.
Raj
,
R.
,
Adera
,
S.
,
Enright
,
R.
, and
Wang
,
E.
,
2014
, “
High-Resolution Liquid Patterns Via Three-Dimensional Droplet Shape Control
,”
Nat. Commun.
,
5
(
4975
), pp.
1
8
.
70.
Herminghaus
,
S.
,
2000
, “
Roughness-Induced Non-Wetting
,”
Europhys. Lett.
,
52
(
2
), p.
165
.
71.
Liu
,
J.
,
Feng
,
X.
,
Wang
,
G.
, and
Yu
,
S.
,
2007
, “
Mechanisms of Superhydrophobicity on Hydrophilic Substrates
,”
J. Phys.: Condens. Matter
,
19
(
35
), p.
356002
.
72.
Patankar
,
N.
,
2009
, “
Hydrophobicity of Surfaces With Cavities: Making Hydrophobic Substrates From Hydrophilic Materials?
,”
J. Adhes. Sci. Technol.
,
23
(
3
), pp.
413
433
.
73.
Abdelsalam
,
M.
,
Bartlett
,
P.
,
Kelf
,
T.
, and
Baumberg
,
J.
,
2005
, “
Wetting of Regularly Structured Gold Surfaces
,”
Langmuir
,
21
(
5
), pp.
1753
1757
.
74.
Lai
,
Y.
,
Gao
,
X.
,
Zhuang
,
H.
,
Huang
,
J.
,
Lin
,
C.
, and
Jiang
,
L.
,
2009
, “
Designing Superhydrophobic Porous Nanostructures With Tunable Water Adhesion
,”
Adv. Mater.
,
21
(
37
), pp.
3799
3803
.
75.
Salvadori
,
M.
,
Cattani
,
M.
,
Oliveira
,
M.
,
Teixeira
,
F.
, and
Brown
,
I.
,
2010
, “
Design and Fabrication of Microcavity-Array Superhydrophobic Surfaces
,”
J. Appl. Phys.
,
108
(
2
), p.
024908
.
76.
Lei
,
L.
,
Li
,
H.
,
Shi
,
J.
, and
Chen
,
Y.
,
2009
, “
Diffraction Patterns of a Water-Submerged Superhydrophobic Grating Under Pressure
,”
Langmuir
,
26
(
5
), pp.
3666
3669
.
77.
Rathgen
,
H.
,
Sugiyama
,
K.
,
Ohl
,
C.
,
Lohse
,
D.
, and
Mugele
,
F.
,
2007
, “
Nanometer-Resolved Collective Micromeniscus Oscillations Through Optical Diffraction
,”
Phys. Rev. Lett.
,
99
(
21
), p.
214501
.
78.
Rathgen
,
H.
, and
Mugele
,
F.
,
2010
, “
Microscopic Shape and Contact Angle Measurement at a Superhydrophobic Surface
,”
Faraday Discuss.
,
146
(
1
), pp.
49
56
.
79.
Forsberg
,
P.
,
Nikolajeff
,
F.
, and
Karlsson
,
M.
,
2011
, “
Cassie–Wenzel and Wenzel–Cassie Transitions on Immersed Superhydrophobic Surfaces Under Hydrostatic Pressure
,”
Soft Matter
,
7
(
1
), pp.
104
109
.
80.
Samaha
,
M.
,
Tafreshi
,
H.
, and
Gad-el-Hak
,
M.
,
2011
, “
Modeling Drag Reduction and Meniscus Stability of Superhydrophobic Surfaces Comprised of Random Roughness
,”
Phys. Fluids
,
23
(
1
), p.
012001
.
81.
Samaha
,
M.
,
Tafreshi
,
H.
, and
Gad-el-Hak
,
M.
,
2012
, “
Effects of Hydrostatic Pressure on the Drag Reduction of Submerged Aerogel-Particle Coatings
,”
Colloids Surf., A
,
399
(
1
), pp.
62
70
.
82.
van der Waals
,
J.
, and
Rowlinson
,
J.
,
1988
,
J. D. van der Waals: On the Continuity of the Gaseous and Liquid States
, Vol.
14
,
North Holland
,
Amsterdam, The Netherlands
.
83.
Patankar
,
N.
,
2010
, “
Vapor Stabilizing Substrates for Superhydrophobicity and Superslip
,”
Langmuir
,
26
(
11
), pp.
8783
8786
.
84.
Emami
,
B.
,
Bucher
,
T.
,
Tafreshi
,
H.
,
Pestov
,
D.
,
Gad-el-Hak
,
M.
, and
Tepper
,
G.
,
2011
, “
Simulation of Meniscus Stability in Superhydrophobic Granular Surfaces Under Hydrostatic Pressures
,”
Colloids Surf., A
,
385
(
1
), pp.
95
103
.
85.
Emami
,
B.
,
Tafreshi
,
H.
,
Gad-el-Hak
,
M.
, and
Tepper
,
G.
,
2012
, “
Effect of Fiber Orientation on Shape and Stability of Air–Water Interface on Submerged Superhydrophobic Electrospun Thin Coatings
,”
J. Appl. Phys.
,
111
(
6
), p.
064325
.
86.
Emami
,
B.
,
Tafreshi
,
H.
,
Gad-el-Hak
,
M.
, and
Tepper
,
G.
,
2012
, “
Predicting Shape and Stability of Air–Water Interface on Superhydrophobic Surfaces Comprised of Pores With Arbitrary Shapes and Depths
,”
Appl. Phys. Lett.
,
100
(
1
), p.
013104
.
87.
Amrei
,
M.
, and
Tafreshi
,
H.
,
2015
, “
Effects of Hydrostatic Pressure on Wetted Area of Submerged Superhydrophobic Granular Coatings
,”
Colloids Surf., A
,
465
(
1
), pp.
87
98
.
88.
Lv
,
P.
,
Xue
,
Y.
,
Shi
,
Y.
,
Lin
,
H.
, and
Duan
,
H.
,
2014
, “
Metastable States and Wetting Transition of Submerged Superhydrophobic Structures
,”
Phys. Rev. Lett.
,
112
(
19
), p.
196101
.
89.
Lohse
,
D.
, and
Zhang
,
X.
,
2015
, “
Surface Nanobubbles and Nanodroplets
,”
Rev. Mod. Phys.
,
87
(
3
), p.
981
.
90.
Chen
,
P.
,
Chen
,
L.
,
Han
,
D.
,
Zhai
,
J.
,
Zheng
,
Y.
, and
Jiang
,
L.
,
2009
, “
Wetting Behavior at Micro-/Nanoscales: Direct Imaging of a Microscopic Water/Air/Solid Three-Phase Interface
,”
Small
,
5
(
8
), pp.
908
912
.
91.
Rykaczewski
,
K.
,
Landin
,
T.
,
Walker
,
M.
,
Scott
,
J.
, and
Varanasi
,
K.
,
2012
, “
Direct Imaging of Complex Nano-to Microscale Interfaces Involving Solid, Liquid, and Gas Phases
,”
ACS Nano
,
6
(
10
), pp.
9326
9334
.
92.
Jones
,
P.
,
Hao
,
X.
,
Cruz-Chu
,
E.
,
Rykaczewski
,
K.
,
Nandy
,
K.
,
Schutzius
,
T.
,
Varanasi
,
K.
,
Megaridis
,
C.
,
Walther
,
J.
,
Koumoutsakos
,
P.
,
Espinosa
,
H.
, and
Patankar
,
N.
,
2015
, “
Sustaining Dry Surfaces Under Water
,”
Sci. Rep.
,
5
(
12311
), pp.
1
10
.
93.
Ensikat
,
H.
,
Schulte
,
A.
,
Koch
,
K.
, and
Barthlott
,
W.
,
2009
, “
Droplets on Superhydrophobic Surfaces: Visualization of the Contact Area by Cryo-Scanning Electron Microscopy
,”
Langmuir
,
25
(
22
), pp.
13077
13083
.
94.
Wu
,
A.
,
Cho
,
K.
,
Liaw
,
I.
,
Moran
,
G.
,
Kirby
,
N.
, and
Lamb
,
R.
,
2010
, “
Hierarchical Surfaces: An In Situ Investigation Into Nano and Micro Scale Wettability
,”
Faraday Discuss.
,
146
(
1
), pp.
223
232
.
95.
Isa
,
L.
,
Lucas
,
F.
,
Wepf
,
R.
, and
Reimhult
,
E.
,
2011
, “
Measuring Single-Nanoparticle Wetting Properties by Freeze-Fracture Shadow-Casting Cryo-Scanning Electron Microscopy
,”
Nat. Commun.
,
2
(
438
), pp.
1
9
.
96.
Wiedemann
,
S.
,
Plettl
,
A.
,
Walther
,
P.
, and
Ziemann
,
P.
,
2013
, “
Freeze Fracture Approach to Directly Visualize Wetting Transitions on Nanopatterned Superhydrophobic Silicon Surfaces: More Than a Proof of Principle
,”
Langmuir
,
29
(
3
), pp.
913
919
.
97.
Schwendel
,
D.
,
Hayashi
,
T.
,
Dahint
,
R.
,
Pertsin
,
A.
,
Grunze
,
M.
,
Steitz
,
R.
, and
Schreiber
,
F.
,
2003
, “
Interaction of Water With Self-Assembled Monolayers: Neutron Reflectivity Measurements of the Water Density in the Interface Region
,”
Langmuir
,
19
(
6
), pp.
2284
2293
.
98.
Steitz
,
R.
,
Gutberlet
,
T.
,
Hauss
,
T.
,
Klösgen
,
B.
,
Krastev
,
R.
,
Schemmel
,
S.
,
Simonsen
,
A.
, and
Findenegg
,
G.
,
2003
, “
Nanobubbles and Their Precursor Layer at the Interface of Water Against a Hydrophobic Substrate
,”
Langmuir
,
19
(
6
), pp.
2409
2418
.
99.
Doshi
,
D.
,
Watkins
,
E.
,
Israelachvili
,
J.
, and
Majewski
,
J.
,
2005
, “
Reduced Water Density at Hydrophobic Surfaces: Effect of Dissolved Gases
,”
Proc. Natl. Acad. Sci. U.S.A.
,
102
(
27
), pp.
9458
9462
.
100.
Jensen
,
T.
,
Jensen
,
M.
,
Reitzel
,
N.
,
Balashev
,
K.
,
Peters
,
G.
,
Kjaer
,
K.
, and
Bjørnholm
,
T.
,
2003
, “
Water in Contact With Extended Hydrophobic Surfaces: Direct Evidence of Weak Dewetting
,”
Phys. Rev. Lett.
,
90
(
8
), p.
086101
.
101.
Mezger
,
M.
,
Reichert
,
H.
,
Schöder
,
S.
,
Okasinski
,
J.
,
Schröder
,
H.
,
Dosch
,
H.
,
Palms
,
D.
,
Ralston
,
J.
, and
Honkimäki
,
V.
,
2006
, “
High-Resolution In Situ X-Ray Study of the Hydrophobic Gap at the Water–Octadecyl-Trichlorosilane Interface
,”
Proc. Natl. Acad. Sci. U.S.A.
,
103
(
49
), pp.
18401
18404
.
102.
Gang
,
O.
,
Alvine
,
K.
,
Fukuto
,
M.
,
Pershan
,
P.
,
Black
,
C.
, and
Ocko
,
B.
,
2005
, “
Liquids on Topologically Nanopatterned Surfaces
,”
Phys. Rev. Lett.
,
95
(
21
), p.
217801
.
103.
Zhang
,
H.
,
Lamb
,
R.
, and
Cookson
,
D.
,
2007
, “
Nanowetting of Rough Superhydrophobic Surfaces
,”
Appl. Phys. Lett.
,
91
(
25
), p.
254106
.
104.
Cho
,
J.
,
Palmer
,
L.
,
Wu
,
A.
,
Liaw
,
I.
,
Cookson
,
D.
, and
Lamb
,
R.
,
2012
, “
In Situ SAXS Analysis of Interfacial Wetting on Nanorough Surfaces
,”
Aust. J. Chem.
,
65
(
3
), pp.
254
258
.
105.
Checco
,
A.
,
Hofmann
,
T.
,
DiMasi
,
E.
,
Black
,
C.
, and
Ocko
,
B.
,
2010
, “
Morphology of Air Nanobubbles Trapped at Hydrophobic Nanopatterned Surfaces
,”
Nano Lett.
,
10
(
4
), pp.
1354
1358
.
106.
Checco
,
A.
,
Ocko
,
B.
,
Rahman
,
A.
,
Black
,
C.
,
Tasinkevych
,
M.
,
Giacomello
,
A.
, and
Dietrich
,
S.
,
2014
, “
Collapse and Reversibility of the Superhydrophobic State on Nanotextured Surfaces
,”
Phys. Rev. Lett.
,
112
(
21
), p.
216101
.
107.
Giacomello
,
A.
,
Meloni
,
S.
,
Chinappi
,
M.
, and
Casciola
,
C.
,
2012
, “
Cassie–Baxter and Wenzel States on a Nanostructured Surface: Phase Diagram, Metastabilities, and Transition Mechanism by Atomistic Free Energy Calculations
,”
Langmuir
,
28
(
29
), pp.
10764
10772
.
108.
Giacomello
,
A.
,
Chinappi
,
M.
,
Meloni
,
S.
, and
Casciola
,
C.
,
2012
, “
Metastable Wetting on Superhydrophobic Surfaces: Continuum and Atomistic Views of the Cassie–Baxter–Wenzel Transition
,”
Phys. Rev. Lett.
,
109
(
22
), p.
226102
.
109.
Lv
,
P.
,
Xue
,
Y.
,
Liu
,
H.
,
Shi
,
Y.
,
Xi
,
P.
,
Lin
,
H.
, and
Duan
,
H.
,
2015
, “
Symmetric and Asymmetric Meniscus Collapse in Wetting Transition on Submerged Structured Surfaces
,”
Langmuir
,
31
(
4
), pp.
1248
1254
.
110.
Zhang
,
J.
,
Sheng
,
X.
, and
Jiang
,
L.
,
2008
, “
The Dewetting Properties of Lotus Leaves
,”
Langmuir
,
25
(
3
), pp.
1371
1376
.
111.
Sheng
,
X.
, and
Zhang
,
J.
,
2011
, “
Air Layer on Superhydrophobic Surface Underwater
,”
Colloids Surf., A
,
377
(
1
), pp.
374
378
.
112.
Thorpe
,
W.
, and
Crisp
,
D.
,
1947
, “
Studies on Plastron Respiration
,”
J. Exp. Biol.
,
24
(
3–4
), pp.
227
269
.
113.
Rahn
,
H.
, and
Paganelli
,
C.
,
1968
, “
Gas Exchange in Gas Gills of Diving Insects
,”
Respir. Physiol.
,
5
(
1
), pp.
145
164
.
114.
Flynn
,
M.
, and
Bush
,
J.
,
2008
, “
Underwater Breathing: The Mechanics of Plastron Respiration
,”
J. Fluid Mech.
,
608
, pp.
275
296
.
115.
Balmert
,
A.
,
Bohn
,
H.
,
Ditsche-Kuru
,
P.
, and
Barthlott
,
W.
,
2011
, “
Dry Under Water: Comparative Morphology and Functional Aspects of Air-Retaining Insect Surfaces
,”
J. Morphol.
,
272
(
4
), pp.
442
451
.
116.
Xue
,
Y.
,
Yuan
,
H.
,
Su
,
W.
,
Shi
,
Y.
, and
Duan
,
H.
,
2014
, “
Enhanced Load-Carrying Capacity of Hairy Surfaces Floating on Water
,”
Proc. R. Soc. London, Ser. A
,
470
(
2165
), p.
20130832
.
117.
Cerman
,
Z.
,
Striffler
,
B.
, and
Barthlott
,
W.
,
2009
, “
Dry in the Water: The Superhydrophobic Water Fern Salvinia–A Model for Biomimetic Surfaces
,”
Functional Surfaces in Biology
,
S.
Gorb
, ed.,
Springer, Dordrecht
,
The Netherlands
, pp.
97
111
.
118.
Mayser
,
M.
, and
Barthlott
,
W.
,
2014
, “
Layers of Air in the Water Beneath the Floating Fern Salvinia are Exposed to Fluctuations in Pressure
,”
Integr. Comp. Biol.
,
54
(
6
), pp.
1001
1007
.
119.
Shirtcliffe
,
N.
,
McHale
,
G.
,
Newton
,
M.
,
Perry
,
C.
, and
Pyatt
,
F.
,
2006
, “
Plastron Properties of a Superhydrophobic Surface
,”
Appl. Phys. Lett.
,
89
(
10
), p.
104106
.
120.
Atherton
,
S.
,
Brennan
,
J.
,
Morris
,
R.
,
Smith
,
J.
,
Hamlett
,
C.
,
McHale
,
G.
,
Shirtcliffe
,
N.
, and
Newton
,
M.
,
2014
, “
Plastron Respiration Using Commercial Fabrics
,”
Materials
,
7
(
1
), pp.
484
495
.
121.
Sakai
,
M.
,
Yanagisawa
,
T.
,
Nakajima
,
A.
,
Kameshima
,
Y.
, and
Okada
,
K.
,
2009
, “
Effect of Surface Structure on the Sustainability of an Air Layer on Superhydrophobic Coatings in a Water–Ethanol Mixture
,”
Langmuir
,
25
(
1
), pp.
13
16
.
122.
Epstein
,
P.
, and
Plesset
,
M.
,
1950
, “
On the Stability of Gas Bubbles in Liquid–Gas Solutions
,”
J. Chem. Phys.
,
18
(
11
), pp.
1505
1509
.
123.
Enns
,
T.
,
Scholander
,
P.
, and
Bradstreet
,
E.
,
1965
, “
Effect of Hydrostatic Pressure on Gases Dissolved in Water
,”
J. Phys. Chem.
,
69
(
2
), pp.
389
391
.
124.
Samaha
,
M.
,
Ochanda
,
F.
,
Tafreshi
,
H.
,
Tepper
,
G.
, and
Gad-el-Hak
,
M.
,
2011
, “
In Situ, Noninvasive Characterization of Superhydrophobic Coatings
,”
Rev. Sci. Instrum.
,
82
(
4
), p.
045109
.
125.
Samaha
,
M.
,
Tafreshi
,
H.
, and
Gad-el-Hak
,
M.
,
2012
, “
Sustainability of Superhydrophobicity Under Pressure
,”
Phys. Fluids
,
24
(
11
), p.
112103
.
126.
Søgaard
,
E.
,
Andersen
,
N.
,
Smistrup
,
K.
,
Larsen
,
S.
,
Sun
,
L.
, and
Taboryski
,
R.
,
2014
, “
Study of Transitions Between Wetting States on Microcavity Arrays by Optical Transmission Microscopy
,”
Langmuir
,
30
(
43
), pp.
12960
12968
.
127.
Emami
,
B.
,
Hemeda
,
A.
,
Amrei
,
M.
,
Luzar
,
A.
,
Gad-el-Hak
,
M.
, and
Tafreshi
,
H.
,
2013
, “
Predicting Longevity of Submerged Superhydrophobic Surfaces With Parallel Grooves
,”
Phys. Fluids
,
25
(
6
), p.
062108
.
128.
Hemeda
,
A.
, and
Tafreshi
,
H.
,
2014
, “
General Formulations for Predicting Longevity of Submerged Superhydrophobic Surfaces Composed of Pores or Posts
,”
Langmuir
,
30
(
34
), pp.
10317
10327
.
129.
Xu
,
M.
,
Sun
,
G.
, and
Kim
,
C.
,
2014
, “
Infinite Lifetime of Underwater Superhydrophobic States
,”
Phys. Rev. Lett.
,
113
(
13
), p.
136103
.
130.
Govardhan
,
R.
,
Srinivas
,
G.
,
Asthana
,
A.
, and
Bobji
,
M.
,
2009
, “
Time Dependence of Effective Slip on Textured Hydrophobic Surfaces
,”
Phys. Fluids
,
21
(
5
), p.
052001
.
131.
Samaha
,
M.
,
Tafreshi
,
H.
, and
Gad-el-Hak
,
M.
,
2012
, “
Influence of Flow on Longevity of Superhydrophobic Coatings
,”
Langmuir
,
28
(
25
), pp.
9759
9766
.
132.
Dilip
,
D.
,
Jha
,
N.
,
Govardhan
,
R.
, and
Bobji
,
M.
,
2014
, “
Controlling Air Solubility to Maintain ‘Cassie’ State for Sustained Drag Reduction
,”
Colloids Surf., A
,
459
(
1
), pp.
217
224
.
133.
Hemeda
,
A.
, and
Tafreshi
,
H.
,
2015
, “
Instantaneous Slip Length in Superhydrophobic Microchannels Having Grooves With Curved or Dissimilar Walls
,”
Phys. Fluids
,
27
(
10
), p.
102101
.
134.
Barth
,
C.
,
Samaha
,
M.
,
Tafreshi
,
H.
, and
Gad-el-Hak
,
M.
,
2013
, “
Convective Mass Transfer From Submerged Superhydrophobic Surfaces
,”
Int. J. Flow Control
,
5
(
2
), pp.
79
88
.
135.
Levich
,
V.
, and
Technica
,
S.
,
1962
,
Physicochemical Hydrodynamics
,
Prentice Hall
,
Englewood Cliffs, NJ
.
136.
Xiang
,
Y.
,
Xue
,
Y.
,
Lv
,
P.
,
Li
,
D.
, and
Duan
,
H.
,
2016
, “
Influence of Fluid Flow on the Stability and Wetting Transition of Submerged Superhydrophobic Surfaces
,”
Soft Matter
,
12
(18), pp.
4241
4246
.
137.
Ichiyanagi
,
M.
,
Tsutsui
,
I.
,
Kakinuma
,
Y.
,
Sato
,
Y.
, and
Hishida
,
K.
,
2012
, “
Three-Dimensional Measurement of Gas Dissolution Process in Gas–Liquid Microchannel Flow
,”
Int. J. Heat Mass Transfer
,
55
(
11
), pp.
2872
2878
.
138.
Karatay
,
E.
,
Tsai
,
P.
, and
Lammertink
,
R.
,
2013
, “
Rate of Gas Absorption on a Slippery Bubble Mattress
,”
Soft Matter
,
9
(
46
), pp.
11098
11106
.
139.
Narhe
,
R.
, and
Beysens
,
D.
,
2004
, “
Nucleation and Growth on a Superhydrophobic Grooved Surface
,”
Phys. Rev. Lett.
,
93
(
7
), p.
076103
.
140.
Cheng
,
Y.
, and
Rodak
,
D.
,
2005
, “
Is the Lotus Leaf Superhydrophobic?
,”
Appl. Phys. Lett.
,
86
(
14
), p.
144101
.
141.
Cheng
,
Y.
,
Rodak
,
D.
,
Angelopoulos
,
A.
, and
Gacek
,
T.
,
2005
, “
Microscopic Observations of Condensation of Water on Lotus Leaves
,”
Appl. Phys. Lett.
,
87
(
19
), p.
194112
.
142.
Rykaczewski
,
K.
,
Scott
,
J.
, and
Fedorov
,
A.
,
2011
, “
Electron Beam Heating Effects During Environmental Scanning Electron Microscopy Imaging of Water Condensation on Superhydrophobic Surfaces
,”
Appl. Phys. Lett.
,
98
(
9
), p.
093106
.
143.
Chen
,
C.
,
Cai
,
Q.
,
Tsai
,
C.
,
Chen
,
C.
,
Xiong
,
G.
,
Yu
,
Y.
, and
Ren
,
Z.
,
2007
, “
Dropwise Condensation on Superhydrophobic Surfaces With Two-Tier Roughness
,”
Appl. Phys. Lett.
,
90
(
17
), p.
173108
.
144.
Boreyko
,
J.
, and
Chen
,
C.
,
2009
, “
Self-Propelled Dropwise Condensate on Superhydrophobic Surfaces
,”
Phys. Rev. Lett.
,
103
(
18
), p.
184501
.
145.
Wisdom
,
K.
,
Watson
,
J.
,
Qu
,
X.
,
Liu
,
F.
,
Watson
,
G.
, and
Chen
,
C.
,
2013
, “
Self-Cleaning of Superhydrophobic Surfaces by Self-Propelled Jumping Condensate
,”
Proc. Natl. Acad. Sci. U.S.A.
,
110
(
20
), pp.
7992
7997
.
146.
Liu
,
F.
,
Ghigliotti
,
G.
,
Feng
,
J.
, and
Chen
,
C.
,
2014
, “
Self-Propelled Jumping Upon Drop Coalescence on Leidenfrost Surfaces
,”
J. Fluid Mech.
,
752
(
1
), pp.
22
38
.
147.
Patankar
,
N.
,
2010
, “
Supernucleating Surfaces for Nucleate Boiling and Dropwise Condensation Heat Transfer
,”
Soft Matter
,
6
(
8
), pp.
1613
1620
.
148.
Dietz
,
C.
,
Rykaczewski
,
K.
,
Fedorov
,
A.
, and
Joshi
,
Y.
,
2010
, “
Visualization of Droplet Departure on a Superhydrophobic Surface and Implications to Heat Transfer Enhancement During Dropwise Condensation
,”
Appl. Phys. Lett.
,
97
(
3
), p.
033104
.
149.
Miljkovic
,
N.
,
Enright
,
R.
,
Nam
,
Y.
,
Lopez
,
K.
,
Dou
,
N.
,
Sack
,
J.
, and
Wang
,
E.
,
2013
, “
Jumping-Droplet-Enhanced Condensation on Scalable Superhydrophobic Nanostructured Surfaces
,”
Nano Lett.
,
13
(
1
), pp.
179
187
.
150.
Chen
,
X.
,
Wu
,
J.
,
Ma
,
R.
,
Hua
,
M.
,
Koratkar
,
N.
,
Yao
,
S.
, and
Wang
,
Z.
,
2011
, “
Nanograssed Micropyramidal Architectures for Continuous Dropwise Condensation
,”
Adv. Funct. Mater.
,
21
(
24
), pp.
4617
4623
.
151.
Rykaczewski
,
K.
,
Osborn
,
W.
,
Chinn
,
J.
,
Walker
,
M.
,
Scott
,
J.
,
Jones
,
W.
,
Hao
,
C.
,
Yao
,
S.
, and
Wang
,
Z.
,
2012
, “
How Nanorough is Rough Enough to Make a Surface Superhydrophobic During Water Condensation?
,”
Soft Matter
,
8
(
33
), pp.
8786
8794
.
152.
Nakajima
,
A.
,
Hashimoto
,
K.
,
Watanabe
,
T.
,
Takai
,
K.
,
Yamauchi
,
G.
, and
Fujishima
,
A.
,
2000
, “
Transparent Superhydrophobic Thin Films With Self-Cleaning Properties
,”
Langmuir
,
16
(
17
), pp.
7044
7047
.
153.
Thieme
,
M.
,
Frenzel
,
R.
,
Hein
,
V.
, and
Worch
,
H.
,
2003
, “
Metal Surfaces With Ultrahydrophobic Properties: Perspectives for Corrosion Protection and Self-Cleaning
,”
Corros. Sci. Eng
,
6
(
1
), pp.
113
119
.
154.
Sasaki
,
M.
,
Kieda
,
N.
,
Katayama
,
K.
,
Takeda
,
K.
, and
Nakajima
,
A.
,
2004
, “
Processing and Properties of Transparent Super-Hydrophobic Polymer Film With Low Surface Electric Resistance
,”
J. Mater. Sci.
,
39
(
11
), pp.
3717
3722
.
155.
Zimmermann
,
J.
,
Reifler
,
F.
,
Schrade
,
U.
,
Artus
,
G.
, and
Seeger
,
S.
,
2007
, “
Long Term Environmental Durability of a Superhydrophobic Silicone Nanofilament Coating
,”
Colloids Surf., A
,
302
(
1
), pp.
234
240
.
156.
Boinovich
,
L.
,
Emelyanenko
,
A.
, and
Pashinin
,
A.
,
2010
, “
Analysis of Long-Term Durability of Superhydrophobic Properties Under Continuous Contact With Water
,”
ACS Appl. Mater. Interfaces
,
2
(
6
), pp.
1754
1758
.
157.
Emelyanenko
,
A.
,
Shagieva
,
F.
,
Domantovsky
,
A.
, and
Boinovich
,
L.
,
2015
, “
Nanosecond Laser Micro-and Nanotexturing for the Design of a Superhydrophobic Coating Robust Against Long-Term Contact With Water, Cavitation, and Abrasion
,”
Appl. Surf. Sci.
,
332
(
1
), pp.
513
517
.
158.
Hensel
,
R.
,
Neinhuis
,
C.
, and
Werner
,
C.
,
2015
, “
The Springtail Cuticle as a Blueprint for Omniphobic Surfaces
,”
Chem. Soc. Rev.
,
45
(
2
), pp.
323
341
.
159.
Wong
,
T.
,
Kang
,
S.
,
Tang
,
S.
,
Smythe
,
E.
,
Hatton
,
B.
,
Grinthal
,
A.
, and
Aizenberg
,
J.
,
2011
, “
Bioinspired Self-Repairing Slippery Surfaces With Pressure-Stable Omniphobicity
,”
Nature
,
477
(
7365
), pp.
443
447
.
160.
Wen
,
L.
,
Tian
,
Y.
, and
Jiang
,
L.
,
2015
, “
Bioinspired Super-Wettability From Fundamental Research to Practical Applications
,”
Angew. Chem., Int. Ed.
,
54
(
11
), pp.
3387
3399
.
161.
Kwon
,
Y.
,
Patankar
,
N.
,
Choi
,
J.
, and
Lee
,
J.
,
2009
, “
Design of Surface Hierarchy for Extreme Hydrophobicity
,”
Langmuir
,
25
(
11
), pp.
6129
6136
.
162.
Jiang
,
L.
,
Zhao
,
Y.
, and
Zhai
,
J.
,
2004
, “
A Lotus-Leaf-Like Superhydrophobic Surface: A Porous Microsphere/Nanofiber Composite Film Prepared by Electrohydrodynamics
,”
Angew. Chem., Int. Ed.
,
116
(
33
), pp.
4438
4441
.
163.
Li
,
Y.
,
Huang
,
X.
,
Heo
,
S.
,
Li
,
C.
,
Choi
,
Y.
,
Cai
,
W.
, and
Cho
,
S.
,
2007
, “
Superhydrophobic Bionic Surfaces With Hierarchical Microsphere/SWCNT Composite Arrays
,”
Langmuir
,
23
(
4
), pp.
2169
2174
.
164.
Jung
,
Y.
, and
Bhushan
,
B.
,
2009
, “
Mechanically Durable Carbon Nanotube-Composite Hierarchical Structures With Superhydrophobicity, Self-Cleaning, and Low-Drag
,”
ACS Nano
,
3
(
12
), pp.
4155
4163
.
165.
Kota
,
A.
,
Li
,
Y.
,
Mabry
,
J.
, and
Tuteja
,
A.
,
2012
, “
Hierarchically Structured Superoleophobic Surfaces With Ultralow Contact Angle Hysteresis
,”
Adv. Mater.
,
24
(
43
), pp.
5838
5843
.
166.
Liu
,
Y.
,
Moevius
,
L.
,
Xu
,
X.
,
Qian
,
T.
,
Yeomans
,
J.
, and
Wang
,
Z.
,
2014
, “
Pancake Bouncing on Superhydrophobic Surfaces
,”
Nat. Phys.
,
10
(18), pp.
515
519
.
167.
Richard
,
D.
,
Clanet
,
C.
, and
Quéré
,
D.
,
2002
, “
Surface Phenomena: Contact Time of a Bouncing Drop
,”
Nature
,
417
(
6891
), p. 811.
168.
Bird
,
J.
,
Dhiman
,
R.
,
Kwon
,
H.
, and
Varanasi
,
K.
,
2013
, “
Reducing the Contact Time of a Bouncing Drop
,”
Nature
,
503
(
7476
), pp.
385
388
.
169.
Su
,
Y.
,
Ji
,
B.
,
Zhang
,
K.
,
Gao
,
H.
,
Huang
,
Y.
, and
Hwang
,
K.
,
2010
, “
Nano to Micro Structural Hierarchy Is Crucial for Stable Superhydrophobic and Water-Repellent Surfaces
,”
Langmuir
,
26
(
7
), pp.
4984
4989
.
170.
Cheng
,
Y.
,
Rodak
,
D.
,
Wong
,
C.
, and
Hayden
,
C.
,
2006
, “
Effects of Micro-and Nano-Structures on the Self-Cleaning Behaviour of Lotus Leaves
,”
Nanotechnology
,
17
(
5
), pp.
1359
1362
.
171.
Lee
,
M.
,
Yim
,
C.
, and
Jeon
,
S.
,
2014
, “
Characterization of Underwater Stability of Superhydrophobic Surfaces Using Quartz Crystal Microresonators
,”
Langmuir
,
30
(
27
), pp.
7931
7935
.
172.
Lee
,
M.
,
Yim
,
C.
, and
Jeon
,
S.
,
2015
, “
Highly Stable Superhydrophobic Surfaces Under Flow Conditions
,”
Appl. Phys. Lett.
,
106
(
1
), p.
011605
.
173.
Lee
,
C.
, and
Kim
,
C.
,
2009
, “
Maximizing the Giant Liquid Slip on Superhydrophobic Microstructures by Nanostructuring Their Sidewalls
,”
Langmuir
,
25
(
21
), pp.
12812
12818
.
174.
Hemeda
,
A.
,
Gad-el-Hak
,
M.
, and
Tafreshi
,
H. V.
,
2014
, “
Effects of Hierarchical Features on Longevity of Submerged Superhydrophobic Surfaces With Parallel Grooves
,”
Phys. Fluids
,
26
(
8
), p.
082103
.
175.
Cao
,
L.
,
Hu
,
H.
, and
Gao
,
D.
,
2007
, “
Design and Fabrication of Micro-Textures for Inducing a Superhydrophobic Behavior on Hydrophilic Materials
,”
Langmuir
,
23
(
8
), pp.
4310
4314
.
176.
Cao
,
L.
,
Price
,
T.
,
Weiss
,
M.
, and
Gao
,
D.
,
2008
, “
Super Water-and Oil-Repellent Surfaces on Intrinsically Hydrophilic and Oleophilic Porous Silicon Films
,”
Langmuir
,
24
(
5
), pp.
1640
1643
.
177.
Gibbs
,
J.
,
1961
,
The Scientific Papers of J. Willard Gibbs Vol. I: Thermodynamics
,
Dover Publications
,
New York
.
178.
Tuteja
,
A.
,
Choi
,
W.
,
Ma
,
M.
,
Mabry
,
J.
,
Mazzella
,
S.
,
Rutledge
,
G.
,
McKinley
,
G.
, and
Cohen
,
R.
,
2007
, “
Designing Superoleophobic Surfaces
,”
Science
,
318
(
5856
), pp.
1618
1622
.
179.
Tuteja
,
A.
,
Choi
,
W.
,
Mabry
,
J.
,
McKinley
,
G.
, and
Cohen
,
R.
,
2008
, “
Robust Omniphobic Surfaces
,”
Proc. Natl. Acad. Sci. U.S.A.
,
105
(
47
), pp.
18200
18205
.
180.
Ahuja
,
A.
,
Taylor
,
J.
,
Lifton
,
V.
,
Sidorenko
,
A.
,
Salamon
,
T.
,
Lobaton
,
E.
,
Kolodner
,
P.
, and
Krupenkin
,
T.
,
2008
, “
Nanonails: A Simple Geometrical Approach to Electrically Tunable Superlyophobic Surfaces
,”
Langmuir
,
24
(
1
), pp.
9
14
.
181.
Grigoryev
,
A.
,
Tokarev
,
I.
,
Kornev
,
K.
,
Luzinov
,
I.
, and
Minko
,
S.
,
2012
, “
Superomniphobic Magnetic Microtextures With Remote Wetting Control
,”
J. Am. Chem. Soc.
,
134
(
31
), pp.
12916
12919
.
182.
Dufour
,
R.
,
Harnois
,
M.
,
Coffinier
,
Y.
,
Thomy
,
V.
,
Boukherroub
,
R.
, and
Senez
,
V.
,
2010
, “
Engineering Sticky Superomniphobic Surfaces on Transparent and Flexible PDMS Substrate
,”
Langmuir
,
26
(
22
), pp.
17242
17247
.
183.
Liu
,
T.
, and
Kim
,
C.
,
2014
, “
Turning a Surface Superrepellent Even to Completely Wetting Liquids
,”
Science
,
346
(
6213
), pp.
1096
1100
.
184.
Helbig
,
R.
,
Nickerl
,
J.
,
Neinhuis
,
C.
, and
Werner
,
C.
,
2011
, “
Smart Skin Patterns Protect Springtails
,”
PLoS One
,
6
(
9
), p.
e25105
.
185.
Hensel
,
R.
,
Helbig
,
R.
,
Aland
,
S.
,
Voigt
,
A.
,
Neinhuis
,
C.
, and
Werner
,
C.
,
2013
, “
Tunable Nano-Replication to Explore the Omniphobic Characteristics of Springtail Skin
,”
NPG Asia Mater.
,
5
(
2
), p.
e37
.
186.
Lafuma
,
A.
, and
Quéré
,
D.
,
2011
, “
Slippery Pre-Suffused Surfaces
,”
Europhys. Lett.
,
96
(
5
), p.
56001
.
187.
Bauer
,
U.
, and
Federle
,
W.
,
2009
, “
The Insect-Trapping Rim of Nepenthes Pitchers: Surface Structure and Function
,”
Plant Signaling Behav.
,
4
(
11
), pp.
1019
1023
.
188.
Smith
,
J.
,
Dhiman
,
R.
,
Anand
,
S.
,
Reza-Garduno
,
E.
,
Cohen
,
R.
,
McKinley
,
G.
, and
Varanasi
,
K.
,
2013
, “
Droplet Mobility on Lubricant-Impregnated Surfaces
,”
Soft Matter
,
9
(
6
), pp.
1772
1780
.
189.
Kim
,
P.
,
Wong
,
T.
,
Alvarenga
,
J.
,
Kreder
,
M.
,
Adorno-Martinez
,
W.
, and
Aizenberg
,
J.
,
2012
, “
Liquid-Infused Nanostructured Surfaces With Extreme Anti-Ice and Anti-Frost Performance
,”
ACS Nano
,
6
(
8
), pp.
6569
6577
.
190.
Wilson
,
P.
,
Lu
,
W.
,
Xu
,
H.
,
Kim
,
P.
,
Kreder
,
M.
,
Alvarenga
,
J.
, and
Aizenberg
,
J.
,
2013
, “
Inhibition of Ice Nucleation by Slippery Liquid-Infused Porous Surfaces (Slips)
,”
Phys. Chem. Chem. Phys.
,
15
(
2
), pp.
581
585
.
191.
Rykaczewski
,
K.
,
Anand
,
S.
,
Subramanyam
,
S.
, and
Varanasi
,
K.
,
2013
, “
Mechanism of Frost Formation on Lubricant-Impregnated Surfaces
,”
Langmuir
,
29
(
17
), pp.
5230
5238
.
192.
Zhu
,
L.
,
Xue
,
J.
,
Wang
,
Y.
,
Chen
,
Q.
,
Ding
,
J.
, and
Wang
,
Q.
,
2013
, “
Ice-Phobic Coatings Based on Silicon-Oil-Infused Polydimethylsiloxane
,”
ACS Appl. Mater. Interfaces
,
5
(
10
), pp.
4053
4062
.
193.
Epstein
,
A.
,
Wong
,
T.
,
Belisle
,
R.
,
Boggs
,
E.
, and
Aizenberg
,
J.
,
2012
, “
Liquid-Infused Structured Surfaces With Exceptional Anti-Biofouling Performance
,”
Proc. Natl. Acad. Sci. U.S.A.
,
109
(
33
), pp.
13182
13187
.
194.
Xiao
,
L.
,
Li
,
J.
,
Mieszkin
,
S.
,
Di
,
F.
,
Clare
,
A.
,
Callow
,
M.
,
Callow
,
J.
,
Grunze
,
M.
,
Rosenhahn
,
A.
, and
Levkin
,
P.
,
2013
, “
Slippery Liquid-Infused Porous Surfaces Showing Marine Antibiofouling Properties
,”
ACS Appl. Mater. Interfaces
,
5
(
20
), pp.
10074
10080
.
195.
Li
,
J.
,
Kleintschek
,
T.
,
Rieder
,
A.
,
Cheng
,
Y.
,
Baumbach
,
T.
,
Obst
,
U.
,
Schwartz
,
T.
, and
Levkin
,
P.
,
2013
, “
Hydrophobic Liquid-Infused Porous Polymer Surfaces for Antibacterial Applications
,”
ACS Appl. Mater. Interfaces
,
5
(
14
), pp.
6704
6711
.
196.
Yao
,
X.
,
Hu
,
Y.
,
Grinthal
,
A.
,
Wong
,
T.
,
Mahadevan
,
L.
, and
Aizenberg
,
J.
,
2013
, “
Adaptive Fluid-Infused Porous Films With Tunable Transparency and Wettability
,”
Nat. Mater.
,
12
(
6
), pp.
529
534
.
197.
Anand
,
S.
,
Paxson
,
A.
,
Dhiman
,
R.
,
Smith
,
J.
, and
Varanasi
,
K.
,
2012
, “
Enhanced Condensation on Lubricant-Impregnated Nanotextured Surfaces
,”
ACS Nano
,
6
(
11
), pp.
10122
10129
.
198.
Xiao
,
R.
,
Miljkovic
,
N.
,
Enright
,
R.
, and
Wang
,
E.
,
2013
, “
Immersion Condensation on Oil-Infused Heterogeneous Surfaces for Enhanced Heat Transfer
,”
Sci. Rep.
,
3
(
1988
), pp.
1
6
.
199.
Solomon
,
B.
,
Khalil
,
K.
, and
Varanasi
,
K.
,
2014
, “
Drag Reduction Using Lubricant-Impregnated Surfaces in Viscous Laminar Flow
,”
Langmuir
,
30
(
36
), pp.
10970
10976
.
200.
Wexler
,
J. S.
,
Jacobi
,
I.
, and
Stone
,
H. A.
,
2015
, “
Shear-Driven Failure of Liquid-Infused Surfaces
,”
Phys. Rev. Lett.
,
114
(
16
), p.
168301
.
201.
Wexler
,
J.
,
Grosskopf
,
A.
,
Chow
,
M.
,
Fan
,
Y.
,
Jacobi
,
I.
, and
Stone
,
H.
,
2015
, “
Robust Liquid-Infused Surfaces Through Patterned Wettability
,”
Soft Matter
,
11
(
25
), pp.
5023
5029
.
202.
Verho
,
T.
,
Bower
,
C.
,
Andrew
,
P.
,
Franssila
,
S.
,
Ikkala
,
O.
, and
Ras
,
R.
,
2011
, “
Mechanically Durable Superhydrophobic Surfaces
,”
Adv. Mater.
,
23
(
5
), pp.
673
678
.
203.
Yu
,
Y.
,
Zhao
,
Z.
, and
Zheng
,
Q.
,
2007
, “
Mechanical and Superhydrophobic Stabilities of Two-Scale Surfacial Structure of Lotus Leaves
,”
Langmuir
,
23
(
15
), pp.
8212
8216
.
204.
Groten
,
J.
, and
Rühe
,
J.
,
2013
, “
Surfaces With Combined Microscale and Nanoscale Structures: A Route to Mechanically Stable Superhydrophobic Surfaces?
,”
Langmuir
,
29
(
11
), pp.
3765
3772
.
205.
Elliott
,
P.
,
Stagon
,
S.
,
Huang
,
H.
,
Furrer
,
D.
,
Burlatsky
,
S.
, and
Filburn
,
T.
,
2015
, “
Combined Hydrophobicity and Mechanical Durability Through Surface Nanoengineering
,”
Sci. Rep.
,
5
(
9260
), pp.
1
5
.
206.
Zimmermann
,
J.
,
Reifler
,
F.
,
Fortunato
,
G.
,
Gerhardt
,
L.
, and
Seeger
,
S.
,
2008
, “
A Simple, One-Step Approach to Durable and Robust Superhydrophobic Textiles
,”
Adv. Funct. Mater.
,
18
(
22
), pp.
3662
3669
.
207.
Zhu
,
X.
,
Zhang
,
Z.
,
Yang
,
J.
,
Xu
,
X.
,
Men
,
X.
, and
Zhou
,
X.
,
2012
, “
Facile Fabrication of a Superhydrophobic Fabric With Mechanical Stability and Easy-Repairability
,”
J. Colloid Interface Sci.
,
380
(
1
), pp.
182
186
.
208.
Chang
,
H.
,
Tu
,
K.
,
Wang
,
X.
, and
Liu
,
J.
,
2015
, “
Fabrication of Mechanically Durable Superhydrophobic Wood Surfaces Using Polydimethylsiloxane and Silica Nanoparticles
,”
RSC Adv.
,
5
(
39
), pp.
30647
30653
.
209.
Xiu
,
Y.
,
Liu
,
Y.
,
Hess
,
D.
, and
Wong
,
C.
,
2010
, “
Mechanically Robust Superhydrophobicity on Hierarchically Structured Si Surfaces
,”
Nanotechnology
,
21
(
15
), p.
155705
.
210.
Kondrashov
,
V.
, and
Ruhe
,
J.
,
2014
, “
Microcones and Nanograss: Toward Mechanically Robust Superhydrophobic Surfaces
,”
Langmuir
,
30
(
15
), pp.
4342
4350
.
211.
Höhne
,
S.
,
Blank
,
C.
,
Mensch
,
A.
,
Thieme
,
M.
,
Frenzel
,
R.
,
Worch
,
H.
,
Müller
,
M.
, and
Simon
,
F.
,
2009
, “
Superhydrophobic Alumina Surfaces Based on Polymer-Stabilized Oxide Layers
,”
Macromol. Chem. Phys.
,
210
(
16
), pp.
1263
1271
.
212.
Wang
,
F.
,
Yu
,
S.
,
Ou
,
J.
,
Xue
,
M.
, and
Li
,
W.
,
2013
, “
Mechanically Durable Superhydrophobic Surfaces Prepared by Abrading
,”
J. Appl. Phys.
,
114
(
12
), p.
124902
.
213.
Deng
,
X.
,
Mammen
,
L.
,
Zhao
,
Y.
,
Lellig
,
P.
,
Müllen
,
K.
,
Li
,
C.
,
Butt
,
H.
, and
Vollmer
,
D.
,
2011
, “
Transparent, Thermally Stable and Mechanically Robust Superhydrophobic Surfaces Made From Porous Silica Capsules
,”
Adv. Mater.
,
23
(
26
), pp.
2962
2965
.
214.
Deng
,
X.
,
Mammen
,
L.
,
Butt
,
H.
, and
Vollmer
,
D.
,
2012
, “
Candle Soot as a Template for a Transparent Robust Superamphiphobic Coating
,”
Science
,
335
(
6064
), pp.
67
70
.
215.
Bayer
,
I.
,
Brown
,
A.
,
Steele
,
A.
, and
Loth
,
E.
,
2009
, “
Transforming Anaerobic Adhesives Into Highly Durable and Abrasion Resistant Superhydrophobic Organoclay Nanocomposite Films: A New Hybrid Spray Adhesive for Tough Superhydrophobicity
,”
Appl. Phys. Express
,
2
(
12
), p.
125003
.
216.
Xue
,
F.
,
Jia
,
D.
,
Li
,
Y.
, and
Jing
,
X.
,
2015
, “
Facile Preparation of a Mechanically Robust Superhydrophobic Acrylic Polyurethane Coating
,”
J. Mater. Chem. A
,
3
(
39
), pp.
13856
13863
.
217.
Lu
,
Y.
,
Sathasivam
,
S.
,
Song
,
J.
,
Crick
,
C.
,
Carmalt
,
C.
, and
Parkin
,
I.
,
2015
, “
Robust Self-Cleaning Surfaces That Function When Exposed to Either Air or Oil
,”
Science
,
347
(
6226
), pp.
1132
1135
.
218.
Youngblood
,
J.
, and
Sottos
,
N.
,
2008
, “
Bioinspired Materials for Self-Cleaning and Self-Healing
,”
MRS Bull.
,
33
(
8
), pp.
732
741
.
219.
Ionov
,
L.
, and
Synytska
,
A.
,
2012
, “
Self-Healing Superhydrophobic Materials
,”
Phys. Chem. Chem. Phys.
,
14
(
30
), pp.
10497
10502
.
220.
Yin
,
X.
,
Liu
,
Z.
,
Wang
,
D.
,
Pei
,
X.
,
Yu
,
B.
, and
Zhou
,
F.
,
2015
, “
Bioinspired Self-Healing Organic Materials: Chemical Mechanisms and Fabrications
,”
J. Bionic Eng.
,
12
(
1
), pp.
1
16
.
221.
Cohen
,
N.
,
Dotan
,
A.
,
Dodiuk
,
H.
, and
Kenig
,
S.
,
2015
, “
Superhydrophobic Coatings and Their Durability
,”
Mater. Manuf. Processes
,
31
(
9
), pp.
1143
1155
.
222.
Wu
,
W.
,
Wang
,
X.
,
Liu
,
X.
, and
Zhou
,
F.
,
2009
, “
Spray-Coated Fluorine-Free Superhydrophobic Coatings With Easy Repairability and Applicability
,”
ACS Appl. Mater. Interfaces
,
1
(
8
), pp.
1656
1661
.
223.
Yang
,
J.
,
Zhang
,
Z.
,
Men
,
X.
,
Xu
,
X.
, and
Zhu
,
X.
,
2010
, “
A Simple Approach to Fabricate Regenerable Superhydrophobic Coatings
,”
Colloids Surf., A
,
367
(
1
), pp.
60
64
.
224.
Li
,
J.
,
Liu
,
X.
,
Ye
,
Y.
,
Zhou
,
H.
, and
Chen
,
J.
,
2011
, “
A Simple Solution-Immersion Process for the Fabrication of Superhydrophobic Cupric Stearate Surface With Easy Repairable Property
,”
Appl. Surf. Sci.
,
258
(
5
), pp.
1772
1775
.
225.
Zhu
,
X.
,
Zhang
,
Z.
,
Men
,
X.
,
Yang
,
J.
,
Wang
,
K.
,
Xu
,
X.
,
Zhou
,
X.
, and
Xue
,
Q.
,
2011
, “
Robust Superhydrophobic Surfaces With Mechanical Durability and Easy Repairability
,”
J. Mater. Chem.
,
21
(
39
), pp.
15793
15797
.
226.
Li
,
J.
,
Wan
,
H.
,
Ye
,
Y.
,
Zhou
,
H.
, and
Chen
,
J.
,
2012
, “
One-Step Process for the Fabrication of Superhydrophobic Surfaces With Easy Repairability
,”
Appl. Surf. Sci.
,
258
(
7
), pp.
3115
3118
.
227.
Li
,
Y.
,
Li
,
L.
, and
Sun
,
J.
,
2010
, “
Bioinspired Self-Healing Superhydrophobic Coatings
,”
Angew. Chem., Int. Ed.
,
122
(
35
), pp.
6265
6269
.
228.
Li
,
Y.
,
Chen
,
S.
,
Wu
,
M.
, and
Sun
,
J.
,
2014
, “
All Spraying Processes for the Fabrication of Robust, Self-Healing, Superhydrophobic Coatings
,”
Adv. Mater.
,
26
(
20
), pp.
3344
3348
.
229.
Chen
,
S.
,
Li
,
X.
,
Li
,
Y.
, and
Sun
,
J.
,
2015
, “
Intumescent Flame-Retardant and Self-Healing Superhydrophobic Coatings on Cotton Fabric
,”
ACS Nano
,
9
(
4
), pp.
4070
4076
.
230.
Wang
,
H.
,
Xue
,
Y.
,
Ding
,
J.
,
Feng
,
L.
,
Wang
,
X.
, and
Lin
,
T.
,
2011
, “
Durable, Self-Healing Superhydrophobic and Superoleophobic Surfaces From Fluorinated-Decyl Polyhedral Oligomeric Silsesquioxane and Hydrolyzed Fluorinated Alkyl Silane
,”
Angew. Chem., Int. Ed.
,
50
(
48
), pp.
11433
11436
.
231.
Liu
,
Y.
,
Liu
,
Y.
,
Hu
,
H.
,
Liu
,
Z.
,
Pei
,
X.
,
Yu
,
B.
,
Yan
,
P.
, and
Zhou
,
F.
,
2015
, “
Mechanically Induced Self-Healing Superhydrophobicity
,”
J. Phys. Chem. C
,
119
(
13
), pp.
7109
7114
.
232.
White
,
S.
,
Sottos
,
N.
,
Geubelle
,
P.
,
Moore
,
J.
,
Kessler
,
M.
,
Sriram
,
S.
,
Brown
,
E.
, and
Viswanathan
,
S.
,
2001
, “
Autonomic Healing of Polymer Composites
,”
Nature
,
409
(
6822
), pp.
794
797
.
233.
Shchukin
,
D.
, and
Möhwald
,
H.
,
2007
, “
Self-Repairing Coatings Containing Active Nanoreservoirs
,”
Small
,
3
(
6
), pp.
926
943
.
234.
Wang
,
X.
,
Liu
,
X.
,
Zhou
,
F.
, and
Liu
,
W.
,
2011
, “
Self-Healing Superamphiphobicity
,”
Chem. Commun.
,
47
(
8
), pp.
2324
2326
.
235.
Guo
,
R.
,
Hu
,
H.
,
Liu
,
Z.
,
Wang
,
X.
, and
Zhou
,
F.
,
2014
, “
Highly Durable Hydrophobicity in Simulated Space Environment
,”
RSC Adv.
,
4
(
54
), pp.
28780
28785
.
236.
Liu
,
Q.
,
Wang
,
X.
,
Yu
,
B.
,
Zhou
,
F.
, and
Xue
,
Q.
,
2012
, “
Self-Healing Surface Hydrophobicity by Consecutive Release of Hydrophobic Molecules From Mesoporous Silica
,”
Langmuir
,
28
(
13
), pp.
5845
5849
.
237.
Puretskiy
,
N.
,
Stoychev
,
G.
,
Synytska
,
A.
, and
Ionov
,
L.
,
2012
, “
Surfaces With Self-Repairable Ultrahydrophobicity Based on Self-Organizing Freely Floating Colloidal Particles
,”
Langmuir
,
28
(
8
), pp.
3679
3682
.
238.
Xue
,
C.
,
Zhang
,
Z.
,
Zhang
,
J.
, and
Jia
,
S.
,
2014
, “
Lasting and Self-Healing Superhydrophobic Surfaces by Coating of Polystyrene/SiO2 Nanoparticles and Polydimethylsiloxane
,”
J. Mater. Chem. A
,
2
(
36
), pp.
15001
15007
.
239.
Boreyko
,
J.
, and
Chen
,
C.
,
2009
, “
Restoring Superhydrophobicity of Lotus Leaves With Vibration-Induced Dewetting
,”
Phys. Rev. Lett.
,
103
(
17
), p.
174502
.
240.
Schutzius
,
T.
,
Jung
,
S.
,
Maitra
,
T.
,
Graeber
,
G.
,
Köhme
,
M.
, and
Poulikakos
,
D.
,
2015
, “
Spontaneous Droplet Trampolining on Rigid Superhydrophobic Surfaces
,”
Nature
,
527
(
7576
), pp.
82
85
.
241.
Krupenkin
,
T.
,
Taylor
,
J.
,
Wang
,
E.
,
Kolodner
,
P.
,
Hodes
,
M.
, and
Salamon
,
T.
,
2007
, “
Reversible Wetting-Dewetting Transitions on Electrically Tunable Superhydrophobic Nanostructured Surfaces
,”
Langmuir
,
23
(
18
), pp.
9128
9133
.
242.
Adera
,
S.
,
Raj
,
R.
,
Enright
,
R.
, and
Wang
,
E.
,
2013
, “
Non-Wetting Droplets on Hot Superhydrophilic Surfaces
,”
Nat. Commun.
,
4
(
2518
), pp.
1
7
.
243.
Lee
,
C.
, and
Kim
,
C.
,
2011
, “
Underwater Restoration and Retention of Gases on Superhydrophobic Surfaces for Drag Reduction
,”
Phys. Rev. Lett.
,
106
(
1
), p.
014502
.
244.
Verho
,
T.
,
Korhonen
,
J.
,
Sainiemi
,
L.
,
Jokinen
,
V.
,
Bower
,
C.
,
Franze
,
K.
,
Franssila
,
S.
,
Andrew
,
P.
,
Ikkala
,
O.
, and
Ras
,
R.
,
2012
, “
Reversible Switching Between Superhydrophobic States on a Hierarchically Structured Surface
,”
Proc. Natl. Acad. Sci. U.S.A.
,
109
(
26
), pp.
10210
10213
.
245.
Lauga
,
E.
,
Brenner
,
M.
, and
Stone
,
H.
,
2007
, “
Microfluidics: The No-Slip Boundary Condition
,”
Springer Handbook of Experimental Fluid Mechanics
,
C.
Tropea
,
A.
Yarin
, and
J.
Foss
, eds.,
Springer
,
Berlin, Germany
, pp.
1219
1240
.
246.
Navier
,
C.
,
1823
, “
Mémoire sur les lois du mouvement des fluides
,”
Mem. Acad. Sci. Paris
,
6
(
1
), pp.
389
440
.
247.
Pit
,
R.
,
Hervet
,
H.
, and
Leger
,
L.
,
2000
, “
Direct Experimental Evidence of Slip in Hexadecane: Solid Interfaces
,”
Phys. Rev. Lett.
,
85
(
5
), p.
980
.
248.
Baudry
,
J.
,
Charlaix
,
E.
,
Tonck
,
A.
, and
Mazuyer
,
D.
,
2001
, “
Experimental Evidence for a Large Slip Effect at a Nonwetting Fluid-Solid Interface
,”
Langmuir
,
17
(
17
), pp.
5232
5236
.
249.
Tretheway
,
D.
, and
Meinhart
,
C.
,
2002
, “
Apparent Fluid Slip at Hydrophobic Microchannel Walls
,”
Phys. Fluids
,
14
(
3
), pp.
L9
L12
.
250.
Choi
,
C.
,
Westin
,
K.
, and
Breuer
,
K.
,
2003
, “
Apparent Slip Flows in Hydrophilic and Hydrophobic Microchannels
,”
Phys. Fluids
,
15
(
10
), pp.
2897
2902
.
251.
Joseph
,
P.
, and
Tabeling
,
P.
,
2005
, “
Direct Measurement of the Apparent Slip Length
,”
Phys. Rev. E
,
71
(
3
), p.
035303
.
252.
Huang
,
P.
,
Guasto
,
J.
, and
Breuer
,
K.
,
2006
, “
Direct Measurement of Slip Velocities Using Three-Dimensional Total Internal Reflection Velocimetry
,”
J. Fluid Mech.
,
566
(
1
), pp.
447
464
.
253.
Vinogradova
,
O.
,
Koynov
,
K.
,
Best
,
A.
, and
Feuillebois
,
F.
,
2009
, “
Direct Measurements of Hydrophobic Slippage Using Double-Focus Fluorescence Cross-Correlation
,”
Phys. Rev. Lett.
,
102
(
11
), p.
118302
.
254.
Thompson
,
P.
, and
Robbins
,
M.
,
1990
, “
Shear Flow Near Solids: Epitaxial Order and Flow Boundary Conditions
,”
Phys. Rev. A
,
41
(
12
), p.
6830
.
255.
Barrat
,
J.
, and
Bocquet
,
L.
,
1999
, “
Large Slip Effect at a Nonwetting Fluid-Solid Interface
,”
Phys. Rev. Lett.
,
82
(
23
), p.
4671
.
256.
Thompson
,
P.
, and
Troian
,
S.
,
1997
, “
A General Boundary Condition for Liquid Flow at Solid Surfaces
,”
Nature
,
389
(
6649
), pp.
360
362
.
257.
Chinappi
,
M.
, and
Casciola
,
C.
,
2010
, “
Intrinsic Slip on Hydrophobic Self-Assembled Monolayer Coatings
,”
Phys. Fluids
,
22
(
4
), p.
042003
.
258.
Vinogradova
,
O.
,
1999
, “
Slippage of Water Over Hydrophobic Surfaces
,”
Int. J. Miner. Process.
,
56
(
1
), pp.
31
60
.
259.
Zhu
,
Y.
, and
Granick
,
S.
,
2002
, “
Limits of the Hydrodynamic No-Slip Boundary Condition
,”
Phys. Rev. Lett.
,
88
(
10
), p.
106102
.
260.
Cottin-Bizonne
,
C.
,
Cross
,
B.
,
Steinberger
,
A.
, and
Charlaix
,
E.
,
2005
, “
Boundary Slip on Smooth Hydrophobic Surfaces: Intrinsic Effects and Possible Artifacts
,”
Phys. Rev. Lett.
,
94
(
5
), p.
056102
.
261.
de Gennes
,
P.
,
2002
, “
On Fluid/Wall Slippage
,”
Langmuir
,
18
(
9
), pp.
3413
3414
.
262.
Tretheway
,
D.
, and
Meinhart
,
C.
,
2004
, “
A Generating Mechanism for Apparent Fluid Slip in Hydrophobic Microchannels
,”
Phys. Fluids
,
16
(
5
), pp.
1509
1515
.
263.
Joseph
,
P.
,
Cottin-Bizonne
,
C.
,
Benoît
,
J.
,
Ybert
,
C.
,
Journet
,
C.
,
Tabeling
,
P.
, and
Bocquet
,
L.
,
2006
, “
Slippage of Water Past Superhydrophobic Carbon Nanotube Forests in Microchannels
,”
Phys. Rev. Lett.
,
97
(
15
), p.
156104
.
264.
Choi
,
C.
, and
Kim
,
C.
,
2006
, “
Large Slip of Aqueous Liquid Flow Over a Nanoengineered Superhydrophobic Surface
,”
Phys. Rev. Lett.
,
96
(
6
), p.
066001
.
265.
Lee
,
C.
,
Choi
,
C.
, and
Kim
,
C.
,
2008
, “
Structured Surfaces for a Giant Liquid Slip
,”
Phys. Rev. Lett.
,
101
(
6
), p.
064501
.
266.
Blake
,
T.
,
1990
, “
Slip Between a Liquid and a Solid: DM Tolstoi's (1952) Theory Reconsidered
,”
Colloids Surf.
,
47
(
1
), pp.
135
145
.
267.
Martini
,
A.
,
Roxin
,
A.
,
Snurr
,
R.
,
Wang
,
Q.
, and
Lichter
,
S.
,
2008
, “
Molecular Mechanisms of Liquid Slip
,”
J. Fluid Mech.
,
600
(
10
), pp.
257
269
.
268.
Dammer
,
S.
, and
Lohse
,
D.
,
2006
, “
Gas Enrichment at Liquid–Wall Interfaces
,”
Phys. Rev. Lett.
,
96
(
20
), p.
206101
.
269.
Janeček
,
J.
, and
Netz
,
R.
,
2007
, “
Interfacial Water at Hydrophobic and Hydrophilic Surfaces: Depletion Versus Adsorption
,”
Langmuir
,
23
(
16
), pp.
8417
8429
.
270.
Zhu
,
Y.
, and
Granick
,
S.
,
2001
, “
Rate-Dependent Slip of Newtonian Liquid at Smooth Surfaces
,”
Phys. Rev. Lett.
,
87
(
9
), p.
096105
.
271.
Craig
,
V.
,
Neto
,
C.
, and
Williams
,
D.
,
2001
, “
Shear-Dependent Boundary Slip in an Aqueous Newtonian Liquid
,”
Phys. Rev. Lett.
,
87
(
5
), p.
054504
.
272.
Lichter
,
S.
,
Martini
,
A.
,
Snurr
,
R.
, and
Wang
,
Q.
,
2007
, “
Liquid Slip in Nanoscale Channels as a Rate Process
,”
Phys. Rev. Lett.
,
98
(
22
), p.
226001
.
273.
Martini
,
A.
,
Hsu
,
H.
,
Patankar
,
N.
, and
Lichter
,
S.
,
2008
, “
Slip at High Shear Rates
,”
Phys. Rev. Lett.
,
100
(
20
), p.
206001
.
274.
Wang
,
F.
, and
Zhao
,
Y.
,
2011
, “
Slip Boundary Conditions Based on Molecular Kinetic Theory: The Critical Shear Stress and the Energy Dissipation at the Liquid–Solid Interface
,”
Soft Matter
,
7
(
18
), pp.
8628
8634
.
275.
Lichter
,
S.
,
Roxin
,
A.
, and
Mandre
,
S.
,
2004
, “
Mechanisms for Liquid Slip at Solid Surfaces
,”
Phys. Rev. Lett.
,
93
(
8
), p.
086001
.
276.
Voronov
,
R.
,
Papavassiliou
,
D.
, and
Lee
,
L.
,
2008
, “
Review of Fluid Slip Over Superhydrophobic Surfaces and Its Dependence on the Contact Angle
,”
Ind. Eng. Chem. Res.
,
47
(
8
), pp.
2455
2477
.
277.
Huang
,
D.
,
Sendner
,
C.
,
Horinek
,
D.
,
Netz
,
R.
, and
Bocquet
,
L.
,
2008
, “
Water Slippage Versus Contact Angle: A Quasiuniversal Relationship
,”
Phys. Rev. Lett.
,
101
(
22
), p.
226101
.
278.
Chen
,
W.
,
Fadee
,
A.
,
Hsieh
,
M.
,
Öner
,
D.
,
Youngblood
,
J.
, and
McCarthy
,
T.
,
1999
, “
Ultrahydrophobic and Ultralyophobic Surfaces: Some Comments and Examples
,”
Langmuir
,
15
(
10
), pp.
3395
3399
.
279.
Marmur
,
A.
,
2006
, “
Soft Contact: Measurement and Interpretation of Contact Angles
,”
Soft Matter
,
2
(
1
), pp.
12
17
.
280.
Gao
,
L.
, and
McCarthy
,
T.
,
2008
, “
Teflon Is Hydrophilic. Comments on Definitions of Hydrophobic, Shear Versus Tensile Hydrophobicity, and Wettability Characterization
,”
Langmuir
,
24
(
17
), pp.
9183
9188
.
281.
Voronov
,
R.
,
Papavassiliou
,
D.
, and
Lee
,
L.
,
2007
, “
Slip Length and Contact Angle Over Hydrophobic Surfaces
,”
Chem. Phys. Lett.
,
441
(
4
), pp.
273
276
.
282.
Schmatko
,
T.
,
Hervet
,
H.
, and
Leger
,
L.
,
2005
, “
Friction and Slip at Simple Fluid–Solid Interfaces: The Roles of the Molecular Shape and the Solid–Liquid Interaction
,”
Phys. Rev. Lett.
,
94
(
24
), p.
244501
.
283.
Ho
,
T.
,
Papavassiliou
,
D.
,
Lee
,
L.
, and
Striolo
,
A.
,
2011
, “
Liquid Water Can Slip on a Hydrophilic Surface
,”
Proc. Natl. Acad. Sci. U.S.A.
,
108
(
39
), pp.
16170
16175
.
284.
Wu
,
Y.
,
Xue
,
Y.
,
Pei
,
X.
,
Cai
,
M.
,
Duan
,
H.
,
Huck
,
W.
,
Zhou
,
F.
, and
Xue
,
Q.
,
2014
, “
Adhesion-Regulated Switchable Fluid Slippage on Superhydrophobic Surfaces
,”
J. Phys. Chem. C
,
118
(
5
), pp.
2564
2569
.
285.
Wu
,
Y.
,
Liu
,
Z.
,
Liang
,
Y.
,
Pei
,
X.
,
Zhou
,
F.
, and
Xue
,
Q.
,
2014
, “
Switching Fluid Slippage on pH-Responsive Superhydrophobic Surfaces
,”
Langmuir
,
30
(
22
), pp.
6463
6468
.
286.
Xue
,
Y.
,
Wu
,
Y.
,
Pei
,
X.
,
Duan
,
H.
,
Xue
,
Q.
, and
Zhou
,
F.
,
2014
, “
How Solid–Liquid Adhesive Property Regulates Liquid Slippage on Solid Surfaces?
,”
Langmuir
,
31
(
1
), pp.
226
232
.
287.
Granick
,
S.
,
Zhu
,
Y.
, and
Lee
,
H.
,
2003
, “
Slippery Questions About Complex Fluids Flowing Past Solids
,”
Nat. Mater.
,
2
(
4
), pp.
221
227
.
288.
Philip
,
J.
,
1972
, “
Integral Properties of Flows Satisfying Mixed No-Slip and No-Shear Conditions
,”
Z. Angew. Math. Phys.
,
23
(
6
), pp.
960
968
.
289.
Philip
,
J.
,
1972
, “
Flows Satisfying Mixed No-Slip and No-Shear Conditions
,”
Z. Angew. Math. Phys.
,
23
(
3
), pp.
353
372
.
290.
Lauga
,
E.
, and
Stone
,
H.
,
2003
, “
Effective Slip in Pressure-Driven Stokes Flow
,”
J. Fluid Mech.
,
489
(
10
), pp.
55
77
.
291.
Cottin-Bizonne
,
C.
,
Barentin
,
C.
,
Charlaix
,
É.
,
Bocquet
,
L.
, and
Barrat
,
J.
,
2004
, “
Dynamics of Simple Liquids at Heterogeneous Surfaces: Molecular-Dynamics Simulations and Hydrodynamic Description
,”
Eur. Phys. J. E
,
15
(
4
), pp.
427
438
.
292.
Woolford
,
B.
,
Maynes
,
D.
, and
Webb
,
B.
,
2009
, “
Liquid Flow Through Microchannels With Grooved Walls Under Wetting and Superhydrophobic Conditions
,”
Microfluid. Nanofluid.
,
7
(
1
), pp.
121
135
.
293.
Belyaev
,
A.
, and
Vinogradova
,
O.
,
2010
, “
Effective Slip in Pressure-Driven Flow Past Super-Hydrophobic Stripes
,”
J. Fluid Mech.
,
652
(
1
), pp.
489
499
.
294.
Davis
,
A.
, and
Lauga
,
E.
,
2009
, “
The Friction of a Mesh-Like Super-Hydrophobic Surface
,”
Phys. Fluids
,
21
(
11
), p.
113101
.
295.
Ybert
,
C.
,
Barentin
,
C.
,
Cottin-Bizonne
,
C.
,
Joseph
,
P.
, and
Bocquet
,
L.
,
2007
, “
Achieving Large Slip With Superhydrophobic Surfaces: Scaling Laws for Generic Geometries
,”
Phys. Fluids
,
19
(
12
), p.
123601
.
296.
Bazant
,
M.
, and
Vinogradova
,
O.
,
2008
, “
Tensorial Hydrodynamic Slip
,”
J. Fluid Mech.
,
613
(
15
), pp.
125
134
.
297.
Feuillebois
,
F.
,
Bazant
,
M.
, and
Vinogradova
,
O.
,
2009
, “
Effective Slip Over Superhydrophobic Surfaces in Thin Channels
,”
Phys. Rev. Lett.
,
102
(
2
), p.
026001
.
298.
Cottin-Bizonne
,
C.
,
Barrat
,
J.
,
Bocquet
,
L.
, and
Charlaix
,
E.
,
2003
, “
Low-Friction Flows of Liquid at Nanopatterned Interfaces
,”
Nat. Mater.
,
2
(
4
), pp.
237
240
.
299.
Priezjev
,
N.
,
Darhuber
,
A.
, and
Troian
,
S.
,
2005
, “
Slip Behavior in Liquid Films on Surfaces of Patterned Wettability: Comparison Between Continuum and Molecular Dynamics Simulations
,”
Phys. Rev. E
,
71
(
4
), p.
041608
.
300.
Maynes
,
D.
,
Jeffs
,
K.
,
Woolford
,
B.
, and
Webb
,
B.
,
2007
, “
Laminar Flow in a Microchannel With Hydrophobic Surface Patterned Microribs Oriented Parallel to the Flow Direction
,”
Phys. Fluids
,
19
(
9
), p.
093603
.
301.
Ou
,
J.
, and
Rothstein
,
J.
,
2005
, “
Direct Velocity Measurements of the Flow Past Drag-Reducing Ultrahydrophobic Surfaces
,”
Phys. Fluids
,
17
(
10
), p.
103606
.
302.
Davies
,
J.
,
Maynes
,
D.
,
Webb
,
B.
, and
Woolford
,
B.
,
2006
, “
Laminar Flow in a Microchannel With Superhydrophobic Walls Exhibiting Transverse Ribs
,”
Phys. Fluids
,
18
(
8
), p.
087110
.
303.
Legendre
,
D.
, and
Colin
,
C.
,
2008
, “
Enhancement of Wall Friction by Fixed Cap Bubbles
,”
Phys. Fluids
,
20
(
5
), p.
051704
.
304.
Li
,
D.
,
Li
,
S.
,
Xue
,
Y.
,
Yang
,
Y.
,
Su
,
W.
,
Xia
,
Z.
,
Shi
,
Y.
,
Lin
,
H.
, and
Duan
,
H.
,
2014
, “
The Effect of Slip Distribution on Flow Past a Circular Cylinder
,”
J. Fluids Struct.
,
51
(
1
), pp.
211
224
.
305.
Harting
,
J.
,
Kunert
,
C.
, and
Hyväluoma
,
J.
,
2010
, “
Lattice Boltzmann Simulations in Microfluidics: Probing the No-Slip Boundary Condition in Hydrophobic, Rough, and Surface Nanobubble Laden Microchannels
,”
Microfluid. Nanofluid.
,
8
(
1
), pp.
1
10
.
306.
Sbragaglia
,
M.
,
Benzi
,
R.
,
Biferale
,
L.
,
Succi
,
S.
, and
Toschi
,
F.
,
2006
, “
Surface Roughness-Hydrophobicity Coupling in Microchannel and Nanochannel Flows
,”
Phys. Rev. Lett.
,
97
(
20
), p.
204503
.
307.
Ou
,
J.
,
Perot
,
B.
, and
Rothstein
,
J.
,
2004
, “
Laminar Drag Reduction in Microchannels Using Ultrahydrophobic Surfaces
,”
Phys. Fluids
,
16
(
12
), pp.
4635
4643
.
308.
Byun
,
D.
,
Kim
,
J.
,
Ko
,
H.
, and
Park
,
H.
,
2008
, “
Direct Measurement of Slip Flows in Superhydrophobic Microchannels With Transverse Grooves
,”
Phys. Fluids
,
20
(
11
), p.
113601
.
309.
Watanabe
,
K.
,
Udagawa
,
Y.
, and
Udagawa
,
H.
,
1999
, “
Drag Reduction of Newtonian Fluid in a Circular Pipe With a Highly Water-Repellent Wall
,”
J. Fluid Mech.
,
381
(
4
), pp.
225
238
.
310.
Shirtcliffe
,
N.
,
McHale
,
G.
,
Newton
,
M.
, and
Zhang
,
Y.
,
2009
, “
Superhydrophobic Copper Tubes With Possible Flow Enhancement and Drag Reduction
,”
ACS Appl. Mater. Interfaces
,
1
(
6
), pp.
1316
1323
.
311.
Truesdell
,
R.
,
Mammoli
,
A.
,
Vorobieff
,
P.
,
van Swol
,
F.
, and
Brinker
,
C.
,
2006
, “
Drag Reduction on a Patterned Superhydrophobic Surface
,”
Phys. Rev. Lett.
,
97
(
4
), p.
044504
.
312.
Zhou
,
M.
,
Li
,
J.
,
Wu
,
C.
,
Zhou
,
X.
, and
Cai
,
L.
,
2011
, “
Fluid Drag Reduction on Superhydrophobic Surfaces Coated With Carbon Nanotube Forests (CNTs)
,”
Soft Matter
,
7
(
9
), pp.
4391
4396
.
313.
Srinivasan
,
S.
,
Choi
,
W.
,
Park
,
K.
,
Chhatre
,
S.
,
Cohen
,
R.
, and
McKinley
,
G.
,
2013
, “
Drag Reduction for Viscous Laminar Flow on Spray-Coated Non-Wetting Surfaces
,”
Soft Matter
,
9
(
24
), pp.
5691
5702
.
314.
McHale
,
G.
,
Shirtcliffe
,
N.
,
Evans
,
C.
, and
Newton
,
M.
,
2009
, “
Terminal Velocity and Drag Reduction Measurements on Superhydrophobic Spheres
,”
Appl. Phys. Lett.
,
94
(
6
), p.
064104
.
315.
Busse
,
A.
,
Sandham
,
N.
,
McHale
,
G.
, and
Newton
,
M.
,
2013
, “
Change in Drag, Apparent Slip and Optimum Air Layer Thickness for Laminar Flow Over an Idealised Superhydrophobic Surface
,”
J. Fluid Mech.
,
727
(
11
), pp.
488
508
.
316.
Steinberger
,
A.
,
Cottin-Bizonne
,
C.
,
Kleimann
,
P.
, and
Charlaix
,
E.
,
2007
, “
High Friction on a Bubble Mattress
,”
Nat. Mater.
,
6
(
9
), pp.
665
668
.
317.
Sbragaglia
,
M.
, and
Prosperetti
,
A.
,
2007
, “
A Note on the Effective Slip Properties for Microchannel Flows With Ultrahydrophobic Surfaces
,”
Phys. Fluids
,
19
(
4
), p.
043603
.
318.
Ng
,
C.
, and
Wang
,
C.
,
2011
, “
Effective Slip for Stokes Flow Over a Surface Patterned With Two-or Three-Dimensional Protrusions
,”
Fluid Dyn. Res.
,
43
(
6
), p.
065504
.
319.
Davis
,
A.
, and
Lauga
,
E.
,
2009
, “
Geometric Transition in Friction for Flow Over a Bubble Mattress
,”
Phys. Fluids
,
21
(
1
), p.
011701
.
320.
Crowdy
,
D.
,
2010
, “
Slip Length for Longitudinal Shear Flow Over a Dilute Periodic Mattress of Protruding Bubbles
,”
Phys. Fluids
,
22
(
12
), p.
121703
.
321.
Haase
,
A.
,
Karatay
,
E.
,
Tsai
,
P.
, and
Lammertink
,
R.
,
2013
, “
Momentum and Mass Transport Over a Bubble Mattress: The Influence of Interface Geometry
,”
Soft Matter
,
9
(
37
), pp.
8949
8957
.
322.
Tsai
,
P.
,
Peters
,
A.
,
Pirat
,
C.
,
Wessling
,
M.
,
Lammertink
,
R.
, and
Lohse
,
D.
,
2009
, “
Quantifying Effective Slip Length Over Micropatterned Hydrophobic Surfaces
,”
Phys. Fluids
,
21
(
11
), p.
112002
.
323.
Karatay
,
E.
,
Haase
,
A.
,
Visser
,
C.
,
Sun
,
C.
,
Lohse
,
D.
,
Tsai
,
P.
, and
Lammertink
,
R.
,
2013
, “
Control of Slippage With Tunable Bubble Mattresses
,”
Proc. Natl. Acad. Sci. U.S.A.
,
110
(
21
), pp.
8422
8426
.
324.
Carlborg
,
C.
,
Do-Quang
,
M.
,
Stemme
,
G.
,
Amberg
,
G.
, and
van der Wijngaart
,
W.
,
2008
, “
Continuous Flow Switching by Pneumatic Actuation of the Air Lubrication Layer on Superhydrophobic Microchannel Walls
,”
IEEE 21st International Conference on Micro Electro Mechanical Systems
,
MEMS 2008
, Tucson, AZ, Jan. 13–17, pp.
599
602
.
325.
Lauga
,
E.
, and
Brenner
,
M.
,
2004
, “
Dynamic Mechanisms for Apparent Slip on Hydrophobic Surfaces
,”
Phys. Rev. E
,
70
(
2
), p.
026311
.
326.
Steinberger
,
A.
,
Cottin-Bizonne
,
C.
,
Kleimann
,
P.
, and
Charlaix
,
E.
,
2008
, “
Nanoscale Flow on a Bubble Mattress: Effect of Surface Elasticity
,”
Phys. Rev. Lett.
,
100
(
13
), p.
134501
.
327.
Hyväluoma
,
J.
, and
Harting
,
J.
,
2008
, “
Slip Flow Over Structured Surfaces With Entrapped Microbubbles
,”
Phys. Rev. Lett.
,
100
(
24
), p.
246001
.
328.
Gao
,
P.
, and
Feng
,
J.
,
2009
, “
Enhanced Slip on a Patterned Substrate Due to Depinning of Contact Line
,”
Phys. Fluids
,
21
(
10
), p.
102102
.
329.
Min
,
T.
, and
Kim
,
J.
,
2004
, “
Effects of Hydrophobic Surface on Skin-Friction Drag
,”
Phys. Fluids
,
16
(
7
), pp.
L55
L58
.
330.
Fukagata
,
K.
,
Kasagi
,
N.
, and
Koumoutsakos
,
P.
,
2006
, “
A Theoretical Prediction of Friction Drag Reduction in Turbulent Flow by Superhydrophobic Surfaces
,”
Phys. Fluids
,
18
(
5
), p.
051703
.
331.
Busse
,
A.
, and
Sandham
,
N.
,
2012
, “
Influence of an Anisotropic Slip-Length Boundary Condition on Turbulent Channel Flow
,”
Phys. Fluids
,
24
(
5
), p.
055111
.
332.
Spencer
,
N.
,
Lee
,
L.
,
Parthasarathy
,
R.
, and
Papavassiliou
,
D.
,
2009
, “
Turbulence Structure for Plane Poiseuille–Couette Flow and Implications for Drag Reduction Over Surfaces With Slip
,”
Can. J. Chem. Eng.
,
87
(
1
), pp.
38
46
.
333.
Martell
,
M.
,
Perot
,
J.
, and
Rothstein
,
J.
,
2009
, “
Direct Numerical Simulations of Turbulent Flows Over Superhydrophobic Surfaces
,”
J. Fluid Mech.
,
620
(
4
), pp.
31
41
.
334.
Martell
,
M.
,
Rothstein
,
J.
, and
Perot
,
J.
,
2010
, “
An Analysis of Superhydrophobic Turbulent Drag Reduction Mechanisms Using Direct Numerical Simulation
,”
Phys. Fluids
,
22
(
6
), p.
065102
.
335.
Rastegari
,
A.
, and
Akhavan
,
R.
,
2015
, “
On the Mechanism of Turbulent Drag Reduction With Super-Hydrophobic Surfaces
,”
J. Fluid Mech.
,
773
(
1
), p.
R4
.
336.
Jeffs
,
K.
,
Maynes
,
D.
, and
Webb
,
B.
,
2010
, “
Prediction of Turbulent Channel Flow With Superhydrophobic Walls Consisting of Micro-Ribs and Cavities Oriented Parallel to the Flow Direction
,”
Int. J. Heat Mass Transfer
,
53
(
4
), pp.
786
796
.
337.
Park
,
H.
,
Park
,
H.
, and
Kim
,
J.
,
2013
, “
A Numerical Study of the Effects of Superhydrophobic Surface on Skin-Friction Drag in Turbulent Channel Flow
,”
Phys. Fluids
,
25
(
11
), p.
110815
.
338.
Türk
,
S.
,
Daschiel
,
G.
,
Stroh
,
A.
,
Hasegawa
,
Y.
, and
Frohnapfel
,
B.
,
2014
, “
Turbulent Flow Over Superhydrophobic Surfaces With Streamwise Grooves
,”
J. Fluid Mech.
,
747
(
1
), pp.
186
217
.
339.
Jelly
,
T.
,
Jung
,
S.
, and
Zaki
,
T.
,
2014
, “
Turbulence and Skin Friction Modification in Channel Flow With Streamwise-Aligned Superhydrophobic Surface Texture
,”
Phys. Fluids
,
26
(
9
), p.
095102
.
340.
Lee
,
J.
,
Jelly
,
T.
, and
Zaki
,
T.
,
2015
, “
Effect of Reynolds Number on Turbulent Drag Reduction by Superhydrophobic Surface Textures
,”
Flow, Turbul. Combust.
,
95
(
2–3
), pp.
277
300
.
341.
Piao
,
L.
, and
Park
,
H.
,
2015
, “
Two-Dimensional Analysis of Air–Water Interface on Superhydrophobic Grooves Under Fluctuating Water Pressure
,”
Langmuir
,
31
(
29
), pp.
8022
8032
.
342.
Seo
,
J.
,
García-Mayoral
,
R.
, and
Mani
,
A.
,
2015
, “
Pressure Fluctuations and Interfacial Robustness in Turbulent Flows Over Superhydrophobic Surfaces
,”
J. Fluid Mech.
,
783
(
1
), pp.
448
473
.
343.
Henoch
,
C.
,
Krupenkin
,
T.
,
Kolodner
,
P.
,
Taylor
,
J.
,
Hodes
,
H.
,
Lyons
,
A.
,
Peguero
,
C.
, and
Breuer
,
K.
,
2006
, “
Turbulent Drag Reduction Using Superhydrophobic Surfaces
,”
AIAA
Paper No. 2006-3192.
344.
Zhao
,
J.
,
Du
,
X.
, and
Shi
,
X.
,
2007
, “
Experimental Research on Friction-Reduction With Super-Hydrophobic Surfaces
,”
J. Mar. Sci. Appl.
,
6
(
3
), pp.
58
61
.
345.
Peguero
,
C.
, and
Breuer
,
K.
,
2009
, “
On Drag Reduction in Turbulent Channel Flow Over Superhydrophobic Surfaces
,”
Advances in Turbulence XII
(Springer Proceedings in Physics), Vol.
132
,
B.
Eckhardt
, ed.,
Springer
,
Berlin, Germany
, pp.
233
236
.
346.
Jung
,
Y.
, and
Bhushan
,
B.
,
2010
, “
Biomimetic Structures for Fluid Drag Reduction in Laminar and Turbulent Flows
,”
J. Phys.: Condens. Matter
,
22
(
3
), p.
035104
.
347.
Woolford
,
B.
,
Prince
,
J.
,
Maynes
,
D.
, and
Webb
,
B.
,
2009
, “
Particle Image Velocimetry Characterization of Turbulent Channel Flow With Rib Patterned Superhydrophobic Walls
,”
Phys. Fluids
,
21
(
8
), p.
085106
.
348.
Zhang
,
J.
,
Tian
,
H.
,
Yao
,
Z.
,
Hao
,
P.
, and
Jiang
,
N.
,
2015
, “
Mechanisms of Drag Reduction of Superhydrophobic Surfaces in a Turbulent Boundary Layer Flow
,”
Exp. Fluids
,
56
(
9
), pp.
1
13
.
349.
Tian
,
H.
,
Zhang
,
J.
,
Jiang
,
N.
, and
Yao
,
Z.
,
2015
, “
Effect of Hierarchical Structured Superhydrophobic Surfaces on Coherent Structures in Turbulent Channel Flow
,”
Exp. Therm. Fluid Sci.
,
69
(
1
), pp.
27
37
.
350.
Aljallis
,
E.
,
Sarshar
,
M.
,
Datla
,
R.
,
Sikka
,
V.
,
Jones
,
A.
, and
Choi
,
C.
,
2013
, “
Experimental Study of Skin Friction Drag Reduction on Superhydrophobic Flat Plates in High Reynolds Number Boundary Layer Flow
,”
Phys. Fluids
,
25
(
2
), p.
025103
.
351.
Bidkar
,
R.
,
Leblanc
,
L.
,
Kulkarni
,
A.
,
Bahadur
,
V.
,
Ceccio
,
S.
, and
Perlin
,
M.
,
2014
, “
Skin-Friction Drag Reduction in the Turbulent Regime Using Random-Textured Hydrophobic Surfaces
,”
Phys. Fluids
,
26
(
8
), p.
085108
.
352.
Park
,
H.
,
Sun
,
G.
, and
Kim
,
C.
,
2014
, “
Superhydrophobic Turbulent Drag Reduction as a Function of Surface Grating Parameters
,”
J. Fluid Mech.
,
747
(
3
), pp.
722
734
.
353.
Gogte
,
S.
,
Vorobieff
,
P.
,
Truesdell
,
R.
,
Mammoli
,
A.
,
van Swol
,
F.
,
Shah
,
P.
, and
Brinker
,
C.
,
2005
, “
Effective Slip on Textured Superhydrophobic Surfaces
,”
Phys. Fluids
,
17
(
5
), p.
51701
.
354.
Muralidhar
,
P.
,
Ferrer
,
N.
,
Daniello
,
R.
, and
Rothstein
,
J.
,
2011
, “
Influence of Slip on the Flow Past Superhydrophobic Circular Cylinders
,”
J. Fluid Mech.
,
680
(
4
), pp.
459
476
.
355.
Daniello
,
R.
,
Muralidhar
,
P.
,
Carron
,
N.
,
Greene
,
M.
, and
Rothstein
,
J.
,
2013
, “
Influence of Slip on Vortex-Induced Motion of a Superhydrophobic Cylinder
,”
J. Fluids Struct.
,
42
(
4
), pp.
358
368
.
356.
Kim
,
N.
,
Kim
,
H.
, and
Park
,
H.
,
2015
, “
An Experimental Study on the Effects of Rough Hydrophobic Surfaces on the Flow Around a Circular Cylinder
,”
Phys. Fluids
,
27
(
8
), p.
085113
.
357.
Daniello
,
R.
,
Waterhouse
,
N.
, and
Rothstein
,
J.
,
2009
, “
Drag Reduction in Turbulent Flows Over Superhydrophobic Surfaces
,”
Phys. Fluids
,
21
(
8
), p.
085103
.
358.
Arndt
,
R.
,
1981
, “
Cavitation in Fluid Machinery and Hydraulic Structures
,”
Annu. Rev. Fluid Mech.
,
13
(
1
), pp.
273
326
.
359.
Ceccio
,
S.
,
2010
, “
Friction Drag Reduction of External Flows With Bubble and Gas Injection
,”
Annu. Rev. Fluid Mech.
,
42
(
1
), pp.
183
203
.
360.
Mørch
,
K.
,
2007
, “
Reflections on Cavitation Nuclei in Water
,”
Phys. Fluids
,
19
(
7
), p.
072104
.
361.
Jones
,
S.
,
Evans
,
G.
, and
Galvin
,
K.
,
1999
, “
Bubble Nucleation From Gas Cavitiesa Review
,”
Adv. Colloid Interface Sci.
,
80
(
1
), pp.
27
50
.
362.
Marschall
,
H.
,
Mørch
,
K.
,
Keller
,
A.
, and
Kjeldsen
,
M.
,
2003
, “
Cavitation Inception by Almost Spherical Solid Particles in Water
,”
Phys. Fluids
,
15
(
2
), pp.
545
553
.
363.
Bremond
,
N.
,
Arora
,
M.
,
Dammer
,
S.
, and
Lohse
,
D.
,
2006
, “
Interaction of Cavitation Bubbles on a Wall
,”
Phys. Fluids
,
18
(
12
), p.
121505
.
364.
Bremond
,
N.
,
Arora
,
M.
,
Ohl
,
C.
, and
Lohse
,
D.
,
2006
, “
Controlled Multibubble Surface Cavitation
,”
Phys. Rev. Lett.
,
96
(
22
), p.
224501
.
365.
Zijlstra
,
A.
,
Rivas
,
D.
,
Gardeniers
,
H.
,
Versluis
,
M.
, and
Lohse
,
D.
,
2015
, “
Enhancing Acoustic Cavitation Using Artificial Crevice Bubbles
,”
Ultrasonics
,
56
(
1
), pp.
512
523
.
366.
Zwaan
,
E.
,
Gac
,
S. L.
,
Tsuji
,
K.
, and
Ohl
,
C.
,
2007
, “
Controlled Cavitation in Microfluidic Systems
,”
Phys. Rev. Lett.
,
98
(
25
), p.
254501
.
367.
Ohl
,
C.
,
Arora
,
M.
,
Dijkink
,
R.
,
Janve
,
V.
, and
Lohse
,
D.
,
2006
, “
Surface Cleaning From Laser-Induced Cavitation Bubbles
,”
Appl. Phys. Lett.
,
89
(
7
), p.
074102
.
368.
Belova
,
V.
,
Gorin
,
D.
,
Shchukin
,
D.
, and
Möhwald
,
H.
,
2010
, “
Selective Ultrasonic Cavitation on Patterned Hydrophobic Surfaces
,”
Angew. Chem., Int. Ed.
,
49
(
39
), pp.
7129
7133
.
369.
Fox
,
F.
, and
Herzfeld
,
K.
,
1954
, “
Gas Bubbles With Organic Skin as Cavitation Nuclei
,”
J. Acoust. Soc. Am.
,
26
(
6
), pp.
984
989
.
370.
Yount
,
D.
,
1979
, “
Skins of Varying Permeability: A Stabilization Mechanism for Gas Cavitation Nuclei
,”
J. Acoust. Soc. Am.
,
65
(
6
), pp.
1429
1439
.
371.
Harvey
,
E.
,
Barnes
,
D.
,
McElroy
,
W.
,
Whiteley
,
A.
,
Pease
,
D.
, and
Cooper
,
K.
,
1944
, “
Bubble Formation in Animals. I. Physical Factors
,”
J. Cell. Comp. Physiol.
,
24
(
1
), pp.
1
22
.
372.
Atchley
,
A.
, and
Prosperetti
,
A.
,
1989
, “
The Crevice Model of Bubble Nucleation
,”
J. Acoust. Soc. Am.
,
86
(
3
), pp.
1065
1084
.
373.
Chappell
,
M.
, and
Payne
,
S.
,
2007
, “
The Effect of Cavity Geometry on the Nucleation of Bubbles From Cavities
,”
J. Acoust. Soc. Am.
,
121
(
2
), pp.
853
862
.
374.
Borkent
,
B.
,
Gekle
,
S.
,
Prosperetti
,
A.
, and
Lohse
,
D.
,
2009
, “
Nucleation Threshold and Deactivation Mechanisms of Nanoscopic Cavitation Nuclei
,”
Phys. Fluids
,
21
(
10
), p.
102003
.
375.
Maksimov
,
A.
,
Kaverin
,
A.
, and
Baidakov
,
V.
,
2013
, “
Heterogeneous Vapor Bubble Nucleation on a Rough Surface
,”
Langmuir
,
29
(
12
), pp.
3924
3934
.
376.
Giacomello
,
A.
,
Chinappi
,
M.
,
Meloni
,
S.
, and
Casciola
,
C.
,
2013
, “
Geometry as a Catalyst: How Vapor Cavities Nucleate From Defects
,”
Langmuir
,
29
(
48
), pp.
14873
14884
.
377.
Shpak
,
O.
,
Stricker
,
L.
,
Versluis
,
M.
, and
Lohse
,
D.
,
2013
, “
The Role of Gas in Ultrasonically Driven Vapor Bubble Growth
,”
Phys. Med. Biol.
,
58
(
8
), pp.
2523
2535
.
378.
Plesset
,
M.
, and
Prosperetti
,
A.
,
1977
, “
Bubble Dynamics and Cavitation
,”
Annu. Rev. Fluid Mech.
,
9
(
1
), pp.
145
185
.
379.
Xue
,
Y.
,
Lv
,
P.
,
Liu
,
Y.
,
Shi
,
Y.
,
Lin
,
H.
, and
Duan
,
H.
,
2015
, “
Morphology of Gas Cavities on Patterned Hydrophobic Surfaces Under Reduced Pressure
,”
Phys. Fluids
,
27
(
9
), p.
092003
.
380.
Dilip
,
D.
,
Bobji
,
M.
, and
Govardhan
,
R.
,
2015
, “
Effect of Absolute Pressure on Flow Through a Textured Hydrophobic Microchannel
,”
Microfluid. Nanofluid.
,
19
(
6
), pp.
1409
1427
.
381.
Phan
,
H.
,
Caney
,
N.
,
Marty
,
P.
,
Colasson
,
S.
, and
Gavillet
,
J.
,
2009
, “
Surface Wettability Control by Nanocoating: The Effects on Pool Boiling Heat Transfer and Nucleation Mechanism
,”
Int. J. Heat Mass Transfer
,
52
(
23
), pp.
5459
5471
.
382.
Wang
,
X.
,
Zhao
,
S.
,
Wang
,
H.
, and
Pan
,
T.
,
2012
, “
Bubble Formation on Superhydrophobic-Micropatterned Copper Surfaces
,”
Appl. Therm. Eng.
,
35
(
1
), pp.
112
119
.
383.
Shen
,
B.
,
Suroto
,
B. J.
,
Hirabayashi
,
S.
,
Yamada
,
M.
,
Hidaka
,
S.
,
Kohno
,
M.
,
Takahashi
,
K.
, and
Takata
,
Y.
,
2014
, “
Bubble Activation From a Hydrophobic Spot at Negative Surface Superheats in Subcooled Boiling
,”
Appl. Therm. Eng.
,
88
(
5
), pp.
230
236
.
384.
Jo
,
H.
,
Ahn
,
H.
,
Kang
,
S.
, and
Kim
,
M.
,
2011
, “
A Study of Nucleate Boiling Heat Transfer on Hydrophilic, Hydrophobic and Heterogeneous Wetting Surfaces
,”
Int. J. Heat Mass Transfer
,
54
(
25
), pp.
5643
5652
.
385.
Takata
,
Y.
,
Hidaka
,
S.
, and
Uraguchi
,
T.
,
2006
, “
Boiling Feature on a Super Water-Repellent Surface
,”
Heat Transfer Eng.
,
27
(
8
), pp.
25
30
.
386.
Takata
,
Y.
,
Hidaka
,
S.
,
Cao
,
J.
,
Nakamura
,
T.
,
Yamamoto
,
H.
,
Masuda
,
M.
, and
Ito
,
T.
,
2005
, “
Effect of Surface Wettability on Boiling and Evaporation
,”
Energy
,
30
(
2
), pp.
209
220
.
387.
Kim
,
S.
,
Bang
,
I.
,
Buongiorno
,
J.
, and
Hu
,
L.
,
2006
, “
Effects of Nanoparticle Deposition on Surface Wettability Influencing Boiling Heat Transfer in Nanofluids
,”
Appl. Phys. Lett.
,
89
(
15
), p.
153107
.
388.
Wu
,
W.
,
Bostanci
,
H.
,
Chow
,
L.
,
Hong
,
Y.
,
Su
,
M.
, and
Kizito
,
J.
,
2010
, “
Nucleate Boiling Heat Transfer Enhancement for Water and FC-72 on Titanium Oxide and Silicon Oxide Surfaces
,”
Int. J. Heat Mass Transfer
,
53
(
9
), pp.
1773
1777
.
389.
Li
,
C.
,
Wang
,
Z.
,
Wang
,
P.
,
Peles
,
Y.
,
Koratkar
,
N.
, and
Peterson
,
G.
,
2008
, “
Nanostructured Copper Interfaces for Enhanced Boiling
,”
Small
,
4
(
8
), pp.
1084
1088
.
390.
Chu
,
K.
,
Enright
,
R.
, and
Wang
,
E.
,
2012
, “
Structured Surfaces for Enhanced Pool Boiling Heat Transfer
,”
Appl. Phys. Lett.
,
100
(
24
), p.
241603
.
391.
Takata
,
Y.
,
Hidaka
,
S.
, and
Kohno
,
M.
,
2012
, “
Effect of Surface Wettability on Pool Boiling: Enhancement by Hydrophobic Coating
,”
Int. J. Air-Cond. Refrig.
,
20
(
1
), p.
1150003
.
392.
Betz
,
A.
,
Jenkins
,
J.
,
Kim
,
C.
, and
Attinger
,
D.
,
2013
, “
Boiling Heat Transfer on Superhydrophilic, Superhydrophobic, and Superbiphilic Surfaces
,”
Int. J. Heat Mass Transfer
,
57
(
2
), pp.
733
741
.
393.
Quéré
,
D.
,
2013
, “
Leidenfrost Dynamics
,”
Annu. Rev. Fluid Mech.
,
45
(
1
), pp.
197
215
.
394.
Vakarelski
,
I.
,
Patankar
,
N.
,
Marston
,
J.
,
Chan
,
D.
, and
Thoroddsen
,
S.
,
2012
, “
Stabilization of Leidenfrost Vapour Layer by Textured Superhydrophobic Surfaces
,”
Nature
,
489
(
7415
), pp.
274
277
.
395.
Vakarelski
,
I.
,
Marston
,
J.
,
Chan
,
D.
, and
Thoroddsen
,
S.
,
2011
, “
Drag Reduction by Leidenfrost Vapor Layers
,”
Phys. Rev. Lett.
,
106
(
21
), p.
214501
.
396.
Linke
,
H.
,
Alemán
,
B.
,
Melling
,
L.
,
Taormina
,
M.
,
Francis
,
M.
,
Dow-Hygelund
,
C.
,
Narayanan
,
V.
,
Taylor
,
R.
, and
Stout
,
A.
,
2006
, “
Self-Propelled Leidenfrost Droplets
,”
Phys. Rev. Lett.
,
96
(
15
), p.
154502
.
397.
Lagubeau
,
G.
,
Merrer
,
M. L.
,
Clanet
,
C.
, and
Quéré
,
D.
,
2011
, “
Leidenfrost on a Ratchet
,”
Nat. Phys.
,
7
(
5
), pp.
395
398
.
398.
Cho
,
H.
,
Mizerak
,
J.
, and
Wang
,
E.
,
2015
, “
Turning Bubbles on and Off During Boiling Using Charged Surfactants
,”
Nat. Commun.
,
6
(
8599
), pp.
1
7
.
399.
Patankar
,
N.
,
2015
, “
Thermodynamics of Sustaining Gases in the Roughness of Submerged Superhydrophobic Surfaces
,” e-print arXiv: 1505.06233.
400.
Tricinci
,
O.
,
Terencio
,
T.
,
Mazzolai
,
B.
,
Pugno
,
N.
,
Greco
,
F.
, and
Mattoli
,
V.
,
2015
, “
3D Micropatterned Surface Inspired by Salvinia Molesta Via Direct Laser Lithography
,”
ACS Appl. Mater. Interfaces
,
7
(
46
), pp.
25560
25567
.
You do not currently have access to this content.