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The teaching of engineering 

This note is about a subject that is easy to 
neglect. It is the basic course in applied 
mathematics, which comes after the stu
dent has first met calculus and differential 
equations and matrices. It may be an 
undergraduate course or a first-year 
graduate course, intended to provide the 
mathematics that is going to be needed 
and useful. Often it is taught by the 
mathematics department, which may not 
recognize what modern engineering has 
become—and therefore, with the best in
tentions, it is not exciting. It becomes a 
" service course," but it misses the chance 
to be of real service. Inertia wins, but the 
discipline loses. 

I believe it is possible to do better. 
That course can bring together the classi
cal theories of differential equations and 
Fourier analysis and the modern methods 
of solving those equations and carrying 
out that analysis. The crucial point is that 
the new methods have not rejected the old 
ones. The exact opposite is the case—they 
are totally dependent on the central ideas 
of applied mathematics. The fast Fourier 
transform relies, as completely as any in
finite series expansion, on orthogonality. 
Finite elements can go nowhere without 
the equation of virtual work, or the varia
tional principles of mechanics. Iterative 
methods converge or diverge at speeds 
that are controlled entirely by eigenval
ues. And for special geometries, the old 
idea of separation of variables is imple
mented by the spectral method. Good 
algorithms run parallel to good theory, 
and by making that theory concrete and 
explicit they bring it to life. 

The last paragraph suggests one change 
that I hope to see. Along with continuum 
problems should come discrete problems 
—differential equations should appear to
gether with matrix equations. However, I 
am absolutely not proposing that this 
should become a course in numerical 
methods. There is something more im
portant to teach, and it must come early 
and clear. It is the basic framework of 
applied mathematics, and it is the source 
of the equations in the first place. 

This framework is shared by one appli
cation after another—that is the reason 
why a mathematics course provides such 
an opportunity to be useful—and it starts 
with problems of equilibrium. In describ
ing it I am only highlighting what is 
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familiar; the model is not new or revolu
tionary. My goal is to make it familiar to 
our students too. 

The common feature of equilibrium 
equations is the appearance of a triple 
product ATCA. In differential equations it 
will govern an elastic rod, or a beam, or a 
membrane (or potential flow or electro
statics or thermal equilibrium): 

dx\ dx J 

or 

d2 I d2u\ _ 

~d^[CHxI)=f 

or 

— div(c grad u) = / . 

In each case there are three factors on the 
left side. The problems are symmetric, 
because AT appears together with A. In 
the discrete case, that is a rectangular 
matrix and its transpose, with a square 
symmetric C in between. The product 
AlCA is the stiffness matrix! In the con
tinuous case we meet derivatives A = 
d/dx or A = d2/dx2 or A = gradient, and 
part of the mathematics is to identify the 
corresponding AT = -d/dx or (-d/dx)2 

or — divergence. Those come from in
tegration by parts, or Green's theorem in 
higher dimensions, or the equation of vir
tual work. They put calculus to use, and I 
apologize for rushing past all the fun. 
(The boundary conditions come too.) 
What has to be emphasized is the impor
tance of this framework. 

You recognize it in the deeper prob
lems of continuum mechanics: 

A 

displacement -» strain 

c AT 

-» stress -> force. 

The constitutive law is expressed by C. It 
could be nonlinear, but in this course 
Hooke's law is enough. The point is that 
the mathematics is not divorced from the 
engineering and left to solve equations in 
a vacuum. If the connections are not made 
now, most of them will never be made. 

Another connection is to flow through 
a network. That may not be mechanics—C 
now represents Ohm's law—but it is ab

solutely basic: 

A 

potential —> potential difference 

C AT 

—> current -> current source. 

The last step is Kirchhoff's current law: 
The net flow into each node is zero. It is 
the analog of balance of forces, and the 
outstanding example of a conservation 
law. In the continuous case it illustrates 
the divergence theorem (in use). The net 
flow out of a region is zero when the 
divergence—represented by A7— is zero 
inside. 

In the matrix case, A takes differences 
instead of derivatives. Each row contains 
a + 1 and a — 1, to give the potential 
difference across an edge. It is an inci
dence matrix or a connectivity matrix, with 
a row for every edge and a column for 
every node. In the figure below it is 6 X 4: 
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Notice one important point. The four col
umns are not independent. Their sum is a 
column of zeros. The constant vector c = 
(1,1,1,1) satisfies Ac = Q, and the poten
tials cannot be determined from the 
potential differences. All potentials can be 
increased by a constant (homogeneous 
solution added to particular solution) un
less we ground a node. That is the 
" boundary condition" in the discrete case, 
like fixing the end of a rod or the boundary 
of a membrane. It removes the last col
umn of A. 
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The matrix ATCA is now symmetric 
and positive definite. That property brings 
together the key facts of matrix theory, in 
a basic application of linear algebra. The 
eigenvalues are positive, controlling the 
dynamics. The energy \xTATCAx is posi
tive, controlling the statics. The pivots are 
positive, controlling the stability of the 
numerical algorithm (elimination). For a 
symmetric matrix those conditions are 
equivalent, and it is important to see the 
matrices themselves: 

A'A = 
- 1 

3 
- 1 

- 1 
- 1 

3 

A7CA 

CA + Ch 

cl + c2 + cs 

Edges 3,5,6 go to ground; thus the con
ductances c3, c5, cb appear only on the 
diagonal and make the matrix positive 
definite. 

The same framework governs least-
squares estimation, and the mechanics of 
a truss. For a plane truss the flexible wires 
become solid bars, and there are two dis
placements (instead of one potential) at 
every joint. The original A becomes 6 x 8 . 
If there are supports, they act to prevent 
rigid motion and to remove columns cor
responding to fixed displacements (just as 
grounding a node removed the unknown 
constant from the potential). The final 
matrix exposes the stability or instability 
of the truss: 

Stable truss (A has independent columns) 
(1) Statically determinate: 

A is square and invertible 
(2) Statically indeterminate: 

more rows than columns 

Unstable truss ( A has dependent columns) 

(3) Rigid motion: too few supports 
(4) Mechanism: a displacement without 

stress, from Ax = 0 

An unstable truss could move rigidly and 
also deform, if it is really unsafe. Of 
course, robotics looks at the same matrix 
ATCA. 

In a continuum, the direct analog of 
network flow is potential flow. The cur
rent law becomes "divergence = zero" and 
the voltage law is "curl = zero." Again 
vector calculus enters, to show that the 
curl is zero when the flow comes from a 
potential. The identity curl grad = 0 brings 
in the gradient—just as potential differ
ences appeared, to make the circulation 
zero around every loop. I find that these 

analogies, when done properly and care
fully, are welcomed by the students. They 
see the framework, they see the purpose 
of vector calculus, and they also see the 
purpose of the course. 

In fact, there are several purposes. One 
is to formulate the equation, in this case 
ATAu = 0 (Laplace's equation div grad u 
— 0). Another is to describe analytical 
methods for its solution—Fourier series 
or Bessel functions or complex variables. 
A third purpose is to propose numerical 
methods, in this case finite differences or 
finite elements. Note how the computer 
has an important place, but the ideas 
come first. 

I will try to comment briefly on some 
individual topics. Then I will refer briefly 
to my new textbook (Strang, 1986) and its 
goal, to combine these topics into a course 
on modern applied mathematics: 

1. Partial differential equations: That is 
the central thread of the course, to intro
duce those equations and solve them. For 
equilibrium equations (boundary-value 
problems) the framework is ATCAu=f. 
For dynamic equations (initial-valueprob
lems) there is an inertial term Mu„. The 
positive definiteness of K — ATCA pro
duces oscillating solutions in the wave 
equation and decaying solutions in the 
heat equation. The underlying eigenvalue 
problem is Ku — XMu, and A had better 
not be negative. 

These are ordinary differential equa
tions when A' is a matrix. They are partial 
differential equations when A is d/dx; I 
do not believe that step to be an over
whelming obstacle. The key is to solve the 
equations for forces that are interesting 
—especially a uniform load / = 1 or a 
point load f=8 or an exponential / = 
e'ky. The response to / = S is the Green's 
function. The responses to exponentials 
are more exponentials, and we come natu
rally to transforms. 

2. Fourier analysis: This remains vital 
to every problem that is linear and " sta
tionary." In differential equations the 
coefficients are constant; in integral equa
tions there is a convolution; in matrix 
equations there are constants down each 
diagonal. The eigenfunctions are ex
ponentials. The eigenvalues are the trans
forms. The problem changes from analy
sis to algebra, when the harmonics are 
uncoupled. 

The underlying solution process has 
three steps. The data is expanded into 
exponentials, each frequency is followed 
separately, and the pieces are recombined 
into the solution. I believe that the first 
step may have had too much emphasis— 
computing Fourier coefficients has come 
to dominate the homework. That is basi
cally an exercise in integration, not so 

often done in practice. The real key is in 
the second step, where the system con
verts input to output. It is the properties 
of this transfer function that matter, and 
the effect it produces on the Fourier 
coefficients. Their behavior at high fre
quencies decides whether jumps are 
formed or maintained or destroyed. 

3. Complex variables: They are essen
tial to transform methods, and there is a 
special relation between analytic func
tions and Laplace's equation. But I do not 
think residue methods or conformal map
ping should dominate the course—a bal
ance is necessary, and other topics have 
moved forward. 

4. Vector calculus: A necessary tool, 
but not to be confused with the real con
tent of applied mathematics. 

5. Linear algebra: This is indispensa
ble. That was not always recognized when 
the engineering curriculum was set; 
matrices were important but differential 
equations were absolutely preeminent. The 
balance has been adjusted by the needs of 
scientific computing. The continuous 
problem is now made discrete, the nonlin
ear problem is linearized at each iteration, 
and the dynamic problem is chopped into 
finite time steps. The digital computer 
defeated the analog computer, and even 
Fourier analysis is changed; signals are 
discrete and so are their transforms. The 
result is a flood of linear equations that 
have to be solved efficiently. 

The key to a linear system is almost 
always a factorization of the underlying 
matrix. In elimination it is A = LU. The 
equation is broken into two triangular 
systems, and for large problems we try to 
make them sparse. Similarly, Gram-
Schmidt leads to A = QR—with ortho-
normal columns in Q and a triangular R. 
The principal axis theorem diagonalizes 
a symmetric matrix by using its eigenvec
tors, A = QAQ7. In the singular value 
decomposition A = Q{2Q\, the diagonal 
2 now contains the eigenvalues of ATA. 
The polar decomposition separates 
stretching from rotation, and the fast 
Fourier transform is really a factorization 
of the Fourier matrix (whose entries are 
roots of unity wjk) into log n factors each 
with O(n) nonzeros. 

Applied linear algebra has become too 
important to be picked up on the streets. 
It can be presented early (Strang, 1980) or 
later (Golub and Van Loan, 1983), but a 
purely abstract course (which some 
mathematicians have been known to 
teach, the author included) is generally an 
ineffective preparation. It is also less fun, 
when there are no applications. 

6. Optimization and the calculus of vari
ations: I am seduced by the elegance of a 
minimum principle. The potential energy 
P = \ uTATCA u — uTf is minimized at 
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equilibrium. So is the complementary en
ergy <2 = \oTC~1a, subject to the con
straint A7a = /—and this brings in 
Lagrange multipliers, which turn out to 
equal u. Additional constraints are possi
ble; they enter P and Q in a dual way. 
Nonlinear problems fit perfectly as long 
as they are conservative—and the subject 
is unified. 

7. Numerical methods: I believe that 
algorithms belong with the problems they 
solve! Finite differences and finite ele
ments and the fast Fourier transform and 
iterative methods should not wait for some 
uncertain future course. It is this course 
that should recognize what the computer 
can do, without being dominated by it. I 
finally tried a computing project instead 
of a takehome exam, and the response 
was tremendous—we could see what 
Newton's method was doing, and whether 
it worked. If a specific calculation is sug
gested but not required, then students can 
choose to be safe or original. In the long 
run, it is what they do that is learned and 
remembered. 

In my own class I became convinced 
that the textbook was crucial. A course 
needs structure, and a pattern into which 
the applications will fit. There must be 
examples and exercises to reinforce the 
theory. The goal is to teach more of what 
is really done in modern applied mathe
matics, and perhaps my experience was 
typical—to become responsible for a 
course that needed renewal. It led to a 
new text (Strang, 1986) for MIT's en
gineering mathematics course, covering 
the seven areas outlined above. Special 
topics are there for reference—the Kal-
man filter, chaos and strange attractors, 
entropy and jump conditions at shocks, 
networks and graphs, and Karmarkar's 
new method for linear programming. No 
course should cover them all, but this 
subject is alive and growing! It is vital to 
teach it that way. 
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