Abstract

The design and analysis of composite structures in the form of layered plates or shells is often driven by stress concentration phenomena that occur due to geometric or material discontinuities. One prominent example is the so-called free-edge effect that manifests itself in the form of significant localized interlaminar stress fields in the vicinity of free laminate edges and that is given rise to due to the mismatch of the elastic properties of the individual laminate layers. The free-edge effect has been under scientific investigation for more than five decades, and this paper aims at providing an overview of recent developments and scientific advances in this specific field wherein an emphasis is placed on investigations that were published in the time range between the years 2005 and 2020. This paper reviews closed-form analytical methods as well as semi-analytical and numerical analysis approaches and summarizes the recent state of the art concerning the investigation of stress singularities and experimental characterization of free-edge effects. This paper also reviews advanced problems such as free-edge effects in curved laminated structures and in piezoelectric laminates as well as in the vicinity of holes and other geometric discontinuities, and two new aspects in the field of free-edge effects, namely, the development and application of a new semi-analytical method (the so-called scaled boundary finite element method (SBFEM)) and the fracture mechanical strength assessment, also by novel approaches such as finite fracture mechanics, are also discussed. This paper closes with a summary and an outlook on future investigations.

References

1.
Reddy
,
J. N.
,
2004
,
Mechanics of Laminated Composite Plates and Shells
, 2nd ed.,
CRC Press
,
Boca Raton, FL
.
2.
Ambartsumyan
,
S. A.
,
1970
,
Theory of Anisotropic Plates
,
Technomic Publishing
,
Stamford, CT
.
3.
Mittelstedt
,
C.
, and
Becker
,
W.
,
2016
,
Strukturmechanik Ebener Laminate
,
Verlag Studienbereich Mechanik
,
Technische Universität Darmstadt, Darmstadt
(in German, ‘Structural Mechanics of Plane Composite Laminates’).
4.
Lekhnitskii
,
S. G.
,
1968
,
Anisotropic Plates
,
Gordon and Breach
,
London, UK
.
5.
Ashton
,
J. E.
, and
Whitney
,
J. M.
,
1970
,
Theory of Laminated Plates
,
Technomic Publishing
,
Stamford, CT
.
6.
Jones
,
R. M.
,
1975
,
Mechanics of Composite Materials
,
Scripta Book Co
,
Washington, DC
.
7.
Altenbach
,
H.
,
Altenbach
,
J.
, and
Kissing
,
W.
,
2018
,
Mechanics of Composite Structural Elements
,
Springer
,
Singapore
.
8.
Mittelstedt
,
C.
, and
Becker
,
W.
,
2007
, “
The Pipes-Pagano-Problem Revisited: Elastic Fields in Boundary Layers of Plane Laminated Specimens Under Combined Thermomechanical Load
,”
Compos. Struct.
,
80
(
3
), pp.
373
395
.10.1016/j.compstruct.2006.05.018
9.
Pipes
,
R. B.
, and
Pagano
,
N.
,
1970
, “
Interlaminar Stresses in Composite Laminates Under Uniform Axial Extension
,”
J. Compos. Mater.
,
4
(
4
), pp.
538
548
.10.1177/002199837000400409
10.
Salamon
,
N. J.
,
1980
, “
An Assessment of the Interlaminar Stress Problem in Laminated Composites
,”
J. Compos. Mater.
,
14
(
1
), pp.
177
194
.10.1177/002199838001400114
11.
Herakovich
,
C. T.
,
1989
, “
Free Edge Effects in Laminated Composites
,”
Handbook of Composites
, Vol.
2
,
Elsevier Science Publishers B.V
,
Amsterdam
, The Netherlands, pp.
187
230
.
12.
Pagano
,
N. J
et al
1989
, “
Composite Materials Series
,”
Interlaminar Response of Composite Materials
, Vol.
5
,
Elsevier
,
Amsterdam
et al.
13.
Reddy
,
J. N.
, and
Robbins
,
D. H.
,
1994
, “
Theories and Computational Models for Composite Laminates
,”
ASME Appl. Mech. Rev.
,
47
(
6
), pp.
147
169
.10.1115/1.3111076
14.
Kant
,
T.
, and
Swaminathan
,
K.
,
2000
, “
Estimation of Transverse/Interlaminar Stresses in Lam-Inated Composites - a Selective Review and Survey of Current Developments
,”
Compos. Struct.
,
49
(
1
), pp.
65
75
.10.1016/S0263-8223(99)00126-9
15.
Mittelstedt
,
C.
, and
Becker
,
W.
,
2004
, “
Interlaminar Stress Concentrations in Layered Structures - Part I: A Selective Literature Survey on the Free-Edge Effect Since 1967
,”
J. Compos. Mater.
,
38
(
12
), pp.
1037
1062
.10.1177/0021998304040566
16.
Mittelstedt
,
C.
, and
Becker
,
W.
,
2007
, “
Free-Edge Effects in Composite Laminates
,”
ASME Appl. Mech. Rev.
,
60
(
5
), pp.
217
245
.10.1115/1.2777169
17.
Mittelstedt
,
C.
, and
Becker
,
W.
,
2006
, “
Fast and Reliable Analysis of Free-Edge Stress Fields in a Thermally Loaded Composite Strip by a Layerwise Laminate Theory
,”
Int. J. Numer. Methods Eng.
,
67
(
6
), pp.
747
770
.10.1002/nme.1631
18.
Pipes
,
R. B.
,
1972
, “
Solution of Certain Problems in the Theory of Elasticity for Laminated Anisotropic Systems
,” Ph.D. dissertation thesis,
University of Texas
,
Arlington, TX
.
19.
Pagano
,
N. J.
,
1974
, “
On the Calculation of Interlaminar Normal Stress in Composite Laminate
,”
J. Compos. Mater.
,
8
(
1
), pp.
65
81
.10.1177/002199837400800106
20.
Kassapoglou
,
C.
, and
Lagace
,
P. A.
,
1986
, “
An Efficient Method for the Calculation of Interlaminar Stresses in Composite Materials
,”
ASME J. Appl. Mech.
,
53
(
4
), pp.
744
50
.10.1115/1.3171853
21.
Yao
,
W.
,
Nie
,
Y.
, and
Xiao
,
F.
,
2011
, “
Analytical Solutions to Edge Effect of Composite Laminates Based on Symplectic Dual System
,”
Appl. Math. Mech.
,
32
(
9
), pp.
1091
1100
.10.1007/s10483-011-1483-7
22.
Nosier
,
A.
, and
Bahrami
,
A.
,
2006
, “
Free-Edge Stresses in Antisymmetric Angle-Ply Laminates in Extension and Torsion
,”
Int. Journal Solids Structures
,
43
(
22–23
), pp.
6800
6816
.10.1016/j.ijsolstr.2006.02.006
23.
Nosier
,
A.
, and
Bahrami
,
A.
,
2007
, “
Interlaminar Stresses in Antisymmetric Angle-Ply Laminates
,”
Compos. Struct.
,
78
(
1
), pp.
18
33
.10.1016/j.compstruct.2005.08.007
24.
Andakhshideh
,
A.
, and
Tahani
,
M.
,
2013
, “
Interlaminar Stresses in General Thick Rectangular Laminated Plates Under in-Plane Loads
,”
Compos. Part B Eng.
,
47
, pp.
58
69
.10.1016/j.compositesb.2012.10.020
25.
Tahani
,
M.
, and
Andakhshideh
,
A.
,
2012
, “
Interlaminar Stresses in Thick Rectangular Laminated Plates With Arbitrary Laminations and Boundary Conditions Under Transverse Loads
,”
Compos. Struct.
,
94
(
5
), pp.
1793
1804
.10.1016/j.compstruct.2011.12.027
26.
Andakhshideh
,
A.
, and
Tahani
,
M.
,
2013
, “
Free-Edge Stress Analysis of General Rectangular Composite Laminates Under Bending, Torsion and Thermal Loads
,”
Eur. J. Mech.-A/Solids
,
42
, pp.
229
240
.10.1016/j.euromechsol.2013.06.002
27.
Kapuria
,
S.
, and
Dhanesh
,
N.
,
2016
, “
Free Edge Stresses in Composite Laminates With Imperfect Interfaces Under Extension, Bending and Twisting Loading
,”
Int. J. Mech. Sci.
,
113
(
2016
), pp.
148
161
.10.1016/j.ijmecsci.2016.04.017
28.
Dhanesh
,
N.
,
Kapuria
,
S.
, and
Achary
,
G.
,
2017
, “
Accurate Prediction of Three-Dimensional Free Edge Stress Field in Composite Laminates Using Mixed-Field Multiterm Extended Kantorovich Method
,”
Acta Mech.
,
228
(
8
), pp.
2895
2919
.10.1007/s00707-015-1522-0
29.
Kapuria
,
S.
, and
Kumari
,
P.
,
2011
, “
Extended Kantorovich Method for Three Dimensional Elasticity Solution of Laminated Composite Structures in Cylindrical Bending
,”
ASME J. Appl. Mech.
,
78
(
6
), p.
061004
.10.1115/1.4003779
30.
Kerr
,
A. D.
,
1968
, “
An Extension of the Kantorovich Method
,”
Q. Appl. Math.
,
26
(
2
), pp.
219
229
.10.1090/qam/99857
31.
Kapuria
,
S.
, and
Kumari
,
P.
,
2012
, “
Multiterm extended Kantorovich Method for Three-Dimensional Elasticity Solution of Laminated Plates
,”
ASME J. Appl. Mech.
,
79
(
6
), p.
061018
.10.1115/1.4006495
32.
Kapuria
,
S.
, and
Dhanesh
,
S.
,
2015
, “
Three-Dimensional Extended Kantorovich Solution for Accurate Prediction of Interlaminar Stresses in Composite Laminated Panels With Interfacial Imperfections
,”
J. Eng. Mech.
,
141
(
4
), p.
04014140
.10.1061/(ASCE)EM.1943-7889.0000860
33.
Kumari
,
P.
,
Kapuria
,
S.
, and
Rajapakse
,
R. K. N. D.
,
2014
, “
Three-Dimensional Extended Kantorovich Solution for Levy-Type Rectangular Laminated Plates With Edge Effects
,”
Compos. Struct.
,
107
, pp.
167
176
.10.1016/j.compstruct.2013.07.053
34.
Lee
,
J.
,
Cho
,
M.
, and
Kim
,
H. S.
,
2011
, “
Bending Analysis of a Laminated Composite Patch Considering the Free-Edge Effect Using a Stress-Based Equivalent Single-Layer Composite Model
,”
Int. J. Mech. Sci.
,
53
(
8
), pp.
606
616
.10.1016/j.ijmecsci.2011.05.007
35.
Huang
,
B.
,
Kim
,
H. S.
,
Wang
,
J.
,
Du
,
J.
, and
Guo
,
Y.
,
2016
, “
Time-Dependent Stress Variations in Symmetrically Viscoelastic Composite Laminates Under Uniaxial Tensile Load
,”
Compos. Struct.
,
142
, pp.
278
285
.10.1016/j.compstruct.2016.01.101
36.
Zhang
,
D.
,
Ye
,
J.
, and
Sheng
,
H. Y.
,
2006
, “
Free-Edge and Ply Cracking Effect in Cross-Ply Laminated Composites Under Uniform Extension and Thermal Loading
,”
Compos. Struct.
,
76
(
4
), pp.
314
325
.10.1016/j.compstruct.2005.04.021
37.
Baroud
,
R.
,
Sab
,
K.
,
Caron
,
J. F.
, and
Kaddah
,
F.
,
2016
, “
A Statically Compatible Layerwise Stress Model for the Analysis of Multilayered Plates
,”
Int. J. Solids Struct.
,
96
, pp.
11
24
.10.1016/j.ijsolstr.2016.06.030
38.
Saeedi
,
N.
,
Sab
,
K.
, and
Caron
,
J. F.
,
2012
, “
Delaminated Multilayered Plates Under Uniaxial Extension. Part I: Analytical Analysis Using a Layerwise Stress Approach
,”
Int. J. Solids Struct.
,
49
(
26
), pp.
3711
3726
.10.1016/j.ijsolstr.2012.08.005
39.
Saeedi
,
N.
,
Sab
,
K.
, and
Caron
,
J. F.
,
2012
, “
Delaminated Multilayered Plates Under Uniaxial Extension. Part II: Efficient Layerwise Mesh Strategy for the Prediction of Delamination Onset
,”
Int. J. Solids Struct.
,
49
(
26
), pp.
3727
3740
.10.1016/j.ijsolstr.2012.08.003
40.
Yazdani Sarvestani
,
H.
, and
Yazdani Sarvestani
,
M.
,
2012
, “
Free-Edge Stress Analysis of General Composite Laminates Under Extension, Torsion and Bending
,”
Appl. Math. Modell.
,
36
(
4
), pp.
1570
1588
.10.1016/j.apm.2011.09.028
41.
Yazdani Sarvestani
,
H.
,
Naghashpour
,
A.
, and
Heidari-Rarani
,
M.
,
2013
, “
Prediction of Interlaminar Stresses of an Unsymmetric Cross-Ply Laminate Using Layerwise and Higher-Order Equivalent Single-Layer Theories
,”
Int. J. Aerosp. Lightweight Struct.
,
03
(
04
), pp.
419
444
.10.3850/S2010428614000014
42.
Yazdani Sarvestani
,
H.
,
Naghashpour
,
A.
, and
Heidari-Rarani
,
M.
,
2015
, “
Bending Analysis of a General Cross-Ply Laminate Using 3D Elasticity Solution and Layerwise Theory
,”
Int. J. Adv. Struct. Eng.
,
7
(
4
), pp.
329
340
.10.1007/s40091-014-0073-2
43.
Yazdani Sarvestani
,
H.
, and
Naghashpour
,
A.
,
2014
, “
Analysis of Free Edge Stresses in Composite Laminates Using Higher Order Theories
,”
Indian J. Mater. Sci.
,
2014
, pp.
1
15
.10.1155/2014/253018
44.
Zhang
,
D.
,
Ye
,
J.
, and
Lam
,
D.
,
2007
, “
Free-Edge and Ply Cracking Effect in Angle-Ply Laminated Composites Subjected to In-Plane Loads
,”
J. Eng. Mech.
,
133
(
12
), pp.
1268
1277
.10.1061/(ASCE)0733-9399(2007)133:12(1268)
45.
Kim
,
H. S.
,
Lee
,
J.
, and
Cho
,
M.
,
2012
, “
Free-Edge Interlaminar Stress Analysis of Composite Laminates Using Interface Modeling
,”
J. Eng. Mech.
,
138
(
8
), pp.
973
983
.10.1061/(ASCE)EM.1943-7889.0000399
46.
Nosier
,
A.
, and
Maleki
,
M.
,
2008
, “
Free-Edge Stresses in General Composite Laminates
,”
Int. J. Mech. Sci.
,
50
(
10–11
), pp.
1435
1447
.10.1016/j.ijmecsci.2008.09.002
47.
Afshin
,
M.
, and
Taheri-Behrooz
,
F.
,
2015
, “
Interlaminar Stresses of Laminated Composite Beams Resting on Elastic Foundation Subjected to Transverse Loading
,”
Comput. Mater. Sci.
,
96
, pp.
439
447
.10.1016/j.commatsci.2014.06.027
48.
Liang
,
W. Y.
,
Tseng
,
W. D.
, and
Tarn
,
J. Q.
,
2014
, “
Exact Analysis of Stress Fields in Composite Laminates Under Extension
,”
J. Mech.
,
30
(
5
), pp.
477
489
.10.1017/jmech.2014.44
49.
Huang
,
B.
,
Wang
,
J.
,
Du
,
J.
,
Guo
,
Y.
,
Ma
,
T.
, and
Yi
,
L.
,
2016
, “
Extended Kantorovich Method for Local Stresses in Composite Laminates Upon Polynomial Stress Functions
,”
Acta Mech. Sin.
,
32
(
5
), pp.
854
865
.10.1007/s10409-016-0570-6
50.
Hajikazemi
,
M.
, and
van Paepegem
,
W.
,
2018
, “
A Variational Model for Free-Edge Interlaminar Stress Analysis in General Symmetric and Thin-Ply Composite Laminates
,”
Compos. Struct.
,
184
, pp.
443
451
.10.1016/j.compstruct.2017.10.012
51.
Ahmadi
,
I.
,
2018
, “
Three-Dimensional Stress Analysis in Torsion of Laminated Composite Bar With General Layer Stacking
,”
Eur. J. Mech./A Solids
,
72
, pp.
252
267
.10.1016/j.euromechsol.2018.05.003
52.
Romera
,
J. M.
,
Carbajal
,
N.
, and
Mujika
,
F.
,
2020
, “
A Simple Analytical Method for Determining Interlaminar Shear Stresses in Symmetric Laminates
,”
Structures
,
25
, pp.
683
695
.10.1016/j.istruc.2020.03.053
53.
Ahmadi
,
I.
,
2020
, “
Stress Analysis in Transverse Loading of Soft Core Sandwich Plates With Various Boundary Conditions
,”
J. Sandwich Struct. Mater.
,
22
(
8
), pp.
2692
2734
.10.1177/1099636218816107
54.
Ju
,
S. H.
,
Liang
,
W. Y.
,
Hsu
,
H. H.
, and
Tarn
,
J. Q.
,
2020
, “
Analytic Solution of Angle-Ply Laminated Plates Under Extension, Bending, and Torsion
,”
J. Compos. Mater.
,
54
(
8
), pp.
1093
1106
.10.1177/0021998319873025
55.
Pipes
,
R. B.
,
Goodsell
,
J. G.
,
Ritchey
,
A.
,
Dustin
,
J.
, and
Gosse
,
J.
,
2010
, “
Interlaminar Stresses in Composite Laminates: Thermoelastic Deformation
,”
Compos. Sci. Technol.
,
70
(
11
), pp.
1605
1611
.10.1016/j.compscitech.2010.05.026
56.
Zhang
,
C.
, and
Binienda
,
W. K.
,
2014
, “
Numerical Analysis of Free-Edge Effect on Size-Influenced Mechanical Properties of Single-Layer Triaxially Braided Composites
,”
Appl. Compos. Mater.
,
21
(
6
), pp.
841
859
.10.1007/s10443-014-9386-3
57.
Zhang
,
C.
, and
Binienda
,
W. K.
,
2014
, “
A Meso-Scale Finite Element Model for Simulating Free-Edge Effect in Carbon/Epoxy Textile Composite
,”
Mech. Mater.
,
76
, pp.
1
19
.10.1016/j.mechmat.2014.05.002
58.
Zhang
,
C.
,
Binienda
,
W. K.
, and
Goldberg
,
R. K.
,
2015
, “
Free-Edge Effect on the Effective Stiffness of Single-Layer Triaxially Braided Composite
,”
Compos. Sci. Technol.
,
107
, pp.
145
153
.10.1016/j.compscitech.2014.12.016
59.
Vidal
,
P.
,
Polit
,
O.
,
D'Ottavio
,
M.
, and
Valot
,
E.
,
2014
, “
Assessment of the Refined Sinus Plate Finite Element: Free Edge Effect and Meyer-Piening Sandwich Test
,”
Finite Elem. Anal. Des.
,
92
, pp.
60
71
.10.1016/j.finel.2014.08.004
60.
Vidal
,
P.
,
Gallimard
,
L.
, and
Polit
,
O.
,
2015
, “
Assessment of Variable Separation for Finite Element Modeling of Free Edge Effect for Composite Plates
,”
Compos. Struct.
,
123
, pp.
19
29
.10.1016/j.compstruct.2014.11.068
61.
Nguyen
,
V. T.
, and
Caron
,
J. F.
,
2006
, “
A New Finite Element for Free Edge Effect Analysis in Laminated Composites
,”
Comput. Structures
,
84
(
22–23
), pp.
1538
1546
.10.1016/j.compstruc.2006.01.038
62.
Nguyen
,
V. T.
, and
Caron
,
J. F.
,
2009
, “
Finite Element Analysis of Free-Edge Stresses in Composite Laminates Under Mechanical an Thermal Loading
,”
Compos. Sci. Technol.
,
69
(
1
), pp.
40
49
.10.1016/j.compscitech.2007.10.055
63.
Lo
,
S.
,
Zhen
,
W.
,
Cheung
,
Y.
, and
Wanji
,
C.
,
2007
, “
An Enhanced Global–Local Higher-Order Theory for the Free Edge Effect in Laminates
,”
Compos. Struct.
,
81
(
4
), pp.
499
510
.10.1016/j.compstruct.2006.09.013
64.
Li
,
X.
, and
Liu
,
D.
,
1997
, “
Generalized Laminate Theories Based on Double Superposition Hypothesis
,”
Int. J. Numer. Methods Eng.
,
40
(
7
), pp.
1197
1212
.10.1002/(SICI)1097-0207(19970415)40:7<1197::AID-NME109>3.0.CO;2-B
65.
Zhen
,
W.
, and
Wanji
,
C.
,
2009
, “
A Higher-Order Displacement Model for Stress Concentration Problems in General Lamination Configurations
,”
Mater. Des.
,
30
(
5
), pp.
1458
1467
.10.1016/j.matdes.2008.08.013
66.
Zhen
,
W.
, and
Wanji
,
C.
,
2009
, “
Stress Analysis of Laminated Composite Plates With a Circular Hole According to a Single-Layer Higher-Order Model
,”
Compos. Struct.
,
90
(
2
), pp.
122
129
.10.1016/j.compstruct.2009.02.010
67.
Ramtekkar
,
G.
, and
Desai
,
Y.
,
2009
, “
On Free-Edge Effect and Onset of Delamination in FRPC Laminates Using Mixed Finite Element Model
,”
J. Reinforced Plast. Compos.
,
28
(
3
), pp.
317
341
.10.1177/0731684407084243
68.
Dhadwal
,
M. K.
, and
Jung
,
S. N.
,
2020
, “
Free-Edge Stress Evaluation of General Laminated Composites Using a Novel Multifield Variational Beam Formulation
,”
Compos. Struct.
,
233
, p.
111705
.10.1016/j.compstruct.2019.111705
69.
Islam
,
M.
, and
Prabhakar
,
P.
,
2017
, “
Modeling Framework for Free Edge Effects in Laminates Under Thermo-Mechanical Loading
,”
Compos. Part B Eng.
,
116
, pp.
89
98
.10.1016/j.compositesb.2017.01.072
70.
Jain
,
N.
, and
Mittal
,
N.
,
2008
, “
Finite Element Analysis for Stress Concentration and Deflection in Isotropic, Orthotropic and Laminated Composite Plates With Central Circular Hole Under Transverse Static Loading
,”
Mater. Sci. Eng. A
,
498
(
1–2
), pp.
115
124
.10.1016/j.msea.2008.04.078
71.
Ahn
,
J.-S.
,
Kim
,
Y.-W.
, and
Woo
,
K.-S.
,
2013
, “
Analysis of Circular Free Edge Effect in Composite Laminates by p-Convergent Global–Local Model
,”
Int. J. Mech. Sci.
,
66
, pp.
149
155
.10.1016/j.ijmecsci.2012.11.003
72.
Zhao
,
G. H.
,
Tong
,
J. W.
,
Shen
,
M.
,
Aymerich
,
F.
, and
Priolo
,
P.
,
2009
, “
Numerical Analysis of Interlaminar Stresses of Angle-Ply AS4/PEEK Laminate With a Central Hole
,”
J. Thermoplast. Compos. Mater.
,
22
(
4
), pp.
383
406
.10.1177/0892705709098154
73.
Zhao
,
G. H.
,
Tong
,
J. W.
, and
Shen
,
M.
,
2010
, “
Numerical Analysis and Experimental Validation of Interlaminar Stresses of Quasi-Isotropic APC-2/as-4 Laminate With a Central Hole Loaded in Tension
,”
J. Thermoplast. Compos. Mater.
,
23
(
4
), pp.
413
433
.10.1177/0892705709344563
74.
Babu
,
P. R.
, and
Pradhan
,
B.
,
2007
, “
Effect of Damage Levels and Curing Stresses on Delamination Growth Behaviour Emanating From Circular Holes in Laminated FRP Composites
,”
Compos. Part A
,
38
(
12
), pp.
2412
2421
.10.1016/j.compositesa.2007.08.010
75.
Hosseini-Toudeshky
,
H.
,
Jalalvand
,
M.
, and
Mohammadi
,
B.
,
2009
, “
Delamination Analysis of Holed Composite Laminates Using Interface Elements
,”
Procedia Eng.
,
1
(
1
), pp.
39
42
.10.1016/j.proeng.2009.06.011
76.
Suemasu
,
H.
,
Takahashi
,
H.
, and
Ishikawa
,
T.
,
2006
, “
On Failure Mechanisms of Composite Laminates With an Open Hole Subjected to Compressive Load
,”
Compos. Sci. Technol.
,
66
(
5
), pp.
634
641
.10.1016/j.compscitech.2005.07.042
77.
Espadas-Escalante
,
J. J.
,
van Dijk
,
N. P.
, and
Isaksson
,
P.
,
2018
, “
The Effect of Free-Edges and Layer Shifting on Intralaminar and Interlaminar Stresses in Woven Composites
,”
Compos. Struct.
,
185
, pp.
212
220
.10.1016/j.compstruct.2017.11.014
78.
Ballard
,
M. K.
, and
Whitcomb
,
J. D.
,
2019
, “
Effect of Heterogeneity at the Fiber–Matrix Scale on Predicted Free-Edge Stresses for a [0/90]s Laminated Composite Subjected to Uniaxial Tension
,”
J. Compos. Mater.
,
53
(
5
), pp.
625
639
.10.1177/0021998318788915
79.
Hosoi
,
A.
, and
Kawada
,
H.
,
2008
, “
Stress Analysis of Laminates of Carbon Fiber Reinforced Plastics, Containing Transverse Cracks, Considering Free-Edge Effect and Residual Thermal Stress
,”
Mater. Sci. Eng. A
,
498
(
1–2
), pp.
69
75
.10.1016/j.msea.2007.11.153
80.
Wowk
,
D.
,
Marsden
,
C.
, and
Thibaudeau
,
D.
,
2020
, “
Predicting the Relative Magnitude of Interlaminar Stresses Due to Edge Effects in Thin Angle-Ply Laminates Using Macroscopic Finite Element Modeling
,”
Compos. Struct.
,
242
, p.
112164
.10.1016/j.compstruct.2020.112164
81.
Fagiano
,
C.
,
Abdalla
,
M. M.
,
Kassapoglou
,
C.
, and
Gürdal
,
Z.
,
2010
, “
Interlaminar Stress Recovery for Three-Dimensional Finite Elements
,”
Compos. Sci. Technol.
,
70
(
3
), pp.
530
538
.10.1016/j.compscitech.2009.12.013
82.
Ramesh
,
S. S.
,
Wang
,
C.
,
Reddy
,
J.
, and
Ang
,
K.
,
2009
, “
A Higher-Order Plate Element for Accurate Prediction of Interlaminar Stresses in Laminated Composite Plates
,”
Compos. Struct.
,
91
(
3
), pp.
337
357
.10.1016/j.compstruct.2009.06.001
83.
Yan
,
X.
,
Ding
,
S.
,
Tong
,
J.
,
Shen
,
M.
, and
Huo
,
Z.
,
2009
, “
Numerical Elastic-Plastic Simulation of Interlaminar Stresses in a Notched Angle-Ply Thermoplastic Composite Laminate
,”
Mech. Compos. Mater.
,
45
(
3
), pp.
293
302
.10.1007/s11029-009-9081-x
84.
Guo
,
Z.
,
Han
,
X.
, and
Zhu
,
X.
,
2012
, “
Finite Element Analysis of Interlaminar Stresses for Composite Laminates Stitched Around a Circular Hole
,”
Appl. Compos. Mater.
,
19
(
3–4
), pp.
561
571
.10.1007/s10443-011-9234-7
85.
Ding
,
S. R.
,
Tong
,
J.
, and
Shen
,
M.
,
2005
, “
The Three-Dimensional Elastic-Plastic Analysis of Interlaminar Stresses in Notched Thermoplastic Composites
,”
J. Reinforced Plast. Compos.
,
24
(
11
), pp.
1151
1158
.10.1177/0731684405048838
86.
Tian
,
Z. S.
,
Yang
,
Q. P.
, and
Wang
,
A. P.
,
2016
, “
Three-Dimensional Stress Analyses Around Cutouts in Laminated Composites by Special Hybrid Finite Elements
,”
J. Compos. Mater.
,
50
(
1
), pp.
75
98
.10.1177/0021998315570509
87.
Esquej
,
R.
,
Castejon
,
L.
,
Lizaranzu
,
M.
,
Carrera
,
M.
,
Miravete
,
A.
, and
Miralbes
,
R.
,
2013
, “
A New Finite Element Approach Applied to the Free Edge Effect on Composite Materials
,”
Compos. Struct.
,
98
, pp.
121
129
.10.1016/j.compstruct.2012.09.043
88.
D'Ottavio
,
M.
,
Vidal
,
P.
,
Valot
,
E.
, and
Polit
,
O.
,
2013
, “
Assessment of Plate Theories for Free-Edge Effects
,”
Compos. Part B
,
48
, pp.
111
121
.10.1016/j.compositesb.2012.12.007
89.
Guillamet
,
G.
,
Turon
,
A.
,
Costa
,
J.
, and
Linde
,
P.
,
2016
, “
A Quick Procedure to Predict Free-Edge Delamination in Thin-Ply Laminates Under Tension
,”
Eng. Fract. Mech.
,
168
, pp.
28
39
.10.1016/j.engfracmech.2016.01.019
90.
Das
,
S.
,
Choudhury
,
P.
,
Halder
,
S.
, and
Sriram
,
P.
,
2013
, “
Stress and Free Edge Delamination Analyses of Delaminated Composite Structure Using ANSYS
,”
Procedia Eng.
,
64
, pp.
1364
1373
.10.1016/j.proeng.2013.09.218
91.
Miguel
,
A. G.
,
Carrera
,
E.
,
Pagani
,
A.
, and
Zappino
,
E.
,
2018
, “
Accurate Evaluation of Interlaminar Stresses in Composite Laminates Via Mixed One-Dimensional Formulation
,”
AIAA J.
,
56
(
11
), pp.
4582
4594
.10.2514/1.J057189
92.
Peng
,
B.
,
Goodsell
,
J.
,
Pipes
,
R. B.
, and
Yu
,
W.
,
2016
, “
Generalized Free-Edge Stress Analysis Using Mechanics of Structure Genome
,”
ASME J. Appl. Mech.
,
83
(
10
), p.
101013
.10.1115/1.4034389
93.
Cater
,
C.
,
Xiao
,
X.
,
Goldberg
,
R.
, and
Gong
,
X.
,
2018
, “
Gong, X: Multiscale Investigation of Micro-Scale Stresses at Composite Laminate Free Edge
,”
Compos. Struct.
,
189
, pp.
545
552
.10.1016/j.compstruct.2018.01.098
94.
Solis
,
A.
,
Sánchez-Sáez
,
S.
, and
Barbero
,
E.
,
2018
, “
Influence of Ply Orientation on Free-Edge Effects in Laminates Subjected to in-Plane Loads
,”
Compos. Part B Eng.
,
153
, pp.
149
158
.10.1016/j.compositesb.2018.07.030
95.
Ullah
,
Z.
,
Kaczmarczyk
,
L.
,
Zhou
,
X. Y.
,
Falzon
,
B. G.
, and
Pearce
,
C. J.
,
2020
, “
Hierarchical Finite Element-Based Multi-Scale Modelling of Composite Laminates
,”
Compos. Part B
,
201
, p.
108321
.10.1016/j.compositesb.2020.108321
96.
Guo
,
Y.
, and
Ruess
,
M.
,
2015
, “
A Layerwise Isogeometric Approach for NURBS-Derived Laminate Composite Shells
,”
Compos. Struct.
,
124
, pp.
300
309
.10.1016/j.compstruct.2015.01.012
97.
Meng
,
M.
,
Le
,
H. R.
,
Rizvi
,
M. J.
, and
Grove
,
S. M.
,
2015
, “
3D FEA Modelling of Laminated Composites in Bending and Their Failure Mechanisms
,”
Compos. Struct.
,
119
, pp.
693
708
.10.1016/j.compstruct.2014.09.048
98.
Lekhnitskii
,
S. G.
,
1963
, “
Theory of Elasticity of an Anisotropic Elastic Body
,”
Holden-Day Series in Mathematical Physics
,
Holden-Day
,
San Francisco, CA
.
99.
González-Cantero
,
J. M.
,
Graciani
,
E.
,
Blázquez
,
A.
, and
París
,
F.
,
2016
, “
A New Analytical Model for Evaluating Interlaminar Stresses in the Unfolding Failure of Composite Laminates
,”
Compos. Struct.
,
147
, pp.
260
273
.10.1016/j.compstruct.2016.03.025
100.
González-Cantero
,
J. M.
,
Graciani
,
E.
,
París
,
F.
, and
López-Romano
,
B.
,
2017
, “
Semi-Analytic Model to Evaluate Non-Regularized Stresses Causing Unfolding Failure in Composites
,”
Compos. Struct.
,
171
, pp.
77
91
.10.1016/j.compstruct.2017.02.016
101.
Thurnherr
,
C.
,
Groh
,
R. M. J.
,
Ermanni
,
P.
, and
Weaver
,
P. M.
,
2016
, “
Higher-Order Beam Model for Stress Predictions in Curved Beams Made From Anisotropic Materials
,”
Int. J. Solids Struct.
,
97–98
, pp.
16
28
.10.1016/j.ijsolstr.2016.08.004
102.
Thurnherr
,
C.
,
Groh
,
R. M. J.
,
Ermanni
,
P.
, and
Weaver
,
P. M.
,
2017
, “
Investigation of Failure Initiation in Curved Composite Laminates Using a Higher-Order Beam Model
,”
Compos. Struct.
,
168
, pp.
143
152
.10.1016/j.compstruct.2017.02.010
103.
Nosier
,
A.
, and
Miri
,
A. K.
,
2010
, “
Boundary-Layer Hygrothermal Stresses in Laminated, Composite, Circular, Cylindrical Shell Panels
,”
Arch. Appl. Mech.
,
80
(
4
), pp.
413
440
.10.1007/s00419-009-0323-0
104.
Miri
,
A. K.
, and
Nosier
,
A.
,
2011
, “
Out-of-Plane Stresses in Composite Shell Panels: Layerwise and Elasticity Solutions
,”
Acta Mech.
,
220
(
1–4
), pp.
15
32
.10.1007/s00707-011-0471-5
105.
Miri
,
A. K.
, and
Nosier
,
A.
,
2011
, “
Interlaminar Stresses in Antisymmetric Angle-Ply Cylindrical Shell Panels
,”
Compos. Struct.
,
93
(
2
), pp.
419
429
.10.1016/j.compstruct.2010.08.038
106.
Afshin
,
M.
,
Sadighi
,
M.
, and
Shakeri
,
M.
,
2010
, “
Free-Edge Effects in a Cylindrical Sandwich Panel With a Flexible Core and Laminated Composite Face Sheets
,”
Mech. Compos. Mater.
,
46
(
5
), pp.
539
554
.10.1007/s11029-010-9170-x
107.
Ahmadi
,
I.
,
2018
, “
Edge Stresses Analysis in Laminated Thick Sandwich Cylinder Subjected to Distributed Hygrothermal Loading
,”
J. Sandwich Struct. Mater.
,
20
(
4
), pp.
425
461
.10.1177/1099636216657681
108.
Ahmadi
,
I.
,
2019
, “
Free Edge Stress Prediction in Thick Laminated Cylindrical Shell Panel Subjected to Bending Moment
,”
Appl. Math. Modell.
,
65
, pp.
507
525
.10.1016/j.apm.2018.08.029
109.
Ahmadi
,
I.
,
2020
, “
A Three-Dimensional Formulation for Levy-Type Transversely Loaded Cross-Ply Shell Panels
,”
Int. J. Mech. Sci.
,
167
, p.
105224
.10.1016/j.ijmecsci.2019.105224
110.
Tahani
,
M.
,
Andakhshideh
,
A.
, and
Maleki
,
S.
,
2016
, “
Interlaminar Stresses in Thick Cylindrical Shell With Arbitrary Laminations and Boundary Conditions Under Transverse Loads
,”
Compos. Part B Eng.
,
98
, pp.
151
165
.10.1016/j.compositesb.2016.05.013
111.
Schnabel
,
J. E.
,
Yousfi
,
M.
, and
Mittelstedt
,
C.
,
2017
, “
Free-Edge Stress Fields in Cylindrically Curved Symmetric and Unsymmetric Cross-Ply Laminates Under Bending Load
,”
Compos. Struct.
,
180
, pp.
862
875
.10.1016/j.compstruct.2017.08.002
112.
Ko
,
W. L.
, and
Jackson
,
R. H.
,
1989
, “
Multilayer Theory for Delamination Analysis of a Composite Curved Bar Subjected to End Forces and End Moments
,” NASA Research Center, Edwards, CA, Report No. 4139.
113.
Kappel
,
A.
, and
Mittelstedt
,
C.
,
2020
, “
Free-Edge Stress Fields in Cylindrically Curved Cross-Ply Laminated Shells
,”
Compos. Part B: Eng.
,
183
, p.
107693
.10.1016/j.compositesb.2019.107693
114.
Shah
,
P. H.
, and
Batra
,
R. C.
,
2017
, “
Stress Singularities and Transverse Stresses Near Edges of Doubly Curved Laminated Shells Using TSNDT and Stress Recovery Scheme
,”
Eur. J. Mech. A/Solids
,
63
, pp.
68
83
.10.1016/j.euromechsol.2016.11.007
115.
Hélénon
,
F.
,
Wisnom
,
M. R.
,
Hallett
,
S. R.
, and
Allegri
,
G.
,
2010
, “
An Approach for Dealing With High Local Stresses in Finite Element Analyses
,”
Compos. Part A Appl. Sci. Manuf.
,
41
(
9
), pp.
1156
1163
.10.1016/j.compositesa.2010.04.014
116.
Hélénon
,
F.
,
Wisnom
,
M. R.
,
Hallett
,
S. R.
, and
Trask
,
R. S.
,
2012
, “
Numerical Investigation Into Failure of Laminated Composite T-Piece Specimens Under Tensile Loading
,”
Compos. Part A Appl. Sci. Manuf.
,
43
(
7
), pp.
1017
1027
.10.1016/j.compositesa.2012.02.010
117.
Hélénon
,
F.
,
Wisnom
,
M. R.
,
Hallett
,
S. R.
, and
Trask
,
R. S.
,
2013
, “
Investigation Into Failure of Laminated Composite T-Piece Specimens Under Bending Loading
,”
Compos. Part A Appl. Sci. Manuf.
,
54
, pp.
182
189
.10.1016/j.compositesa.2013.07.015
118.
Nagle
,
A.
,
Wowk
,
D.
, and
Marsden
,
C.
,
2020
, “
Three-Dimensional Modelling of Interlaminar Normal Stresses in Curved Laminate Components
,”
Compos. Struct.
,
242
, p.
112165
.10.1016/j.compstruct.2020.112165
119.
Reinarz
,
A.
,
Dodwell
,
T.
,
Fletcher
,
T.
,
Seelinger
,
L.
,
Butler
,
R.
, and
Scheichl
,
R.
,
2018
, “
Dune-Composites – a New Framework for High-Performance Finite Element Modelling of Laminates
,”
Compos. Struct.
,
184
, pp.
269
278
.10.1016/j.compstruct.2017.09.104
120.
Wimmer
,
G.
,
Kitzmüller
,
W.
,
Pinter
,
G.
,
Wettemann
,
T.
, and
Pettermann
,
H. E.
,
2009
, “
Computational and Experimental Investigation of Delamination in L-Shaped Laminated Composite Components
,”
Eng. Fract. Mech.
,
76
(
18
), pp.
2810
2820
.10.1016/j.engfracmech.2009.06.007
121.
Wimmer
,
G.
,
Schuecker
,
C.
, and
Pettermann
,
H. E.
,
2009
, “
Numerical Simulation of Delamination in Laminated Composite Components – a Combination of a Strength Criterion and Fracture Mechanics
,”
Compos. Part B: Eng.
,
40
(
2
), pp.
158
165
.10.1016/j.compositesb.2008.10.006
122.
Zimmermann
,
K.
,
Zenkert
,
D.
, and
Siemetzki
,
M.
,
2010
, “
Testing and Analysis of Ultra Thick Composites
,”
Compos. Part B Eng.
,
41
(
4
), pp.
326
336
.10.1016/j.compositesb.2009.12.004
123.
Hao
,
W.
,
Ge
,
D.
,
Ma
,
Y.
,
Yao
,
X.
, and
Shi
,
Y.
,
2012
, “
Experimental Investigation on Deformation and Strength of Carbon/Epoxy Laminated Curved Beams
,”
Polym. Test.
,
31
(
4
), pp.
520
526
.10.1016/j.polymertesting.2012.02.003
124.
Charrier
,
J. S.
,
Laurin
,
F.
,
Carrere
,
N.
, and
Mahdi
,
S.
,
2016
, “
Determination of the Out-of-Plane Tensile Strength Using Four-Point Bending Tests on Laminated L-Angle Specimens With Different Stacking Sequences and Total Thicknesses
,”
Compos. Part A Appl. Sci. Manuf.
,
81
, pp.
243
253
.10.1016/j.compositesa.2015.11.018
125.
González-Cantero
,
J. M.
,
Graciani
,
E.
,
López-Romano
,
B.
, and
París
,
F.
,
2018
, “
Competing Mechanisms in the Unfolding Failure in Composite Laminates
,”
Compos. Sci. Technol.
,
156
, pp.
223
230
.10.1016/j.compscitech.2017.12.022
126.
Pan
,
Z. Y.
,
Duan
,
Q. F.
,
Zhong
,
Y. C.
,
Li
,
S. X.
, and
Cao
,
D. F.
,
2018
, “
Stacking Sequence Effect on the Fracture Behavior of Narrow L-Shaped Cross-Ply Laminates: Experimental Study
,”
Strength Mater.
,
50
(
1
), pp.
203
210
.10.1007/s11223-018-9960-2
127.
Journoud
,
P.
,
Bouvet
,
C.
,
Castanié
,
B.
,
Laurin
,
F.
, and
Ratsifandrihana
,
L.
,
2020
, “
Experimental and Numerical Analysis of Unfolding Failure of L-Shaped CFRP Specimens
,”
Compos. Struct.
,
232
, p.
111563
.10.1016/j.compstruct.2019.111563
128.
Cao
,
D.
,
Hu
,
H.
,
Duan
,
Q.
,
Song
,
P.
, and
Li
,
S.
,
2019
, “
Experimental and Three-Dimensional Numerical Investigation of Matrix Cracking and Delamination Interaction With Edge Effect of Curved Composite Laminates
,”
Compos. Struct.
,
225
, p.
111154
.10.1016/j.compstruct.2019.111154
129.
Fletcher
,
T. A.
,
Kim
,
T.
,
Dodwell
,
T. J.
,
Butler
,
R.
,
Scheichl
,
R.
, and
Newley
,
R.
,
2016
, “
Resin Treatment of Free Edges to Aid Certification of Through Thickness Laminate Strength
,”
Compos. Struct.
,
146
, pp.
26
33
.10.1016/j.compstruct.2016.02.074
130.
Ranz
,
D.
,
Cuartero
,
J.
,
Miravete
,
A.
, and
Miralbes
,
R.
,
2017
, “
Experimental Research Into Interlaminar Tensile Strength of Carbon/Epoxy Laminated Curved Beams
,”
Compos. Struct.
,
164
, pp.
189
197
.10.1016/j.compstruct.2016.12.010
131.
Ju
,
H.
,
Nguyen
,
K. H.
,
Chae
,
S. S.
, and
Kweon
,
J. H.
,
2017
, “
Delamination Strength of Composite Curved Beams Reinforced by Grooved Stainless-Steel Z-Pins
,”
Compos. Struct.
,
180
, pp.
497
506
.10.1016/j.compstruct.2017.08.018
132.
Louhghalam
,
A.
,
Igusa
,
T.
, and
Tootkaboni
,
M.
,
2014
, “
Dynamic Characteristics of Laminated Thin Cylindrical Shells: Asymptotic Analysis Accounting for Edge Effect
,”
Compos. Struct.
,
112
, pp.
22
37
.10.1016/j.compstruct.2014.01.031
133.
Ahmadi
,
I.
,
2017
, “
Interlaminar Stress Analysis in General Thick Composite Cylinder Subjected to Nonuniform Distributed Radial Pressure
,”
Mech. Adv. Mater. Struct.
,
24
(
9
), pp.
773
788
.10.1080/15376494.2016.1196782
134.
Filipovic
,
D. T.
, and
Kress
,
G. R.
,
2020
, “
Free-Edge Effects of Corrugated Laminates
,”
Curved Layered Struct.
,
7
(
1
), pp.
101
124
.10.1515/cls-2020-0009
135.
Pastorino
,
D.
,
Blazquez
,
A.
,
López-Romano
,
B.
, and
París
,
F.
,
2019
, “
Closed-Form Methodology for Stress Analysis of Composite Plates With Cutouts and Non-Uniform Lay-Up
,”
Compos. Struct.
,
212
, pp.
389
397
.10.1016/j.compstruct.2019.01.013
136.
Lin
,
C. C.
, and
Ko
,
C. C.
,
1988
, “
Stress and Strength Analysis of Finite Composite Laminates With Elliptical Holes
,”
J. Compos. Mater.
,
22
(
4
), pp.
373
385
.10.1177/002199838802200405
137.
Ukadgaonker
,
V.
, and
Kakhandki
,
V.
,
2005
, “
Stress Analysis for an Orthotropic Plate With an Irregular Shaped Hole for Different in-Plane Loading Conditions–Part 1
,”
Compos. Struct.
,
70
(
3
), pp.
255
274
.10.1016/j.compstruct.2004.08.032
138.
Savin
,
G. N.
,
1961
,
Stress Concentration Around Holes
,
Pergamon
,
London, UK
.
139.
Ghannadpour
,
S.
, and
Mehrparvar
,
M.
,
2018
, “
Energy Effect Removal Technique to Model Circular/Elliptical Holes in Relatively Thick Composite Plates Under in-Plane Compressive Load
,”
Compos. Struct.
,
202
, pp.
1032
1041
.10.1016/j.compstruct.2018.05.026
140.
Chaudhuri
,
R. A.
,
2009
, “
A New Three-Dimensional Shell Theory in General (Non-Lines-of-Curvature) Coordinates for Analysis of Curved Panels Weakened by Through/Part-Through Holes
,”
Compos. Struct.
,
89
(
2
), pp.
321
332
.10.1016/j.compstruct.2008.07.005
141.
Hu
,
Y. L.
, and
Madenci
,
E.
,
2017
, “
Peridynamics for Fatigue Life and Residual Strength Prediction of Composite Laminates
,”
Compos. Struct.
,
160
, pp.
169
184
.10.1016/j.compstruct.2016.10.010
142.
Han
,
X. P.
,
Li
,
L. X.
,
Zhu
,
X. P.
, and
Yue
,
Z. F.
,
2008
, “
Experimental Study on the Stitching Reinforcement of Composite Laminates With a Circular Hole
,”
Compos. Sci. Technol.
,
68
(
7–8
), pp.
1649
1653
.10.1016/j.compscitech.2008.02.017
143.
Wisnom
,
M. R.
, and
Hallett
,
S. R.
,
2009
, “
The Role of Delamination in Strength, Failure Mechanism and Hole Size Effect in Open Hole Tensile Tests on Quasi-Isotropic Laminates
,”
Compos. Part A
,
40
(
4
), pp.
335
342
.10.1016/j.compositesa.2008.12.013
144.
Solis
,
A.
,
Barbero
,
E.
, and
Sánchez-Sáez
,
S.
,
2020
, “
Analysis of Damage and Interlaminar Stresses in Laminate Plates With Interacting Holes
,”
Int. J. Mech. Sci.
,
165
, p.
105189
.10.1016/j.ijmecsci.2019.105189
145.
Herrmann
,
K. P.
, and
Linnenbrock
,
K.
,
2002
, “
Three-Dimensional Thermal Crack Growth in Self-Stressed Bimaterial Joints: Analysis and Experiment
,”
Int. J. Fract.
,
114
(
2
), pp.
133
151
.10.1023/A:1015034803792
146.
Becker
,
W.
,
Jin
,
P. P.
, and
Neuser
,
P.
,
1999
, “
Interlaminar Stresses at the Free Corners of a Laminate
,”
Compos. Struct.
,
45
(
2
), pp.
155
162
.10.1016/S0263-8223(99)00019-7
147.
Griffin
,
O. H.
,
1988
, “
Three-Dimensional Thermal Stresses in Angle-Ply Composite Laminates
,”
J. Compos. Mater.
,
22
(
1
), pp.
53
70
.10.1177/002199838802200104
148.
Koguchi
,
H.
,
1997
, “
Stress Singularity Analysis in Three-Dimensional Bonded Structure
,”
Int. J. Solids Struct.
,
34
(
4
), pp.
461
480
.10.1016/S0020-7683(96)00028-5
149.
Labossiere
,
P. E. W.
, and
Dunn
,
M. L.
,
2001
, “
Fracture Initiation at Three-Dimensional Bimaterial Interface Corners
,”
J. Mech. Phys. Solids
,
49
, pp.
609
634
.10.1016/S0022-5096(00)00043-0
150.
Dimitrov
,
A.
,
Andrä
,
H.
, and
Schnack
,
E.
,
2001
, “
Efficient Computation of Order and Mode of Corner Singularities in 3D-Elasticity
,”
Int. J. Numer. Methods Eng.
,
52
(
8
), pp.
805
–8
24
.10.1002/nme.230
151.
Dimitrov
,
A.
,
Andrä
,
H.
, and
Schnack
,
E.
,
2002
, “
Singularities Near Three-Dimensional Corners in Composite Laminates
,”
Int. J. Fract.
,
115
(
4
), pp.
361
375
.10.1023/A:1016320103641
152.
Mittelstedt
,
C.
, and
Becker
,
W.
,
2005
, “
Asymptotic Analysis of Stress Singularities in Composite Laminates by the Boundary Finite Element Method
,”
Compos. Struct.
,
71
(
2
), pp.
210
219
.10.1016/j.compstruct.2004.10.003
153.
Mittelstedt
,
C.
, and
Becker
,
W.
,
2005
, “
Semi-Analytical Computation of 3D Stress Singularities in Linear Elasticity
,”
Commun. Numer. Methods Eng.
,
21
(
5
), pp.
247
257
.10.1002/cnm.742
154.
Mittelstedt
,
C.
, and
Becker
,
W.
,
2006
, “
Efficient Computation of Order and Mode of Three-Dimensional Stress Singularities in Linear Elasticity by the Boundary Finite Element Method
,”
Int. J. Solids Struct.
,
43
(
10
), pp.
2868
2903
.10.1016/j.ijsolstr.2005.05.059
155.
Mittelstedt
,
C.
, and
Becker
,
W.
,
2005
, “
Thermoelastic Fields in Boundary Layers of Isotropic Laminates
,”
ASME J. Appl. Mech.
,
72
(
1
), pp.
86
101
.10.1115/1.1827247
156.
Mittelstedt
,
C.
, and
Becker
,
W.
,
2005
, “
A Variational Model for Boundary Layer Effects in Cross-Ply Laminates Based on a C0-Continuous Layerwise Displacement Formulation
,”
J. Compos. Mater.
,
39
(
20
), pp.
1789
1818
.10.1177/0021998305051121
157.
Artel
,
J.
, and
Becker
,
W.
,
2005
, “
Coupled and Uncoupled Analyses of Piezoelectric Free-Edge Effect in Laminated Plates
,”
Compos. Struct.
,
69
(
3
), pp.
329
335
.10.1016/j.compstruct.2004.07.015
158.
Yang
,
Q. S.
,
Qin
,
Q. H.
, and
Liu
,
T.
,
2006
, “
Interlayer Stress in Laminate Beam of Piezoelectric and Elastic Materials
,”
Compos. Struct.
,
75
(
1–4
), pp.
587
592
.10.1016/j.compstruct.2006.04.024
159.
Tahani
,
M.
, and
Mirzababaee
,
M.
,
2009
, “
Higher-Order Coupled and Uncoupled Analyses of Free Edge Effect in Piezoelectric Laminates Under Mechanical Loadings
,”
Mater. Des.
,
30
(
7
), pp.
2473
2482
.10.1016/j.matdes.2008.10.004
160.
Mirzababaee
,
M.
, and
Tahani
,
M.
,
2009
, “
Accurate Determination of Coupling Effects on Free Edge Interlaminar Stresses in Piezoelectric Laminated Plates
,”
Mater. Des.
,
30
(
8
), pp.
2963
2974
.10.1016/j.matdes.2009.01.005
161.
Izadi
,
M.
, and
Tahani
,
M.
,
2010
, “
Analysis of Interlaminar Stresses in General Cross-Ply Laminates With Distributed Piezoelectric Actuators
,”
Compos. Struct.
,
92
(
3
), pp.
757
768
.10.1016/j.compstruct.2009.09.003
162.
Kapuria
,
S.
, and
Kumari
,
P.
,
2012
, “
Boundary Layer Effects in Levy-Type Rectangular Piezoelectric Composite Plates Using a Coupled Efficient Layerwise Theory
,”
Eur. J. Mech. A/Solids
,
36
, pp.
122
140
.10.1016/j.euromechsol.2012.02.015
163.
Han
,
C.
,
Wu
,
Z.
, and
Niu
,
Z.
,
2014
, “
Accurate Prediction of Free-Edge and Electromechanical Coupling Effects in Cross-Ply Piezoelectric Laminates
,”
Compos. Struct.
,
113
, pp.
308
315
.10.1016/j.compstruct.2014.03.027
164.
Huang
,
B.
, and
Kim
,
H. S.
,
2014
, “
Free-Edge Interlaminar Stress Analysis of Piezo-Bonded Composite Laminates Under Symmetric Electric Excitation
,”
Int. J. Solids Struct.
,
51
(
6
), pp.
1246
1252
.10.1016/j.ijsolstr.2013.12.016
165.
Huang
,
B.
, and
Kim
,
H. S.
,
2015
, “
Interlaminar Stress Analysis of Piezo-Bonded Composite Laminates Using the Extended Kantorovich Method
,”
Int. J. Mech. Sci.
,
90
, pp.
16
24
.10.1016/j.ijmecsci.2014.11.003
166.
Huang
,
B.
,
Kim
,
H. S.
,
Wang
,
J.
, and
Du
,
J.
,
2016
, “
Free Edge Stress Prediction for Magneto-Electro-Elastic Laminates Using a Stress Function Based Equivalent Single Layer Theory
,”
Compos. Sci. Technol.
,
123
, pp.
205
211
.10.1016/j.compscitech.2015.12.019
167.
Kapuria
,
S.
, and
Dhanesh
,
N.
,
2017
, “
Free Edge Stress Field in Smart Piezoelectric Composite Structures and Its Control: An Accurate Multiphysics Solution
,”
Int. J. Solids Struct.
,
126-127
, pp.
196
207
.10.1016/j.ijsolstr.2017.08.007
168.
Dhanesh
,
N.
, and
Kapuria
,
S.
,
2018
, “
Edge Effects in Elastic and Piezoelectric Laminated Panels Under Thermal Loading
,”
J. Therm. Stresses
,
41
(
10–12
), pp.
1577
1596
.10.1080/01495739.2018.1524732
169.
Andakhshideh
,
A.
,
Rafiee
,
R.
, and
Maleki
,
S.
,
2019
, “
3D Stress Analysis of Generally Laminated Piezoelectric Plates With Electromechanical Coupling Effects
,”
Appl. Math. Modell.
,
74
, pp.
258
279
.10.1016/j.apm.2019.04.060
170.
Song
,
C.
, and
Wolf
,
J. P.
,
1995
, “
Consistent Infinitesimal Finite-Element-Cell Method: Out-of-Plane Motion
,”
J. Eng. Mech.
,
121
(
5
), pp.
613
619
.10.1061/(ASCE)0733-9399(1995)121:5(613)
171.
Song
,
C.
, and
Wolf
,
J. P.
,
1997
, “
The Scaled Boundary Finite-Element Method - Alias Consistent Infinitesimal Finite-Element Cell Method - for Elastodynamics
,”
Comput. Methods Appl. Mech. Eng.
,
147
(
3–4
), pp.
329
355
.10.1016/S0045-7825(97)00021-2
172.
Song
,
C.
,
2005
, “
Evaluation of Power-Logarithmic Singularities, T-Stresses and Higher Order Terms of in-Plane Singular Stress Fields at Cracks and Multi-Material Corners
,”
Eng. Fract. Mech.
,
72
(
10
), pp.
1498
1530
.10.1016/j.engfracmech.2004.11.002
173.
Song
,
C.
,
Tin-Loi
,
F.
, and
Gao
,
W.
,
2010
, “
A Definition and Evaluation Procedure of Generalized Stress Intensity Factors at Cracks and Multi-Material Wedges
,”
Eng. Fract. Mech.
,
77
(
12
), pp.
2316
2336
.10.1016/j.engfracmech.2010.04.032
174.
Saputra
,
A. A.
,
Birk
,
C.
, and
Song
,
C.
,
2015
, “
Computation of Three-Dimensional Fracture Parameters at Interface Cracks and Notches by the Scaled Boundary Finite Element Method
,”
Eng. Fract. Mech.
,
148
, pp.
213
242
.10.1016/j.engfracmech.2015.09.006
175.
Song
,
C.
,
Ooi
,
E. T.
, and
Natarajan
,
S.
,
2018
, “
A Review of the Scaled Boundary Finite Element Method for Two-Dimensional Linear Elastic Fracture Mechanics
,”
Eng. Fract. Mech.
,
187
, pp.
45
73
.10.1016/j.engfracmech.2017.10.016
176.
Hell
,
S.
, and
Becker
,
W.
,
2015
, “
The Scaled Boundary Finite Element Method for the Analysis of 3D Crack Interaction
,”
J. Comput. Sci.
,
9
, pp.
76
81
.10.1016/j.jocs.2015.04.007
177.
Dölling
,
S.
,
Hahn
,
J.
,
Felger
,
J.
,
Bremm
,
S.
, and
Becker
,
W.
,
2020
, “
A Scaled Boundary Finite Element Method Model for Interlaminar Failure in Composite Laminates
,”
Compos. Struct.
,
241
, p.
111865
.10.1016/j.compstruct.2020.111865
178.
Artel
,
J.
, and
Becker
,
W.
,
2006
, “
On Kinematic Coupling Equations Within the Scaled Boundary Finite-Element Method
,”
Arch. Appl. Mech.
,
76
(
11–12
), pp.
617
633
.10.1007/s00419-006-0052-6
179.
Goswami
,
S.
, and
Becker
,
W.
,
2012
, “
Computation of 3-D Stress Singularities for Multiple Cracks and Crack Intersections by the Scaled Boundary Finite Element Method
,”
Int. J. Fract.
,
175
(
1
), pp.
13
25
.10.1007/s10704-012-9694-2
180.
Dieringer
,
R.
, and
Becker
,
W.
,
2015
, “
A New Scaled Boundary Finite Element Formulation for the Computation of Singularity Orders at Cracks and Notches in Arbitrarily Laminated Composites
,”
Compos. Struct.
,
123
, pp.
263
270
.10.1016/j.compstruct.2014.12.036
181.
Lecomte-Grosbras
,
P.
,
Paluch
,
B.
, and
Brieu
,
M.
,
2013
, “
Characterization of Free Edge Effects: Influence of Mechanical Properties, Microstructure and Structure Effects
,”
J. Compos. Mater.
,
47
(
22
), pp.
2823
2834
.10.1177/0021998312458817
182.
Lecomte-Grosbras
,
P.
,
Réthoré
,
J.
,
Limodin
,
N.
,
Witz
,
J. F.
, and
Brieu
,
M.
,
2015
, “
Three-Dimensional Investigation of Free-Edge Effects in Laminate Composites Using X-Ray Tomography and Digital Volume Correlation
,”
Exp. Mech.
,
55
(
1
), pp.
301
311
.10.1007/s11340-014-9891-1
183.
Duan
,
S.
,
Zhang
,
Z.
,
Wei
,
K.
,
Wang
,
F.
, and
Han
,
X.
,
2020
, “
Theoretical Study and Physical Tests of Circular Hole-Edge Stress Concentration in Long Glass Fiber Reinforced Polypropylene Composite
,”
Compos. Struct.
,
236
, p.
111884
.10.1016/j.compstruct.2020.111884
184.
Charkviani
,
R. V.
,
Pavlov
,
A. A.
, and
Pavlova
,
S. A.
,
2017
, “
Interlaminar Strength and Stiffness of Layered Composite Materials
,”
Procedia Eng.
,
185
, pp.
168
172
.10.1016/j.proeng.2017.03.335
185.
Kappel
,
E.
,
2021
, “
Experimental Study on How Free-Edge Effects Impede CTE Measurements
,”
Compos. Part C Open Access
5
, p.
100129
.10.1016/j.jcomc.2021.100129
186.
Lagunegrand
,
L.
,
Lorriot
,
T.
,
Harry
,
R.
, and
Wargnier
,
H.
,
2005
, “
Design of an Improved Four Point Bending Test on a Sandwich Beam for Free Edge Delamination Studies
,”
Compos. Part B
,
37
(
2–3
), pp.
127
136
.10.1016/j.compositesb.2005.07.002
187.
Neuber
,
H.
,
1937
,
Kerbspannungslehre
, Springer,
Berlin
.
188.
Whitney
,
J. M.
, and
Nuismer
,
R. J.
,
1974
, “
Stress Fracture Criteria for Laminated Composites Containing Stress Concentrations
,”
J. Compos. Mater.
,
8
(
3
), pp.
253
265
.10.1177/002199837400800303
189.
Taylor
,
D.
,
2007
,
The Theory of Critical Distances
,
Elsevier
,
Oxford, UK
.
190.
Taylor
,
D.
,
2008
, “
The Theory of Critical Distances
,”
Eng. Fract. Mech.
,
75
(
7
), pp.
1696
1705
.10.1016/j.engfracmech.2007.04.007
191.
Lagunegrand
,
L.
,
Lorriot
,
T.
,
Harry
,
R.
,
Wargnier
,
H.
, and
Quenisset
,
J. M.
,
2006
, “
Initiation of Free-Edge Delamination in Composite Laminates
,”
Compos. Sci. Technol.
,
66
(
10
), pp.
1315
1327
.10.1016/j.compscitech.2005.10.010
192.
Diaz
,
A. D.
, and
Caron
,
J.-F.
,
2006
, “
Prediction of the Onset of Mode III Delamination in Carbon-Epoxy Laminates
,”
Compos. Struct.
,
72
(
4
), pp.
438
445
.10.1016/j.compstruct.2005.01.014
193.
Dugdale
,
D. S.
,
1960
, “
Yielding of Steel Sheets Containing Slits
,”
J. Mech. Phys. Solids
,
8
(
2
), pp.
100
104
.10.1016/0022-5096(60)90013-2
194.
Barenblatt
,
G. I.
,
1962
, “
The Mathematical Theory of Equilibrium Cracks in Brittle Fracture
,”
Adv. Appl. Mech.
,
7
, pp.
55
129
.10.1016/S0065-2156(08)70121-2
195.
Sorensen
,
B. F.
,
2010
,
Cohesive Laws for Assessment of Materials Failure: Theory, Experimental Methods and Application
,
Technical University of Denmark (DTU)
,
Roskilde, Denmark
.
196.
Leguillon
,
D.
,
2002
, “
Strength or Toughness? A Criterion for Crack Onset at a Notch
,”
Eur. J. Mech. A/Solids
,
21
(
1
), pp.
61
72
.10.1016/S0997-7538(01)01184-6
197.
Hashin
,
Z.
,
1996
, “
Finite Thermoelastic Fracture Criterion With Application to Laminate Cracking Analysis
,”
J. Mech. Phys. Solids
,
44
(
7
), pp.
1129
1145
.10.1016/0022-5096(95)00080-1
198.
Weißgraeber
,
P.
,
Leguillon
,
D.
, and
Becker
,
W.
,
2016
, “
A Review of Finite Fracture Mechanics: Crack Initiation at Singular and Non-Singular Stress Raisers
,”
Arch. Appl. Mech.
,
86
(
1–2
), pp.
375
401
.10.1007/s00419-015-1091-7
199.
Leguillon
,
D.
, and
Yosibash
,
Z.
,
2003
, “
Crack Onset at a v-Notch. Influence of the Notch Tip Radius
,”
Int. J. Fract.
,
122
(
1/2
), pp.
1
21
.10.1023/B:FRAC.0000005372.68959.1d
200.
Carpinteri
,
A.
,
Cornetti
,
P.
,
Pugno
,
N.
,
Sapora
,
A.
, and
Taylor
,
D.
,
2008
, “
A Finite Fracture Mechanics Approach to Structures With Sharp V-Notches
,”
Eng. Fract. Mech.
,
75
(
7
), pp.
1736
1752
.10.1016/j.engfracmech.2007.04.010
201.
Weißgraeber
,
P.
, and
Becker
,
W.
,
2011
, “
A New Finite Fracture Mechanics Approach for Assessing the Strength of Bonded Lap Joints
,”
Key Eng. Mater.
,
471–472
, pp.
1075
1080
.10.4028/www.scientific.net/KEM.471-472.1075
202.
Stein
,
N.
,
Weißgraeber
,
P.
, and
Becker
,
W.
,
2015
, “
A Model for Brittle Failure in Adhesive Lap Joints of Arbitrary Joint Configuration
,”
Compos. Struct.
,
133
, pp.
707
718
.10.1016/j.compstruct.2015.07.100
203.
Garcia
,
I.
,
Mantic
,
V.
,
Blazquez
,
A.
, and
Paris
,
F.
,
2014
, “
Transverse Crack Onset and Growth in Cross-Ply [0/90], Laminates Under Tension. Application of a Coupled Stress and Energy Criterion
,”
Int. J. Solids Struct.
,
51
, pp.
3844
3856
.10.1016/j.ijsolstr.2014.06.015
204.
Hebel
,
J.
,
Dieringer
,
R.
, and
Becker
,
W.
,
2010
, “
Modeling Brittle Crack Formation at Geometrical and Material Discontinuities Using a Finite Fracture Mechanics Approach
,”
Eng. Fract. Mech.
,
77
(
18
), pp.
3558
3572
.10.1016/j.engfracmech.2010.07.005
205.
Mantic
,
V.
,
2009
, “
Interface Crack Onset at a Circular Cylindrical Inclusion Under a Remote Transverse Tension. Application of a Coupled Stress and Energy Criterion
,”
Int. J. Solids Struct.
,
46
, pp.
1287
1304
.10.1016/j.ijsolstr.2008.10.036
206.
Weißgraeber
,
P.
,
Felger
,
J.
,
Geipel
,
D.
, and
Becker
,
W.
,
2016
, “
Cracks at Elliptical Holes: Stress Intensity Factor and Finite Fracture Mechanics Solution
,”
Eur. J. Mech. A/Solids
,
55
, pp.
192
198
.10.1016/j.euromechsol.2015.09.002
207.
Felger
,
J.
,
Stein
,
N.
, and
Becker
,
W.
,
2017
, “
Asymptotic Finite Fracture Mechanics Solution for Crack Onset at Elliptical Holes Iin Composite Plates of Finite-Width
,”
Eng. Fract. Mech.
,
182
, pp.
621
634
.10.1016/j.engfracmech.2017.05.048
208.
Rosendahl
,
P.
,
Weißgraeber
,
P.
,
Stein
,
N.
, and
Becker
,
W.
,
2017
, “
Asymmetric Crack Onset at Open-Holes Under Tensile and in-Plane Bending Loading
,”
Int. J. Solids Struct.
,
113–114
, pp.
10
23
.10.1016/j.ijsolstr.2016.09.011
209.
Leguillon
,
D.
,
Haddad
,
O.
,
Adamowska
,
M.
, and
da Costa
,
P.
,
2014
, “
Crack Pattern Formation and Spalling in Functionalized Thin Films
,”
Procedia Mater. Sci.
,
3
, pp.
104
109
.10.1016/j.mspro.2014.06.020
210.
Hebel
,
J.
, and
Becker
,
W.
,
2008
, “
Numerical Analysis of Brittle Crack Initiation at Stress Concentrations in Composites
,”
Mech. Adv. Mater. Struct.
,
15
(
6–7
), pp.
410
420
.10.1080/15376490802135266
211.
Martin
,
E.
,
Leguillon
,
D.
, and
Carrere
,
N.
,
2010
, “
A Twofold Strength and Toughness Criterion for the Onset of Free-Edge Shear Delamination in Angle-Ply Laminates
,”
Int. J. Solids Struct.
,
47
(
9
), pp.
1297
1305
.10.1016/j.ijsolstr.2010.01.018
212.
Dölling
,
S.
,
Hell
,
S.
, and
Becker
,
W.
,
2018
, “
Investigation of the Laminate free-edge Effect by Means of the Scaled Boundary Finite Element Method
,”
PAMM—Proc. Appl. Math. Mech.
,
18
(
1
), p.
e201800129
.10.1002/pamm.201800129
213.
Dölling
,
S.
,
Felger
,
J.
,
Hahn
,
J.
,
Bremm
,
S.
, and
Becker
,
W.
, 9th–13th July
2019
, “
An Application of the Scaled Boundary Finite Element Method to Laminates: Prediction of Interlaminar Crack Onset Caused by the Free-Edge Effect
,”
Presentations at the 10th ICCM2019
,
G. R.
Liu
,
F.
Cui
,
G. X.
Xiangguo
, eds.,
ScienTech Publisher
,
Singapore
, Paper No. 3747.
You do not currently have access to this content.