Abstract

We review a broad range of topics related to the interplay of electrochemistry and mechanics in all solid-state batteries. The modeling frameworks that exist in the literature are varied in terms of their sophistication and ability to capture critical observations. Modeling frameworks for diffusion induced stress and fracture due to lithiation swelling and shrinkage in storage materials for the cathodes are well-established along with models for lithium-ion transport in solid electrolytes. Similarly, aspects of the effect of stress on the redox reactions at the Li metal/electrolyte interface are well-understood. These models typically modify Butler–Volmer kinetics but neglect the effect of creep or other plastic deformations of the metal electrode on the interface kinetics. Nevertheless, they successfully describe the roughening of the metal electrode/electrolyte interface during deposition or plating. By contrast, Butler–Volmer kinetics accounting only for the interfacial stress are unable to predict voids that have been observed to form in the metal electrode and we discuss a hypothesis that creep deformation of the metal electrode has a more fundamental effect on the redox reactions. Similarly, models for the nucleation and growth of lithium filaments in solid electrolytes are also inconsistent with recent observations which suggest that cracks in solid electrolytes are only partially filled with lithium metal. We conclude by summarizing aspects of the interplay of electrochemistry and mechanics in all solid-state batteries that are well-understood and areas where significant open questions remain.

References

1.
Lewis
,
J. A.
,
Tippens
,
J.
,
Quintero Cortes
,
F. J.
, and
McDowell
,
M. T.
,
2019
, “
Chemo-Mechanical Challenges in Solid-State Batteries
,”
Trends Chem.
,
1
(
9
), pp.
845
857
.10.1016/j.trechm.2019.06.013
2.
Chan
,
C. K.
,
Peng
,
H.
,
Liu
,
G.
,
McIlwrath
,
K.
,
Zhang
,
X. F.
,
Huggins
,
R. A.
, and
Cui
,
Y.
,
2008
, “
High-Performance Lithium Battery Anodes Using Silicon Nanowires
,”
Nat. Nanotechnol.
,
3
(
1
), pp.
31
35
.10.1038/nnano.2007.411
3.
Zhao
,
Y.
,
Stein
,
P.
,
Bai
,
Y.
,
Al-Siraj
,
M.
,
Yang
,
Y.
, and
Xu
,
B.-X.
,
2019
, “
A Review on Modeling of Electro-Chemo-Mechanics in Lithium-Ion Batteries
,”
J. Power Sources
,
413
, pp.
259
283
.10.1016/j.jpowsour.2018.12.011
4.
Zhang
,
F.
,
Huang
,
Q.-A.
,
Tang
,
Z.
,
Li
,
A.
,
Shao
,
Q.
,
Zhang
,
L.
,
Li
,
X.
, and
Zhang
,
J.
,
2020
, “
A Review of Mechanics-Related Material Damages in All-Solid-State Batteries: Mechanisms, Performance Impacts and Mitigation Strategies
,”
Nano Energy
,
70
, p.
104545
.10.1016/j.nanoen.2020.104545
5.
Bistri
,
D.
,
Afshar
,
A.
, and
Di Leo
,
C.
,
2021
, “
Modeling the Chemo-Mechanical Behavior of All-Solid-State Batteries: A Review
,”
Meccanica
,
56
(
6
), pp.
1523
1554
.10.1007/s11012-020-01209-y
6.
Tian
,
J.
,
Chen
,
Z.
, and
Zhao
,
Y.
,
2022
, “
Review on Modeling for Chemo-Mechanical Behavior at Interfaces of All-Solid-State Lithium-Ion Batteries and Beyond
,”
ACS Omega
,
7
(
8
), pp.
6455
6462
.10.1021/acsomega.1c06793
7.
Huggins
,
R. A.
,
2008
,
Advanced Batteries: Materials Science Aspects
,
Springer
, New York.
8.
Christensen
,
J.
, and
Newman
,
J.
,
2006
, “
A Mathematical Model of Stress Generation and Fracture in Lithium Manganese Oxide
,”
J. Electrochem. Soc.
,
153
(
6
), pp.
A1019
A1030
.10.1149/1.2185287
9.
Vetter
,
J.
,
Novák
,
P.
,
Wagner
,
M. R.
,
Veit
,
C.
,
Möller
,
K.-C.
,
Besenhard
,
J. O.
,
Winter
,
M.
,
Wohlfahrt-Mehrens
,
M.
,
Vogler
,
C.
, and
Hammouche
,
A.
,
2005
, “
Ageing Mechanisms in Lithium-Ion Batteries
,”
J. Power Sources
,
147
(
1–2
), pp.
269
281
.10.1016/j.jpowsour.2005.01.006
10.
Moon
,
H.-S.
,
Lee
,
W.
,
Reucroft
,
P. J.
, and
Park
,
J.-W.
,
2003
, “
Effect of Film Stress on Electrochemical Properties of Lithium Manganese Oxide Thin Films
,”
J. Power Sources
,
119
121
, pp.
710
712
.10.1016/S0378-7753(03)00219-2
11.
Wang
,
D.
,
Wu
,
X.
,
Wang
,
Z.
, and
Chen
,
L.
,
2005
, “
Cracking Causing Cyclic Instability of LiFePO4 Cathode Material
,”
J. Power Sources
,
140
(
1
), pp.
125
128
.10.1016/j.jpowsour.2004.06.059
12.
Christensen
,
J.
, and
Newman
,
J.
,
2006
, “
Stress Generation and Fracture in Lithium Insertion Materials
,”
J. Solid State Electrochem.
,
10
(
5
), pp.
293
319
.10.1007/s10008-006-0095-1
13.
Zhang
,
X.
,
Shyy
,
W.
, and
Sastry
,
A. M.
,
2007
, “
Numerical Simulation of Intercalation-Induced Stress in Li-Ion Battery Electrode Particles
,”
J. Electrochem. Soc.
,
154
(
10
), pp.
A910
A916
.10.1149/1.2759840
14.
Park
,
J.
,
Lu
,
W.
, and
Sastry
,
A. M.
,
2011
, “
Numerical Simulation of Stress Evolution in Lithium Manganese Dioxide Particles Due to Coupled Phase Transition and Intercalation
,”
J. Electrochem. Soc.
,
158
(
2
), pp.
A201
A206
.10.1149/1.3526597
15.
Cheng
,
Y.-T.
, and
Verbrugge
,
M. W.
,
2010
, “
Diffusion-Induced Stress, Interfacial Charge Transfer, and Criteria for Avoiding Crack Initiation of Electrode Particles
,”
J. Electrochem. Soc.
,
157
(
4
), pp.
A508
A516
.10.1149/1.3298892
16.
Cheng
,
Y.-T.
, and
Verbrugge
,
M.
,
2009
, “
Evolution of Stress Within a Spherical Insertion Electrode Particle Under Potentiostatic and Galvanostatic Operation
,”
J. Power Sources
,
190
(
2
), pp.
453
460
.10.1016/j.jpowsour.2009.01.021
17.
Christensen
,
J.
,
2010
, “
Modeling Diffusion-Induced Stress in Li-Ion Cells With Porous Electrodes
,”
J. Electrochem. Soc.
,
157
(
3
), pp.
A366
A380
.10.1149/1.3269995
18.
Renganathan
,
S.
,
Sikha
,
G.
,
Santhanagopalan
,
S.
, and
White
,
R. E.
,
2010
, “
Theoretical Analysis of Stresses in a Lithium Ion Cell
,”
J. Electrochem. Soc.
,
157
(
2
), pp.
A155
A163
.10.1149/1.3261809
19.
Golmon
,
S.
,
Maute
,
K.
, and
Dunn
,
M. L.
,
2009
, “
Numerical Modeling of Electrochemical-Mechanical Interactions in Lithium Polymer Batteries
,”
Comput. Struct.
,
87
(
23–24
), pp.
1567
1579
.10.1016/j.compstruc.2009.08.005
20.
Garcı́a
,
R. E.
,
Chiang
,
Y.-M.
,
Carter
,
W. C.
,
Limthongkul
,
P.
, and
Bishop
,
C. M.
,
2005
, “
Microstructural Modeling and Design of Rechargeable Lithium-Ion Batteries
,”
J. Electrochem. Soc.
,
152
(
1
), pp.
A255
A263
.10.1149/1.1836132
21.
García
,
R. E.
, and
Chiang
,
Y.-M.
,
2007
, “
Spatially Resolved Modeling of Microstructurally Complex Battery Architectures
,”
J. Electrochem. Soc.
,
154
(
9
), pp.
A856
A864
.10.1149/1.2754072
22.
Botte
,
G. G.
,
2005
, “
Modeling Volume Changes Due to Lithium Intercalation in a Carbon Fiber
,”
Electrochim. Acta
,
50
(
28
), pp.
5647
5658
.10.1016/j.electacta.2005.03.058
23.
Haftbaradaran
,
H.
,
Song
,
J.
,
Curtin
,
W. A.
, and
Gao
,
H.
,
2011
, “
Continuum and Atomistic Models of Strongly Coupled Diffusion, Stress, and Solute Concentration
,”
J. Power Sources
,
196
(
1
), pp.
361
370
.10.1016/j.jpowsour.2010.06.080
24.
Purkayastha
,
R. T.
, and
McMeeking
,
R. M.
,
2012
, “
A Linearized Model for Lithium Ion Batteries and Maps for Their Performance and Failure
,”
ASME J. Appl. Mech.
,
79
(
3
), p.
031021
.10.1115/1.4005962
25.
Purkayastha
,
R. T.
, and
McMeeking
,
R. M.
,
2013
, “
A Parameter Study of Intercalation of Lithium Into Storage Particles in a Lithium-Ion Battery
,”
Comput. Mater. Sci.
,
80
, pp.
2
14
.10.1016/j.commatsci.2012.11.050
26.
Purkayastha
,
R. T.
, and
McMeeking
,
R. M.
,
2012
, “
An Integrated Two-Dimensional Model of a Lithium-Ion Battery: The Effect of Material Parameters and Morphology on Storage Particle Stress
,”
Comput. Mech.
,
50
(
2
), pp.
209
227
.10.1007/s00466-012-0724-8
27.
Purkayastha
,
R. T.
, and
McMeeking
,
R. M.
,
2016
, “
Stress Due to the Intercalation of Lithium in Cubic-Shaped Particles: A Parameter Study
,”
Meccanica
,
51
(
12
), pp.
3081
3096
.10.1007/s11012-016-0540-x
28.
Bohn
,
E.
,
Eckl
,
T.
,
Kamlah
,
M.
, and
McMeeking
,
R. M.
,
2013
, “
A Model for Lithium Diffusion and Stress Generation in an Intercalation Storage Particle With Phase Change
,”
J. Electrochem. Soc.
,
160
(
10
), pp.
A1638
A1652
.10.1149/2.011310jes
29.
Deshpande
,
R.
,
Cheng
,
Y.-T.
,
Verbrugge
,
M. W.
, and
Timmons
,
A.
,
2011
, “
Diffusion Induced Stresses and Strain Energy in a Phase-Transforming Spherical Electrode Particle
,”
J. Electrochem. Soc.
,
158
(
6
), pp.
A718
A724
.10.1149/1.3565183
30.
Huttin
,
H.
, and
Kamlah
,
M.
,
2012
, “
Phase-Field Modeling of Stress Generation in Electrode Particles of Lithium Ion Batteries
,”
Appl. Phys. Lett.
,
101
(
13
), p.
133902
.10.1063/1.4754705
31.
Aifantis
,
K. E.
, and
Dempsey
,
J. P.
,
2005
, “
Stable Crack Growth in Nanostructured Li-Batteries
,”
J. Power Sources
,
143
(
1–2
), pp.
203
211
.10.1016/j.jpowsour.2004.11.037
32.
Woodford
,
W. H.
,
Chiang
,
Y. M.
, and
Carter
,
W. C.
,
2010
, “
Electrochemical Shock' of Intercalation Electrodes – A Fracture Mechanics Analysis
,”
J. Electrochem. Soc.
,
157
(
10
), pp.
A1052
A1059
.10.1149/1.3464773
33.
Woodford
,
W. H.
,
Chiang
,
Y. M.
, and
Carter
,
W. C.
,
2012
, “
Design Criteria for Electrochemical Shock Resistant Battery Electrodes
,”
Energy Environ. Sci.
,
5
(
7
), pp.
8014
8024
.10.1039/c2ee21874g
34.
Woodford
,
W. H.
,
Chiang
,
Y. M.
, and
Carter
,
W. C.
,
2013
, “
Electrochemical Shock in Ion-Intercalation Materials With Limited Solid-Solubility
,”
J. Electrochem. Soc.
,
160
(
8
), pp.
A1286
A1292
.10.1149/2.104308jes
35.
Wang
,
H.
,
Jang
,
Y.
,
Huang
,
B.
,
Sadoway
,
D. R.
, and
Chiang
,
Y.-M.
,
1999
, “
TEM Study of Electrochemical Cycling-Induced Damage and Disorder in LiCoO2 Cathodes for Rechargeable Lithium Batteries
,”
J. Electrochem. Soc.
,
146
(
2
), pp.
473
480
.10.1149/1.1391631
36.
Ohzuku
,
T.
,
Tomura
,
H.
, and
Sawai
,
K.
,
1997
, “
Monitoring of Particle Fracture by Acoustic Emission During Charge and Discharge of Li/MnO2 Cells
,”
J. Electrochem. Soc.
,
144
(
10
), pp.
3496
3500
.10.1149/1.1838039
37.
Thackeray
,
M. M.
,
Yang
,
S.-H.
,
Kahaian
,
A. J.
,
Kepler
,
K. D.
,
Skinner
,
E.
,
Vaughey
,
J. T.
, and
Hackney
,
S. A.
,
1999
, “
Structural Fatigue in Spinel Electrodes in High Voltage (4V) Li/LixMn2O4 Cells
,”
Electrochem. Solid-State Lett.
,
1
(
1
), pp.
7
9
.10.1149/1.1390617
38.
Tucker
,
M. C.
,
Reimer
,
J. A.
, and
Cairns
,
E. J.
,
2002
, “
A 7Li NMR Study of Capacity Fade in Metal-Substituted Lithium Manganese Oxide Spinels
,”
J. Electrochem. Soc.
,
149
(
5
), pp.
A574
A585
.10.1149/1.1466856
39.
Ohzuku
,
T.
,
Matoba
,
N.
, and
Sawai
,
K.
,
2001
, “
Direct Evidence on Anomalous Expansion of Graphite-Negative Electrodes on First Charge by Dilatometry
,”
J. Power Sources
,
97
98
, pp.
73
77
.10.1016/S0378-7753(01)00590-0
40.
Kostecki
,
R.
, and
McLarnon
,
F.
,
2003
, “
MicroProbe Study of the Effect of Li Intercalation on the Structure of Graphite
,”
J. Power Sources
,
119
121
, pp.
550
554
.10.1016/S0378-7753(03)00287-8
41.
Markervich
,
E.
,
Salitra
,
G.
,
Levi
,
M. D.
, and
Aurbach
,
D.
,
2005
, “
Capacity Fading of Lithiated Graphite Electrodes Studied by a Combination of Electroanalytical Methods, Raman Spectroscopy and SEM
,”
J. Power Sources
,
146
(
1–2
), pp.
146
150
.10.1016/j.jpowsour.2005.03.107
42.
Gabrisch
,
H.
,
Wilcox
,
J.
, and
Doeff
,
M. M.
,
2008
, “
TEM Study of Fracturing in in Spherical and Plate-Like LiFePO4 Particles
,”
Electrochem. Solid-State Lett.
,
11
(
3
), pp.
A25
A29
.10.1149/1.2826746
43.
Zhao
,
K.
,
Pharr
,
M.
,
Vlassak
,
J. J.
, and
Suo
,
Z.
,
2010
, “
Fracture of Electrodes in Lithium-Ion Batteries Caused by Fast Charging
,”
J. Appl. Phys.
,
108
(
7
), p.
073517
.10.1063/1.3492617
44.
Huggins
,
R. A.
, and
Nix
,
W. D.
,
2000
, “
Decrepitation Model for Capacity Loss During Cycling of Alloys in Rechargeable Electrochemical Systems
,”
Ionics
,
6
(
1–2
), pp.
57
63
.10.1007/BF02375547
45.
Bhandakkar
,
T. K.
, and
Gao
,
H.
,
2010
, “
Cohesive Modeling of Crack Nucleation Under Diffusion Induced Stresses in a Thin Strip: Implications on the Critical Size for Flaw Tolerant Battery Electrodes
,”
Int. J. Solids Struct.
,
47
(
10
), pp.
1424
1434
.10.1016/j.ijsolstr.2010.02.001
46.
Bhandakkar
,
T. K.
, and
Gao
,
H.
,
2011
, “
Cohesive Modeling of Crack Nucleation in a Cylindrical Electrode Under Axisymmetric Diffusion Induced Stresses
,”
Int. J. Solids Struct.
,
48
(
16–17
), pp.
2304
2309
.10.1016/j.ijsolstr.2011.04.005
47.
Yang
,
F.
,
2010
, “
Insertion-Induced Breakage of Materials
,”
J. Appl. Phys.
,
108
(
7
), p.
073536
.10.1063/1.3486512
48.
Zhu
,
M.
,
Park
,
J.
, and
Sastry
,
A. M.
,
2012
, “
Fracture Analysis of the Cathode in Li-Ion Batteries: A Simulation Study
,”
J. Electrochem. Soc.
,
159
(
4
), pp.
A492
A498
.10.1149/2.045204jes
49.
Hu
,
Y.
,
Zhao
,
X.
, and
Suo
,
Z.
,
2010
, “
Averting Cracks Caused by Insertion Reaction in Lithium-Ion Batteries
,”
J. Mater. Res.
,
25
(
6
), pp.
1007
1010
.10.1557/JMR.2010.0142
50.
Liang
,
L.
,
Stan
,
M.
, and
Anitescu
,
M.
,
2014
, “
Phase-Field Modeling of Diffusion-Induced Crack Propagations in Electrochemical Systems
,”
Appl. Phys. Lett.
,
105
(
16
), p.
163903
.10.1063/1.4900426
51.
Zuo
,
P.
, and
Zhao
,
Y.-P.
,
2015
, “
A Phase Field Model Coupling Lithium Diffusion and Stress Evolution With Crack Propagation and Application in Lithium Ion Batteries
,”
Phys. Chem. Chem. Phys.
,
17
(
1
), pp.
287
297
.10.1039/C4CP00563E
52.
Klinsmann
,
M.
,
Rosato
,
D.
,
Kamlah
,
M.
, and
McMeeking
,
R. M.
,
2015
, “
An Assessment of the Phase Field Formulation for Crack Growth
,”
Comput. Methods Appl. Mech. Eng.
,
294
, pp.
313
330
.10.1016/j.cma.2015.06.009
53.
Klinsmann
,
M.
,
Rosato
,
D.
,
Kamlah
,
M.
, and
McMeeking
,
R. M.
,
2016
, “
Modeling Crack Growth During Li Insertion in the Storage Particles Using a Fracture Phase Field Approach
,”
J. Mech. Phys. Solids
,
92
, pp.
313
344
.10.1016/j.jmps.2016.04.004
54.
Klinsmann
,
M.
,
Rosato
,
D.
,
Kamlah
,
M.
, and
McMeeking
,
R. M.
,
2016
, “
Modeling Crack Growth During Li Extraction in Storage Particles Using a Fracture Phase Field Approach
,”
J. Electrochem. Soc.
,
163
(
2
), pp.
A102
A118
.10.1149/2.0281602jes
55.
Klinsmann
,
M.
,
Rosato
,
D.
,
Kamlah
,
M.
, and
McMeeking
,
R. M.
,
2016
, “
Modeling Crack Growth During Li Extraction and Insertion Within the Second Half Cycle
,”
J. Power Sources
,
331
, pp.
32
42
.10.1016/j.jpowsour.2016.08.142
56.
Cheng
,
Y.-T.
, and
Verbrugge
,
M. W.
,
2010
, “
Application of Hasselman's Crack Propagation Model to Insertion Electrodes
,”
Electrochem. Solid State Lett.
,
13
(
9
), pp.
A128
A131
.10.1149/1.3455179
57.
Hasselman
,
D. P. H.
,
1963
, “
Elastic Energy of Fracture and Surface Energy as Design Criteria for Thermal Shock
,”
J. Am. Ceram. Soc.
,
46
(
11
), pp.
535
540
.10.1111/j.1151-2916.1963.tb14605.x
58.
Bower
,
A. F.
, and
Guduru
,
P. R.
,
2012
, “
A Simple Finite Element Model of Diffusion, Finite Deformation, Plasticity and Fracture in Lithium Ion Insertion Electrode Materials
,”
Modell. Simul. Mater. Sci. Eng.
,
20
(
4
), p.
045004
.10.1088/0965-0393/20/4/045004
59.
Wu
,
B.
, and
Lu
,
W.
,
2017
, “
A Battery Model That Fully Couples Mechanics and Electrochemistry at Both Particle and Electrode Levels by Incorporation of Particle Interaction
,”
J. Power Sources
,
360
, pp.
360
372
.10.1016/j.jpowsour.2017.05.115
60.
Xu
,
R.
,
Yang
,
Y.
,
Yin
,
F.
,
Liu
,
P.
,
Cloetens
,
P.
,
Liu
,
Y.
,
Lin
,
F.
, and
Zhao
,
K.
,
2019
, “
Heterogeneous Damage in Li-Ion Batteries: Experimental Analysis and Theoretical Modeling
,”
J. Mech. Phys. Solids
,
129
, pp.
160
183
.10.1016/j.jmps.2019.05.003
61.
Liu
,
P.
,
Xu
,
R.
,
Liu
,
Y.
,
Lin
,
F.
, and
Zhao
,
K. J.
,
2020
, “
Computational Modeling of Heterogeneity of Stress, Charge, and Cyclic Damage in Composite Electrodes of Li-Ion Batteries
,”
J. Electrochem. Soc.
,
167
(
4
), p.
040527
.10.1149/1945-7111/ab78fa
62.
Bistri
,
D.
, and
Di Leo
,
C. V.
,
2021
, “
Modeling of Chemo-Mechanical Multi-Particle Interactions in Composite Electrodes for Liquid and Solid-State Li-Ion Batteries
,”
J. Electrochem. Soc.
,
168
(
3
), p.
030515
.10.1149/1945-7111/abe8ea
63.
Zhang
,
W.
,
Weber
,
D. A.
,
Weigand
,
H.
,
Arlt
,
T.
,
Manke
,
I.
,
Schröder
,
D.
,
Koerver
,
R.
,
Leichtweiss
,
T.
,
Hartmann
,
P.
,
Zeier
,
W. G.
, and
Janek
,
J.
,
2017
, “
Interfacial Processes and Influence of Composite Cathode Microstructure Controlling the Performance of All-Solid-State Lithium Batteries
,”
Appl. Mater. Interfaces
,
9
(
21
), pp.
17835
17845
.10.1021/acsami.7b01137
64.
Xu
,
R.
,
de Vasconcelos
,
L. S.
,
Shi
,
J.
,
Li
,
J.
, and
Zhao
,
K.
,
2018
, “
Disintegration of Meatball Electrodes for LiNixMnyCozO2 Cathode Materials
,”
Exp. Mech.
,
58
(
4
), pp.
549
559
.10.1007/s11340-017-0292-0
65.
Bucci
,
G.
,
Swamy
,
T.
,
Chiang
,
Y.-T.
, and
Carter
,
W. C.
,
2017
, “
Modeling of Internal Mechanical Failure of All-Solid-State Batteries During Electrochemical Cycling, and Implications for Battery Design
,”
J. Mater. Chem. A
,
5
(
36
), pp.
19422
19430
.10.1039/C7TA03199H
66.
Hao
,
F.
, and
Mukherjee
,
P. P.
,
2018
, “
Mesoscale Analysis of the Electrolyte-Electrode Interface in All-Solid-State Li-Ion Batteries
,”
J. Electrochem. Soc.
,
165
(
9
), pp.
A1857
A1864
.10.1149/2.1251809jes
67.
Sakuda
,
A.
,
Hayashi
,
A.
, and
Tatsumisago
,
M.
,
2013
, “
Sulfide Solid Electrolyte With Favorable Mechanical Property for All-Solid State Lithium Battery
,”
Sci. Rep.
,
3
(
1
), p.
2261
.10.1038/srep02261
68.
McGrogan
,
F. P.
,
Swamy
,
T.
,
Bishop
,
S. R.
,
Eggleton
,
E.
,
Porz
,
L.
,
Chen
,
X.
,
Chiang
,
Y.-T.
, and
Van Vliet
,
K. J.
,
2017
, “
Compliant yet Brittle Mechanical Behavior of Li2S-P2S5 Lithium-Ion Conducting Solid Electrolyte
,”
Adv. Energy Mater.
,
7
(
12
), p.
1602011
.10.1002/aenm.201602011
69.
Bucci
,
G.
,
Swamy
,
T.
,
Bishop
,
S.
,
Sheldon
,
B. W.
,
Chiang
,
Y.-T.
, and
Carter
,
W. C.
,
2017
, “
The Effect of Stress on Battery-Electrode Capacity
,”
J. Electrochem. Soc.
,
164
(
4
), pp.
A645
A654
.10.1149/2.0371704jes
70.
Bucci
,
G.
,
Talamini
,
B.
,
Balakrishna
,
A. R.
,
Chiang
,
Y.-T.
, and
Carter
,
W. C.
,
2018
, “
Mechanical Instability of Electrode-Electrolyte Interfaces in Solid-State Batteries
,”
Phys. Rev. Mater.
,
2
(
10
), p.
105407
.10.1103/PhysRevMaterials.2.105407
71.
Zhang
,
W.
,
Schröder
,
D.
,
Arlt
,
T.
,
Manke
,
I.
,
Koerver
,
R.
,
Pinedo
,
R.
,
Weber
,
D. A.
,
Sann
,
J.
,
Zeier
,
W. G.
, and
Janek
,
J.
,
2017
, “
(Electro)Chemical Expansion During Cycling: Monitoring the Pressure Changes in Operating Solid-State Lithium Batteries
,”
J. Mater. Chem. A
,
5
(
20
), pp.
9929
9936
.10.1039/C7TA02730C
72.
Koerver
,
R.
,
Aygün
,
I.
,
Leichtwei
β,
T.
,
Dietrich
,
C.
,
Zhang
,
W.
,
Weber
,
D. A.
,
Binder
,
J. O.
,
Hartmann
,
P.
,
Zeier
,
W. G.
, and
Janek
,
J.
,
2017
, “
Capacity Fade in Solid-State Batteries: Interphase Formation and Chemomechanical Processes in Nickel-Rich Layered Cathodes and Lithium Thiophosphate Solid Electrolytes
,”
Chem. Mater.
,
29
(
13
), pp.
5574
5582
.10.1021/acs.chemmater.7b00931
73.
Bower
,
A. F.
,
Guduru
,
P. R.
, and
Sethuraman
,
V. A.
,
2011
, “
A Finite Strain Model of Stress, Diffusion, Plastic Flow, and Electrochemical Reactions in a Lithium-Ion Half-Cell
,”
J. Mech. Phys. Solids
,
59
(
4
), pp.
804
828
.10.1016/j.jmps.2011.01.003
74.
Timoshenko
,
S. P.
, and
Goodier
,
J. N.
,
1970
,
Theory of Elasticity
, 3rd ed.,
McGraw-Hill
, New York.
75.
Begley
,
M. R.
, and
Hutchinson
,
J. W.
,
2017
,
The Mechanics and Reliability of Films, Multilayers and Coatings
,
Cambridge University Press
, Cambridge, UK.
76.
Barenblatt
,
G. I.
,
1962
, “
The Mathematical Theory of Equilibrium Cracks in Brittle Fracture
,”
Adv. Appl. Mech.
,
7
, pp.
55
129
.10.1016/S0065-2156(08)70121-2
77.
McClintock
,
F. A.
, and
Argon
,
A. S.
,
1966
,
Mechanical Behavior of Materials
,
Addison-Wesley
, Reading, MA.
78.
Rice
,
J. R.
, and
Sih
,
G. C.
,
1965
, “
Plane Problems of Cracks in Dissimilar Media
,”
ASME J. Appl. Mech.
,
32
(
2
), pp.
418
423
.10.1115/1.3625816
79.
Rice
,
J. R.
,
1988
, “
Elastic Fracture Mechanics Concepts for Interfacial Cracks
,”
ASME J. Appl. Mech.
,
55
(
1
), pp.
98
103
.10.1115/1.3173668
80.
Zhang
,
M.
,
Qu
,
J.
, and
Rice
,
J. R.
,
2017
, “
Path Independent Integrals in Equilibrium Electro-Chemo-Elasticity
,”
J. Mech. Phys. Solids
,
107
, pp.
525
541
.10.1016/j.jmps.2017.07.001
81.
Qi
,
Y.
,
Xu
,
Q.
, and
Van der Ven
,
A.
,
2012
, “
Chemically Induced Crack Instability When Electrodes Fracture
,”
J. Electrochem. Soc.
,
159
(
11
), pp.
A1838
A1843
.10.1149/2.026211jes
82.
Gao
,
Y. F.
, and
Zhou
,
M.
,
2013
, “
Coupled Mechano-Diffusional Driving Forces for Fracture in Electrode Materials
,”
J. Power Sources
,
230
, pp.
176
193
.10.1016/j.jpowsour.2012.12.034
83.
Xu
,
R.
, and
Zhao
,
K.
,
2018
, “
Corrosive Fracture of Electrodes in Li-Ion Batteries
,”
J. Mech. Phys. Solids
,
121
, pp.
258
280
.10.1016/j.jmps.2018.07.021
84.
Tada
,
H.
,
Paris
,
P. C.
, and
Irwin
,
G. R.
,
2000
,
The Stress Analysis of Cracks Handbook
, 3rd ed.,
ASME Press
, New York.
85.
Porz
,
L.
,
Swamy
,
T.
,
Sheldon
,
B. W.
,
Rettenwander
,
D.
,
Frömling
,
T.
,
Thaman
,
H. L.
,
Berendts
,
S.
,
Uecker
,
R.
,
Carter
,
W. C.
, and
Chiang
,
Y.-M.
,
2017
, “
Mechanism of Lithium Metal Penetration Through Inorganic Solid Electrolytes
,”
Adv. Energy Mater.
,
7
(
20
), p.
1701003
.10.1002/aenm.201701003
86.
Goodenough
,
J. B.
, and
Singh
,
P.
,
2015
, “
Review – Solid Electrolytes in Rechargeable Electrochemical Cells
,”
J. Electrochem. Soc.
,
162
(
14
), pp.
A2387
A2392
.10.1149/2.0021514jes
87.
Pugal
,
D.
,
Jung
,
K.
,
Aabloo
,
A.
, and
Kim
,
K. J.
,
2010
, “
Ionic Polymer-Metal Composite Mechanoelectrical Transduction: Review and Perspectives
,”
Polym. Int.
,
59
(
3
), pp.
279
289
.10.1002/pi.2759
88.
Niitani
,
T.
,
Shimada
,
M.
,
Kawamura
,
K.
,
Dokko
,
K.
,
Rho
,
Y.-H.
, and
Kanamura
,
K.
,
2005
, “
Synthesis of Li+ Ion Conductive PEO-PSt Block Copolymer Electrolyte With Microphase Separation Structure
,”
Electrochem. Solid-State Lett.
,
8
(
8
), pp.
A385
A388
.10.1149/1.1940491
89.
Singh
,
M.
,
Odusanya
,
O.
,
Wilmes
,
G. M.
,
Eitouni
,
H. B.
,
Gomez
,
E. D.
,
Patel
,
A. J.
,
Chen
,
V. L.
,
Park
,
M. J.
,
Fragouli
,
P.
,
Iatrou
,
H.
,
Hadjichristidis
,
N.
,
Cookson
,
D.
, and
Balsara
,
N. P.
,
2007
, “
Effect of Molecular Weight on the Mechanical and Electrical Properties of Block Copolymer Electrolytes
,”
Macromolecules
,
40
(
13
), pp.
4578
4585
.10.1021/ma0629541
90.
Stone
,
G. M.
,
Mullin
,
S. A.
,
Teran
,
A. A.
,
Hallinan
,
D. T.
,
Minor
,
A. M.
,
Hexemer
,
A.
, and
Balsara
,
N. P.
,
2012
, “
Resolution of the Modulus Versus Adhesion Dilemma in Solid Polymer Electrolytes for Rechargeable Lithium Metal Batteries
,”
J. Electrochem. Soc.
,
159
(
3
), pp.
A222
A227
.10.1149/2.030203jes
91.
Young
,
N. P.
,
Devaux
,
D.
,
Khurana
,
R.
,
Coates
,
G. W.
, and
Balsara
,
N. P.
,
2014
, “
Investigating Polypropylene-Poly(Ethylene Oxide)-Polypropylene Triblock Copolymers as Solid Polymer Electrolytes for Lithium Batteries
,”
Solid State Ion.
,
263
, pp.
87
94
.10.1016/j.ssi.2014.05.012
92.
Khurana
,
R.
,
Schaefer
,
J. L.
,
Archer
,
L. A.
, and
Coates
,
G. W.
,
2014
, “
Suppression of Lithium Dendrite Growth Using Cross-Linked Polyethylene/Poly(Ethylene Oxide) Electrolytes: A New Approach for Practical Lithium-Metal Polymer Batteries
,”
J. Am. Chem. Soc.
,
136
(
20
), pp.
7395
7402
.10.1021/ja502133j
93.
Golodnitsky
,
D.
,
Strauss
,
E.
,
Peled
,
E.
, and
Greenbaum
,
S.
,
2015
, “
Review – On Order and Disorder in Polymer Electrolytes
,”
J. Electrochem. Soc.
,
162
(
14
), pp.
A2551
A2566
.10.1149/2.0161514jes
94.
Tang
,
M.
,
Wang
,
H.
,
Lee
,
Y.-G.
,
Takeda
,
Y.
,
Yamamoto
,
O.
,
Xu
,
J.
,
Yuan
,
A.
, and
Imanishi
,
N.
,
2016
, “
Electrochemical and Mechanical Properties of Polyolefin Hard Segment With Polyethylene Oxide Conductive Phase Block Copolymers
,”
Solid State Ion.
,
289
, pp.
188
193
.10.1016/j.ssi.2016.03.014
95.
Newman
,
J. S.
, and
Thomas-Alyea
,
K. E.
,
2004
,
Electrochemical Systems
, 3rd ed.,
J. Wiley
, New York.
96.
Krishna
,
R.
, and
Wesselingh
,
J.
,
1997
, “
The Maxell-Stefan Approach to Mass Transfer
,”
Chem. Eng. Sci.
,
52
(
6
), pp.
861
911
.10.1016/S0009-2509(96)00458-7
97.
Ma
,
Y.
,
Doyle
,
M.
,
Fuller
,
T. F.
,
Doeff
,
M. M.
,
De Jonghe
,
L. C.
, and
Newman
,
J.
,
1995
, “
The Measurement of a Complete Set of Transport Properties for a Concentrated Solid Polymer Electrolyte Solution
,”
J. Electrochem. Soc.
,
142
(
6
), pp.
1859
1868
.10.1149/1.2044206
98.
Doyle
,
M.
,
Newman
,
J.
,
Gozdz
,
A. S.
,
Schmutz
,
C. N.
, and
Tarascon
,
J.-M.
,
1996
, “
Comparison of Modeling Predictions With Experimental Data From Plastic Lithium Ion Cells
,”
J. Electrochem. Soc.
,
143
(
6
), pp.
1890
1903
.10.1149/1.1836921
99.
Pesko
,
D. M.
,
Timachova
,
K.
,
Bhattacharya
,
K.
,
Smith
,
M. C.
,
Villaluenga
,
I.
,
Newman
,
J.
, and
Balsara
,
N. P.
,
2017
, “
Negative Transference Numbers in Poly(Ethylene Oxide)-Based Electrolytes
,”
J. Electrochem. Soc.
,
164
(
11
), pp.
E3569
E3575
.10.1149/2.0581711jes
100.
Timachova
,
K.
,
Villaluenga
,
I.
,
Cirrincione
,
L.
,
Gobet
,
M.
,
Bhattacharya
,
K.
,
Jiang
,
X.
,
Newman
,
J.
,
Madsen
,
L. A.
,
Greenbaum
,
S. G.
, and
Balsara
,
N. P.
,
2018
, “
Anisotropic Ion Diffusion and Electrochemically Driven Transport in Nanostructured Block Copolymer Electrolytes
,”
J. Phys. Chem. B
,
122
(
4
), pp.
1537
1544
.10.1021/acs.jpcb.7b11371
101.
Baker
,
D. R.
,
Verbrugge
,
M. W.
, and
Bower
,
A. F.
,
2016
, “
Thermodynamics, Stress, and Stefan-Maxwell Diffusion in Solids: Application to Small-Strain Materials Used in Commercial Lithium-Ion Batteries
,”
J. Solid State Electrochem.
,
20
(
1
), pp.
163
181
.10.1007/s10008-015-3012-7
102.
Bucci
,
G.
,
Chiang
,
Y.-M.
, and
Carter
,
W. C.
,
2016
, “
Formulation of the Coupled Electrochemical-Mechanical Boundary-Value Problem, With Application to Transport of Multiple Charged Species
,”
Acta Mater.
,
104
, pp.
33
51
.10.1016/j.actamat.2015.11.030
103.
Ganser
,
M.
,
Hildebrand
,
F. E.
,
Kamlah
,
M.
, and
McMeeking
,
R. M.
,
2019
, “
A Finite Strain Electro-Chemical-Mechanical Theory for Ion Transport With Application to Binary Solid Electrolytes
,”
J. Mech. Phys. Solids
,
125
, pp.
681
713
.10.1016/j.jmps.2019.01.004
104.
Coleman
,
B. D.
, and
Noll
,
W.
,
1963
, “
The Thermodynamics of Elastic Materials With Heat Conduction and Viscosity
,”
Arch. Ration. Mech. Anal.
,
13
(
1
), pp.
167
178
.10.1007/BF01262690
105.
Monroe
,
C. W.
, and
Newman
,
J.
,
2009
, “
Onsager's Shortcut to Proper Forces and Fluxes
,”
Chem. Eng. Sci.
,
64
(
22
), pp.
4804
4809
.10.1016/j.ces.2009.05.009
106.
Latz
,
A.
, and
Zausch
,
J.
,
2011
, “
Thermodynamic Consistent Transport Theory of Li-Ion Batteries
,”
J. Power Sources
,
196
(
6
), pp.
3296
3302
.10.1016/j.jpowsour.2010.11.088
107.
Landstorfer
,
M.
, and
Jacob
,
T.
,
2013
, “
Mathematical Modeling of Intercalation Batteries at the Cell Level and Beyond
,”
Chem. Soc. Rev.
,
42
(
8
), pp.
3234
3252
.10.1039/c2cs35050e
108.
Monroe
,
C. W.
, and
Delacourt
,
C.
,
2013
, “
Continuum Transport Laws for Locally Non-Neutral Concentrated Electrolytes
,”
Electrochim. Acta
,
114
, pp.
649
657
.10.1016/j.electacta.2013.10.006
109.
Salvadori
,
A.
,
Bosco
,
E.
, and
Grazioli
,
D.
,
2014
, “
A Computational Homogenization Approach for Li-Ion Cells: Part 1 – Formulation
,”
J. Mech. Phys. Solids
,
65
, pp.
114
137
.10.1016/j.jmps.2013.08.010
110.
Salvadori
,
A.
,
Grazioli
,
D.
, and
Geers
,
M. G. D.
,
2015
, “
Governing Equations for a Two-Scale Analysis of Li-Ion Battery Cells
,”
Int. J. Solids Struct.
,
59
, pp.
90
109
.10.1016/j.ijsolstr.2015.01.014
111.
Salvadori
,
A.
,
Grazioli
,
D.
,
Geers
,
M. G. D.
,
Danilov
,
D.
, and
Notten
,
P. H. L.
,
2015
, “
A Multiscale-Compatible Approach in Modeling Ionic Transport in the Electrolyte of Li-Ion Batteries
,”
J. Power Sources
,
293
, pp.
892
911
.10.1016/j.jpowsour.2015.05.114
112.
Nardinocchi
,
P.
,
Pezzulla
,
M.
, and
Placidi
,
L.
,
2011
, “
Thermodynamically Based Multiphysic Modeling of Ionic Polymer Metal Composites
,”
J. Intell. Mater. Syst. Struct.
,
22
(
16
), pp.
1887
1897
.10.1177/1045389X11417195
113.
Galante
,
S.
,
Lucantonio
,
A.
, and
Nardinocchi
,
P.
,
2013
, “
The Multiplicative Decomposition of the Deformation Gradient in the Multiphysics Modeling of Ionic Polymers
,”
Int. J. Non-Linear Mech.
,
51
, pp.
112
120
.10.1016/j.ijnonlinmec.2013.01.005
114.
Narayan
,
S.
,
Stewart
,
E. M.
, and
Anand
,
L.
,
2021
, “
Coupled Electro-Chemo-Elasticity: Application to Modeling the Actuation Response of Ionic Polymer-Metal Composites
,”
J. Mech. Phys. Solids
,
152
, p.
104394
.10.1016/j.jmps.2021.104394
115.
Salvadori
,
A.
,
McMeeking
,
R.
,
Grazioli
,
D.
, and
Magri
,
M.
,
2018
, “
A Coupled Model of Transport-Reaction-Mechanics With Trapping. Part I – Small Strain Analysis
,”
J. Mech. Phys. Solids
,
114
, pp.
1
30
.10.1016/j.jmps.2018.02.006
116.
Yang
,
F.
,
2010
, “
Effect of Local Solid Reaction on Diffusion-Induced Stress
,”
J. Appl. Phys.
,
107
(
10
), p.
103516
.10.1063/1.3374471
117.
Thangadurai
,
V.
,
Narayanan
,
S.
, and
Pinzaru
,
D.
,
2014
, “
Garnet-Type Solid-State Fast Li Conductors for Li Batteries: Critical Review
,”
Chem. Soc. Rev.
,
43
(
13
), pp.
4714
4727
.10.1039/c4cs00020j
118.
Hayashi
,
A.
,
Hama
,
S.
,
Mizuno
,
F.
,
Tadanaga
,
K.
,
Minami
,
T.
, and
Tatsumisago
,
M.
,
2004
, “
Characterization of Li2S-P2S5 Glass-Ceramics as a Solid Electrolyte for Lithium Secondary Batteries
,”
Solid State Ion.
,
175
(
1–4
), pp.
683
686
.10.1016/j.ssi.2004.08.036
119.
Yuan
,
H.
,
Luan
,
J.
,
Yang
,
Z.
,
Zhang
,
J.
,
Wu
,
Y.
,
Lu
,
Z.
, and
Liu
,
H.
,
2020
, “
Single Lithium-Ion Conducting Solid Polymer Electrolyte With Superior Electrochemical Stability and Interfacial Compatibility for Solid-State Lithium Metal Batteries
,”
ACS Appl. Mater. Interfaces
,
12
(
6
), pp.
7249
7256
.10.1021/acsami.9b20436
120.
Butler
,
J. A. V.
,
1924
, “
Studies in Heterogeneous Equilibria. Part III. A Kinetic Theory of Reversible Oxidation Potentials at Inert Electrodes
,”
Trans. Faraday Soc.
,
19
, pp.
734
739
.10.1039/tf9241900734
121.
Bockris
,
J. O.
,
Reddy
,
A. K. N.
, and
Gamboa-Aldeco
,
M.
,
2000
,
Modern Electrochemistry 2A: Fundamentals of Electrodics
,
Kluwer
, New York.
122.
Hamman
,
C. H.
, and
Vielstich
,
W.
,
2005
,
Elektrochemie
, 4th ed.,
Wiley-VCH, Weinheim, Germany
.
123.
Singh
,
G. K.
,
Ceder
,
G.
, and
Bazant
,
M. Z.
,
2008
, “
Intercalation Dynamics in Rechargeable Battery Materials: General Theory and Phase-Transformation Waves in LiFePO4
,”
Electrochim. Acta
,
53
(
26
), pp.
7599
7613
.10.1016/j.electacta.2008.03.083
124.
Bai
,
P.
,
Cogswell
,
D. A.
, and
Bazant
,
M. Z.
,
2011
, “
Suppression of Phase Separation in LiFePO4 Nanoparticles During Battery Discharge
,”
Nano Lett.
,
11
(
11
), pp.
4890
4896
.10.1021/nl202764f
125.
Chidsey
,
C. E. D.
,
1991
, “
Free Energy and Temperature Dependence of Electron Transfer at the Metal-Electrolyte Interface
,”
Science
,
251
(
4996
), pp.
919
922
.10.1126/science.251.4996.919
126.
Marcus
,
R. A.
,
1965
, “
On the Theory of Electron-Transfer Reactions. VI. Unified Treatment for Homogeneous and Electrode Reactions
,”
J. Chem. Phys.
,
43
(
2
), pp.
679
701
.10.1063/1.1696792
127.
Mykhaylov
,
M.
,
Ganser
,
M.
,
Klinsmann
,
M.
,
Hildebrand
,
F. E.
,
Guz
,
I.
, and
McMeeking
,
R. M.
,
2019
, “
An Elementary 1-Dimensional Model for a Solid State Lithium-Ion Battery With a Single Ion Conductor and a Lithium Metal Negative Electrode
,”
J. Mech. Phys. Solids
,
123
, pp.
207
221
.10.1016/j.jmps.2018.10.004
128.
Bazant
,
M. Z.
,
2013
, “
Theory of Chemical Kinetics and Charge Transfer Based on Nonequilibrium Thermodynamics
,”
Acc. Chem. Res.
,
46
(
5
), pp.
1144
1160
.10.1021/ar300145c
129.
Bai
,
P.
, and
Bazant
,
M. Z.
,
2014
, “
Charge Transfer Kinetics at the Solid-Solid Interface in Porous Electrodes
,”
Nat. Commun.
,
5
(
1
), pp.
3585
3591
.10.1038/ncomms4585
130.
Cogswell
,
D. A.
,
2015
, “
Quantitative Phase-Field Modeling of Dendrite Deposition
,”
Phys. Rev. E
,
92
(
1
), p.
011301
.10.1103/PhysRevE.92.011301
131.
Zeng
,
Y.
,
Smith
,
R. B.
,
Bai
,
P.
, and
Bazant
,
M. Z.
,
2014
, “
Simple Formula for Marcus-Hush-Chidsey Kinetics
,”
J. Electroanal. Chem.
,
735
, pp.
77
83
.10.1016/j.jelechem.2014.09.038
132.
Smith
,
R. B.
, and
Bazant
,
M. Z.
,
2017
, “
Multiphase Porous Electrode Theory
,”
J. Electrochem. Soc.
,
164
(
11
), pp.
E3291
E3310
.10.1149/2.0171711jes
133.
Monroe
,
C. W.
, and
Newman
,
J.
,
2004
, “
The Effect of Interfacial Deformation on Electrodeposition Kinetics
,”
J. Electrochem. Soc.
,
151
(
6
), pp.
A880
A886
.10.1149/1.1710893
134.
Ma
,
H.
,
Xiong
,
X.
,
Gao
,
P.
,
Li
,
X.
,
Yan
,
Y.
,
Volinsky
,
A. A.
, and
Su
,
Y.
,
2016
, “
Eigenstress Model for Electrochemistry of Solid Surfaces
,”
Sci. Rep.
,
6
(
1
), p.
26897
.10.1038/srep26897
135.
Lu
,
B.
,
Song
,
Y.
,
Zhang
,
Q.
,
Pan
,
J.
,
Cheng
,
Y.-T.
, and
Zhang
,
J.
,
2016
, “
Voltage Hysteresis of Lithium Ion Batteries Caused by Mechanical Stress
,”
Phys. Chem. Chem. Phys.
,
18
(
6
), pp.
4721
4727
.10.1039/C5CP06179B
136.
Cogswell
,
D. A.
, and
Bazant
,
M. Z.
,
2012
, “
Coherency Strain and the Kinetics of Phase Separation in LiFePO4 Nanoparticles
,”
ACS Nano
,
6
(
3
), pp.
2215
2225
.10.1021/nn204177u
137.
Welland
,
M. J.
,
Karpeyev
,
D.
,
O'Connor
,
D. T.
, and
Heinonen
,
O.
,
2015
, “
Miscibility Gap Closure, Interface Morphology, and Phase Microstructure of 3D LixFePO4 Nanoparticles From Surface Wetting and Coherency Strain
,”
ACS Nano
,
9
(
10
), pp.
9757
9771
.10.1021/acsnano.5b02555
138.
Lim
,
J.
,
Li
,
Y.
,
Alsem
,
D. H.
,
So
,
H.
,
Lee
,
S. C.
,
Bai
,
P.
,
Cogswell
,
D. A.
,
Liu
,
X.
,
Jin
,
N.
,
Yu
,
Y-S.
,
Salmon
,
N. J.
,
Shapiro
,
D. A.
,
Bazant
,
M. Z.
,
Tyliszczak
,
T.
, and
Chueh
,
W. C.
,
2016
, “
Origin and Hysteresis of Lithium Compositional Spatiodynamics Within Battery Primary Particles
,”
Science
,
353
(
6299
), pp.
566
571
.10.1126/science.aaf4914
139.
de Klerk
,
N. J.
,
Vasileiadis
,
A.
,
Smith
,
R. B.
,
Bazant
,
M. Z.
, and
Wagemaker
,
M.
,
2017
, “
Explaining Key Properties of Lithiation in TiO2-Anatase Li-Ion Battery Electrodes Using Phase-Field Modeling
,”
Phys. Rev. Mater.
,
1
(
2
), p.
025404
.10.1103/PhysRevMaterials.1.025404
140.
Vasileiadis
,
A.
,
de Klerk
,
N. J.
,
Smith
,
R. B.
,
Ganapathy
,
S.
,
Harks
,
P. P. R.
,
Bazant
,
M. Z.
, and
Wagemaker
,
M.
,
2018
, “
Toward Optimal Performance and in-Depth Understanding of Spinel Li4Ti5O12 Electrodes Through Phase Field Modeling
,”
Adv. Funct. Mater.
,
28
(
16
), p.
1705992
.10.1002/adfm.201705992
141.
Smith
,
R. B.
,
Khoo
,
E.
, and
Bazant
,
M. Z.
,
2017
, “
Intercalation Kinetics in Multiphase-Layered Materials
,”
J. Phys. Chem. C
,
121
(
23
), pp.
12505
12523
.10.1021/acs.jpcc.7b00185
142.
Ganser
,
M.
,
Hildebrand
,
F. E.
,
Klinsmann
,
M.
,
Hanauer
,
M.
,
Kamlah
,
M.
, and
McMeeking
,
R. M.
,
2019
, “
An Extended Formulation of Butler-Volmer Electrochemical Reaction Kinetics Including the Influence of Mechanics
,”
J. Electrochem. Soc.
,
166
(
4
), pp.
H167
H176
.10.1149/2.1111904jes
143.
Huang
,
J.
,
Zhang
,
J.
, and
Eikerling
,
M.
,
2018
, “
Unifying Theoretical Framework for Deciphering the Oxygen Reduction Reaction on Platinum
,”
Phys. Chem. Chem. Phys.
,
20
(
17
), pp.
11776
11786
.10.1039/C8CP01315B
144.
Joos
,
P.
,
1995
, “
Kinetic Equations for Transfer-Controlled Adsorption Kinetics
,”
J. Colloid Interface Sci.
,
171
(
2
), pp.
399
405
.10.1006/jcis.1995.1196
145.
Monroe
,
C.
, and
Newman
,
J.
,
2005
, “
The Impact of Elastic Deformation on Deposition Kinetics at Lithium/Polymer Interfaces
,”
J. Electrochem. Soc.
,
152
(
2
), pp.
A396
A404
.10.1149/1.1850854
146.
Stein
,
P.
,
Zhao
,
Y.
, and
Xu
,
B.-X.
,
2016
, “
Effects of Surface Tension and Electrochemical Reactions in Li-Ion Battery Electrode Nanoparticles
,”
J. Power Sources
,
332
, pp.
154
169
.10.1016/j.jpowsour.2016.09.085
147.
Koerver
,
R.
,
Zhang
,
W.
,
de Biasi
,
L.
,
Schweidler
,
S.
,
Kondrakov
,
A. O.
,
Kolling
,
S.
,
Brezesinski
,
T.
,
Hartmann
,
T.
,
Zeier
,
W. G.
, and
Janek
,
J.
,
2018
, “
Chemo-Mechanical Expansion of Lithium Electrode Materials on the Route to Mechanically Optimized All-Solid-State Batteries
,”
Energy Environ. Sci.
,
11
(
8
), pp.
2142
2158
.10.1039/C8EE00907D
148.
Srolovitz
,
D. J.
,
1989
, “
On the Stability of Surfaces of Stressed Solids
,”
Acta Metall.
,
37
(
2
), pp.
621
625
.10.1016/0001-6160(89)90246-0
149.
Barton
,
J. L.
, and
Bockris
,
J. O'M.
,
1962
, “
The Electrolytic Growth of Dendrites From Ionic Solutions
,”
Proc. R. Soc. A Math. Phys. Eng. Sci.
,
268
, pp.
485
505
.https://www.jstor.org/stable/2414338
150.
Diggle
,
J. W.
,
Despic
,
A. R.
, and
Bockris
,
J.
,
1969
, “
The Mechanism of Dendritic Electrocrystallization of Zinc
,”
J. Electrochem. Soc.
,
116
(
11
), pp.
1503
1514
.10.1149/1.2411588
151.
Brissot
,
C.
,
Rosso
,
M.
,
Chazalviel
,
J.-N.
, and
Lascaud
,
S.
,
1999
, “
Dendritic Growth Mechanisms in Lithium/Polymer Cells
,”
J. Power Sources
,
81
82
, pp.
925
929
.10.1016/S0378-7753(98)00242-0
152.
Monroe
,
C.
, and
Newman
,
J.
,
2003
, “
Dendrite Growth in Lithium/Polymer Systems
,”
J. Electrochem. Soc.
,
150
(
10
), pp.
A1377
A1384
.10.1149/1.1606686
153.
Gireaud
,
L.
,
Grugeon
,
S.
,
Laruelle
,
S.
,
Yrieix
,
B.
, and
Tarascon
,
J.-M.
,
2006
, “
Lithium Metal Plating/Stripping Mechanisms Studies: A Metallurgical Approach
,”
Electrochem. Commun.
,
8
(
10
), pp.
1639
1649
.10.1016/j.elecom.2006.07.037
154.
Bhattacharyya
,
R.
,
Key
,
B.
,
Chen
,
H.
,
Best
,
A. S.
,
Hollenkamp
,
A. F.
, and
Grey
,
C. P.
,
2010
, “
In Situ NMR Observations of the Formation of Metallic Lithium Microstructures in Lithium Batteries
,”
Nat. Mater.
,
9
(
6
), pp.
504
510
.10.1038/nmat2764
155.
Harry
,
K. J.
,
Hallinan
,
D. T.
,
Parkinson
,
D. Y.
,
MacDowell
,
A. A.
, and
Balsara
,
N. P.
,
2014
, “
Detection of Subsurface Structures Underneath Dendrites Formed on Cycled Lithium Metal Electrodes
,”
Nat. Mater.
,
13
(
1
), pp.
69
73
.10.1038/nmat3793
156.
Brissot
,
C.
,
Rosso
,
M.
,
Chazalviel
,
J.-N.
, and
Lascaud
,
S.
,
2001
, “
Concentration Measurement in Lithium/Polymer-Electrolyte/Lithium Cells During Cycling
,”
J. Power Sources
,
94
(
2
), pp.
212
218
.10.1016/S0378-7753(00)00589-9
157.
Rosso
,
M.
,
Brissot
,
C.
,
Teyssot
,
A.
,
Doll
,
M.
,
Sannier
,
L.
,
Tarascon
,
J.-M.
,
Bouchet
,
R.
, and
Lascaud
,
S.
,
2006
, “
Dendrite Short-Circuit and Fuse Effect on Li/Polymer/Li Cells
,”
Electrochim. Acta
,
51
(
25
), pp.
5334
5340
.10.1016/j.electacta.2006.02.004
158.
Deng
,
K.
,
Qin
,
J.
,
Wang
,
S.
,
Ren
,
S.
,
Han
,
D.
,
Xiao
,
M.
, and
Meng
,
Y.
,
2018
, “
Effective Suppression of Lithium Dendrite Growth Using a Flexible Single-Ion Conducting Polymer Electrolyte
,”
Small
,
14
(
31
), p.
1801420
.10.1002/smll.201801420
159.
Wu
,
H.
,
Cao
,
Y.
,
Su
,
H.
, and
Wang
,
C.
,
2018
, “
Tough Gel Electrolyte Using Double Polymer Network Design for the Safe, Stable Cycling of Lithium Metal Anode
,”
Angew. Chem.
,
130
(
5
), pp.
1375
1379
.10.1002/ange.201709774
160.
D'Angelo
,
A. J.
, and
Panzer
,
M. J.
,
2018
, “
Decoupling the Ionic Conductivity and Elastic Modulus of Gel Electrolytes: Fully Zwitterionic Copolymer Scaffolds in Lithium Salt/Ionic Liquid Solutions
,”
Adv. Energy Mater.
,
8
(
26
), p.
1801646
.10.1002/aenm.201801646
161.
Bouchet
,
R.
,
Phan
,
T. N. T.
,
Beaudoin
,
E.
,
Devaux
,
D.
,
Davidson
,
P.
,
Bertin
,
D.
, and
Denoyel
,
R.
,
2014
, “
Charge Transport in Nanostructured PSPEOPS Triblock Copolymer Electrolytes
,”
Macromolecules
,
47
(
8
), pp.
2659
2665
.10.1021/ma500420w
162.
Motoyama
,
M.
,
Ejiri
,
M.
, and
Iriyama
,
Y.
,
2015
, “
Modeling the Nucleation and Growth of Li at Metal Current Collector/LiPON Interfaces
,”
J. Electrochem. Soc.
,
162
(
13
), pp.
A7067
A7071
.10.1149/2.0051513jes
163.
Aogaki
,
R.
, and
Makino
,
T.
,
1981
, “
Theory of Powdered Metal Formation in Electrochemistry – Morphological Instability in Galvanostatic Crystal Growth Under Diffusion Control
,”
Electrochim. Acta
,
26
(
11
), pp.
1509
1517
.10.1016/0013-4686(81)85123-7
164.
Mullins
,
W. W.
, and
Sekerka
,
R. F.
,
1963
, “
Morphological Stability of a Particle Growing by Diffusion or Heat Flow
,”
J. Appl. Phys.
,
34
(
2
), pp.
323
329
.10.1063/1.1702607
165.
Tikekar
,
M. D.
,
Archer
,
L. A.
, and
Koch
,
D. L.
,
2014
, “
Stability Analysis of Electrodeposition Across a Structured Electrolyte With Immobilized Anions
,”
J. Electrochem. Soc.
,
161
(
6
), pp.
A847
A855
.10.1149/2.085405jes
166.
Tikekar
,
M. D.
,
Archer
,
L. A.
, and
Koch
,
D. L.
,
2016
, “
Stabilizing Electrodeposition in Elastic Solid Electrolytes Containing Immobilized Anions
,”
Sci. Adv.
,
2
(
7
), p.
1600320
.10.1126/sciadv.1600320
167.
Tikekar
,
M. D.
,
Choudhury
,
S.
,
Tu
,
Z.
, and
Archer
,
L. A.
,
2016
, “
Design Principles for Electrolytes and Interfaces for Stable Lithium-Metal Batteries
,”
Nat. Energy
,
1
(
9
), p.
16114
.10.1038/nenergy.2016.114
168.
Akolkar
,
R.
,
2013
, “
Mathematical Model of the Dendritic Growth During Lithium Deposition
,”
J. Power Sources
,
232
, pp.
23
28
.10.1016/j.jpowsour.2013.01.014
169.
Cheng
,
E.
,
Sharafi
,
A.
, and
Sakamoto
,
J.
,
2017
, “
Intergranular Li Metal Propagation Through Polycrystalline Li6.25Al0.25La3Zr2O12 Ceramic Electrolyte
,”
Electrochim. Acta
,
223
, pp.
85
91
.10.1016/j.electacta.2016.12.018
170.
Ahmad
,
Z.
, and
Viswanathan
,
V.
,
2017
, “
Stability of Electrodeposition at Solid – Solid Interfaces and Implications for Metal Anodes
,”
Phys. Rev. Lett.
,
119
(
5
), p.
056003
.10.1103/PhysRevLett.119.056003
171.
Ahmad
,
Z.
, and
Viswanathan
,
V.
,
2017
, “
Role of Anisotropy in Determining Stability of Electrodeposition at Solid – Solid Interfaces
,”
Phys. Rev. Mater.
,
1
(
5
), p.
055403
.10.1103/PhysRevMaterials.1.055403
172.
Barai
,
P.
,
Higa
,
K.
, and
Srinivasan
,
V.
,
2017
, “
Effect of Initial State of Lithium on the Propensity for Dendrite Formation: A Theoretical Study
,”
J. Electrochem. Soc.
,
164
(
2
), pp.
A180
A189
.10.1149/2.0661702jes
173.
Barai
,
P.
,
Higa
,
K.
, and
Srinivasan
,
V.
,
2017
, “
Lithium Dendrite Growth Mechanisms in Polymer Electrolytes and Prevention Strategies
,”
Phys. Chem. Chem. Phys.
,
19
(
31
), pp.
20493
20505
.10.1039/C7CP03304D
174.
Barai
,
P.
,
Higa
,
K.
, and
Srinivasan
,
V.
,
2018
, “
Impact of External Pressure and Electrolyte Transport Properties on Lithium Dendrite Growth
,”
J. Electrochem. Soc.
,
165
(
11
), pp.
A2654
A2666
.10.1149/2.0651811jes
175.
McMeeking
,
R. M.
,
Ganser
,
M.
,
Klinsmann
,
M.
, and
Hildebrand
,
F. E.
,
2019
, “
Metal Electrode Surfaces Can Roughen Despite the Constraint of a Stiff Electrolyte
,”
J. Electrochem. Soc.
,
166
(
6
), pp.
A984
A995
.10.1149/2.0221906jes
176.
Lin
,
D.
,
Liu
,
Y.
, and
Cui
,
Y.
,
2017
, “
Reviving the Lithium Metal Anode for High-Energy Batteries
,”
Nat. Nanotechnol.
,
12
(
3
), pp.
194
206
.10.1038/nnano.2017.16
177.
Yu
,
S.
,
Schmidt
,
R. D.
,
Garcia-Mendez
,
R.
,
Herbert
,
E.
,
Dudney
,
N. J.
,
Wolfenstine
,
J. B.
,
Sakamoto
,
J.
, and
Siegel
,
D. J.
,
2016
, “
Elastic Properties of the Solid Electrolyte Li7La3Zr2O12 (LLZO)
,”
Chem. Mater.
,
28
(
1
), pp.
197
206
.10.1021/acs.chemmater.5b03854
178.
Maitra
,
M. G.
,
Sinha
,
M.
,
Mukhopadhyay
,
A. K.
,
Middya
,
T. R.
,
De
,
U.
, and
Tarafdar
,
S.
,
2007
, “
Ion-Conductivity and Young's Modulus of the Polymer Electrolyte PEO-Ammonium Perchlorate
,”
Solid State Ion.
,
178
(
3–4
), pp.
167
171
.10.1016/j.ssi.2007.01.006
179.
Kelly
,
T.
,
Ghadi
,
B. M.
,
Berg
,
S.
, and
Ardebili
,
H.
,
2016
, “
In Situ Study of Strain-Dependent Ion Conductivity of Stretchable Polyethylene Oxide Electrolyte
,”
Sci. Rep.
,
6
(
1
), p.
20128
.10.1038/srep20128
180.
Wang
,
Z. Q.
,
Wu
,
M. S.
,
Liu
,
G.
,
Lei
,
X. L.
,
Xu
,
B.
, and
Ouyang
,
C. Y.
,
2014
, “
Elastic Properties of New Solid State Electrolyte Material Li10GeP2S12: A Study From First-Principles Calculations
,”
Int. J. Electrochem. Sci.
,
9
, pp.
562
568
.http://www.electrochemsci.org/papers/vol9/90200562.pdf
181.
Masias
,
A.
,
Felten
,
N.
,
Garcia-Mendez
,
R.
,
Wolfenstine
,
J.
, and
Sakamoto
,
J.
,
2019
, “
Elastic, Plastic, and Creep Mechanical Properties of Lithium Metal
,”
J. Mater. Sci.
,
54
(
3
), pp.
2585
2600
.10.1007/s10853-018-2971-3
182.
Harry
,
K. J.
,
Higa
,
K.
,
Srinivasan
,
V.
, and
Balsara
,
N. P.
,
2016
, “
Influence of Electrolyte Modulus on the Local Current Density at a Dendrite Tip on a Lithium Metal Electrode
,”
J. Electrochem. Soc.
,
163
(
10
), pp.
A2216
A2224
.10.1149/2.0191610jes
183.
Ferrese
,
A.
, and
Newman
,
J.
,
2014
, “
Mechanical Deformation of a Lithium-Metal Anode Due to Very Stiff Separator
,”
J. Electrochem. Soc.
,
161
(
9
), pp.
A1350
A1359
.10.1149/2.0911409jes
184.
LePage
,
W. S.
,
Chen
,
Y.
,
Kazyak
,
E.
,
Chen
,
K.-H.
,
Sanchez
,
A. J.
,
Poli
,
A.
,
Arruda
,
E. M.
,
Thouless
,
M. D.
, and
Dasgupta
,
N. P.
,
2019
, “
Lithium Mechanics: Roles of Strain Rate and Temperature and Implications for Lithium Metal Batteries
,”
J. Electrochem. Soc.
,
166
(
2
), pp.
A89
A97
.10.1149/2.0221902jes
185.
Xu
,
C.
,
Ahmad
,
Z.
,
Aryanfar
,
A.
,
Viswanathan
,
V.
, and
Greer
,
J. R.
,
2017
, “
Enhanced Strength and Temperature Dependence of Mechanical Properties of Li at Small Scales and Its Implications for Li Metal Anodes
,”
Proc. Natl. Acad. Sci.
,
114
(
1
), pp.
57
61
.10.1073/pnas.1615733114
186.
Hill
,
R.
,
1950
,
The Mathematical Theory of Plasticity
,
Oxford University Press
, Oxford, UK.
187.
Tu
,
Q.
,
Barroso-Luque
,
L.
,
Shi
,
T.
, and
Ceder
,
G.
,
2020
, “
Electrodeposition and Mechanical Stability at Lithium-Solid Electrolyte Interface During Plating in Solid-State Batteries
,”
Cell Rep. Phys. Sci.
,
1
(
7
), p.
100106
.10.1016/j.xcrp.2020.100106
188.
Ganser
,
M.
,
Hildebrand
,
F. E.
,
McMeeking
,
R. M.
, and
Kamlah
,
M.
,
2020
, “
Stiffer is Not Necessarily Better: Requirements Analysis for Binary Solid Polymer Electrolytes That Ensure Stable Lithium Metal Electrodes
,”
J. Electrochem. Soc.
,
167
(
13
), p.
130525
.10.1149/1945-7111/abb8fa
189.
Hong
,
Z.
,
Ahmad
,
Z.
, and
Viswanathan
,
V.
,
2020
, “
Design Principles for Dendrite Suppression With Porous Polymer/Aqueous Solution Hybrid Electrolyte for Zn Metal Anodes
,”
ACS Energy Lett.
,
5
(
8
), pp.
2466
2474
.10.1021/acsenergylett.0c01235
190.
Hooper
,
A.
, and
Tofield
,
B. C.
,
1984
, “
All-Solid-State Batteries
,”
J. Power Sources
,
11
(
1–2
), pp.
33
41
.10.1016/0378-7753(84)80064-6
191.
Takada
,
K.
,
2013
, “
Progress and Prospective of Solid-State Lithium Batteries
,”
Acta Mater.
,
61
(
3
), pp.
759
770
.10.1016/j.actamat.2012.10.034
192.
Harry
,
K. J.
,
Liao
,
X.
,
Parkinson
,
D. Y.
,
Minor
,
A. M.
, and
Balsara
,
N. P.
,
2015
, “
Electrochemical Deposition and Stripping Behavior of Lithium Metal Across a Rigid Block Copolymer Electrolyte Membrane
,”
J. Electrochem. Soc.
,
162
(
14
), pp.
A2699
A2706
.10.1149/2.0321514jes
193.
Sharafi
,
A.
,
Meyer
,
H. M.
,
Nanda
,
J.
,
Wolfenstine
,
J.
, and
Sakamoto
,
J.
,
2016
, “
Characterizing the Li–Li7La3Zr2O12 Interface Stability and Kinetics as a Function of Temperature and Current Density
,”
J. Power Sources
,
302
, pp.
135
139
.10.1016/j.jpowsour.2015.10.053
194.
Schmidt
,
R. D.
, and
Sakamoto
,
J.
,
2016
, “
In-Situ, Non-Destructive Acoustic Characterization of Solid-State Electrolyte Cells
,”
J. Power Sources
,
324
, pp.
126
133
.10.1016/j.jpowsour.2016.05.062
195.
Sharafi
,
A.
,
Kazyak
,
E.
,
Davis
,
A. L.
,
Yu
,
S.
,
Thompson
,
T.
,
Siegel
,
D. J.
,
Dasgupta
,
N. P.
, and
Sakamoto
,
J.
,
2017
, “
Surface Chemistry Mechanism of Ultra-Low Interfacial Resistance in the Solid-State Electrolyte Li7La3Zr2O12
,”
Chem. Mater.
,
29
(
18
), pp.
7961
7968
.10.1021/acs.chemmater.7b03002
196.
Sharafi
,
A.
,
Haslam
,
C. G.
,
Kerns
,
R. D.
,
Wolfenstine
,
J.
, and
Sakamoto
,
J.
,
2017
, “
Controlling and Correlating the Effect of Grain Size With the Mechanical and Electrochemical Properties of Li7La3Zr2O12 Solid-State Electrolyte
,”
J. Mater. Chem.
,
5
(
40
), pp.
21491
21504
.10.1039/C7TA06790A
197.
Kasemchainan
,
J.
,
Zekoll
,
S.
,
Jolly
,
D. S.
,
Ning
,
Z.
,
Hartley
,
G. O.
,
Marrow
,
J.
, and
Bruce
,
P. G.
,
2019
, “
Critical Stripping Current Leads to Dendrite Formation on Plating in Lithium Anode Solid Electrolyte Cells
,”
Nat. Mater.
,
18
(
10
), pp.
1105
1111
.10.1038/s41563-019-0438-9
198.
Spencer
,
J. D.
,
Ning
,
Z.
,
Darnbrough
,
J. E.
,
Kasemchainan
,
J.
,
Hartley
,
G. O.
,
Adamson
,
P.
,
Armstrong
,
D. E.
,
Marrow
,
J.
, and
Bruce
,
P. G.
,
2020
, “
Sodium/Na β" Alumina Interface: Effect of Pressure on Voids
,”
ACS Appl. Mater. Interfaces
,
12
(
1
), pp.
678
685
.10.1021/acsami.9b17786
199.
Krauskopf
,
T.
,
Hartmann
,
H.
,
Zeier
,
W. G.
, and
Janek
,
J.
,
2019
, “
Toward a Fundamental Understanding of the Lithium Metal Anode in Solid-State batteries - An Electrochemo-Mechanical Study on the Garnet-Type Solid Electrolyte Li6.25Al0.25La3Zr2O12
,”
ACS Appl. Mater. Interfaces
,
11
(
15
), pp.
14463
14477
.10.1021/acsami.9b02537
200.
Wang
,
M. J.
,
Choudhury
,
R.
, and
Sakamoto
,
J.
,
2019
, “
Characterizing the Li-Solid-Electrolyte Interface Dynamics as a Function of Stack Pressure and Current Density
,”
Joule
,
3
(
9
), pp.
2165
2178
.10.1016/j.joule.2019.06.017
201.
Feldman
,
L. A.
, and
De Jonghe
,
L. C.
,
1982
, “
Initiation of Mode I Degradation in Sodium-Beta Alumina Electrolytes
,”
J. Mater. Sci.
,
17
(
2
), pp.
517
524
.10.1007/BF00591486
202.
Klinsmann
,
M.
,
Hildebrand
,
F. E.
,
Ganser
,
M.
, and
McMeeking
,
R. M.
,
2019
, “
Dendritic Cracking in Solid Electrolytes Driven by Lithium Insertion
,”
J. Power Sources
,
442
, p.
227226
.10.1016/j.jpowsour.2019.227226
203.
Armstrong
,
R. D.
,
Dickinson
,
T.
, and
Turner
,
J.
,
1974
, “
The Breakdown of β-Alumina Ceramic Electrolyte
,”
Electrochim. Acta
,
19
(
5
), pp.
187
192
.10.1016/0013-4686(74)85065-6
204.
Barroso-Luque
,
L.
,
Qingsong
,
T.
, and
Ceder
,
G.
,
2020
, “
An Analysis of Solid-State Electrodeposition-Induced Metal Plastic Flow and Predictions of Stress States in Solid Ionic Conductor Defects
,”
J. Electrochem. Soc.
,
167
(
2
), p.
020534
.10.1149/1945-7111/ab6c5b
205.
Wolfenstine
,
J.
,
Jo
,
H.
,
Cho
,
Y.-H.
,
David
,
IN.
,
Askeland
,
P.
,
Case
,
E. D.
,
Kim
,
H.
,
Choe
,
H.
, and
Sakamoto
,
J.
,
2013
, “
A Preliminary Investigation of Fracture Toughness of Li7La3Zr2O12 and Its Comparison to Other Solid Li-Ion Conductors
,”
Mater. Lett.
,
96
, pp.
117
120
.10.1016/j.matlet.2013.01.021
206.
Zhang
,
L.
,
Yang
,
T.
,
Du
,
C.
,
Liu
,
Q.
,
Tang
,
Y.
,
Zhao
,
J.
,
Wang
,
B.
,
Chen
,
T.
,
Sun
,
Y.
,
Jia
,
P.
,
Li
,
H.
,
Geng
,
L.
,
Chen
,
J.
,
Ye
,
H.
,
Wang
,
Z.
,
Li
,
Y.
,
Sun
,
H.
,
Li
,
X.
,
Dai
,
Q.
,
Tang
,
Y.
,
Peng
,
Q.
,
Shen
,
T.
,
Zhang
,
S.
,
Zhu
,
T.
, and
Huang
,
J.
,
2020
, “
Lithium Whisker Growth and Stress Generation in an in Situ Atomic Force Microscope–Environmental Transmission Electron Microscope Set-Up
,”
Nat. Nanotechnol.
,
15
(
2
), pp.
94
98
.10.1038/s41565-019-0604-x
207.
Yang
,
F.
,
2020
, “
Modeling Analysis for the Growth of a Li Sphere and Li Whisker in a Solid-State Lithium Metal Battery
,”
Phys. Chem. Chem. Phys.
,
22
(
24
), pp.
13737
13745
.10.1039/D0CP02240C
208.
Shishvan
,
S. S.
,
Fleck
,
N. A.
,
McMeeking
,
R. M.
, and
Deshpande
,
V. S.
,
2020
, “
Dendrites as Climbing Dislocations in Ceramic Electrolytes: Initiation of Growth
,”
J. Power Sources
,
456
, p.
227989
.10.1016/j.jpowsour.2020.227989
209.
Shishvan
,
S. S.
,
Fleck
,
N. A.
,
McMeeking
,
R. M.
, and
Deshpande
,
V. S.
,
2020
, “
Dendrites as Climbing Dislocations in Ceramic Electrolytes: Rate of Growth
,”
Acta Mater.
,
196
, pp.
444
455
.10.1016/j.actamat.2020.06.060
210.
Onsager
,
L.
,
1931
, “
Reciprocal Relations in Irreversible Processes, I
,”
Phys. Rev.
,
37
(
4
), pp.
405
426
.10.1103/PhysRev.37.405
211.
Cocks
,
A. C. F.
,
Gill
,
S. P. A.
, and
Pan
,
J.
,
1998
, “
Modeling Microstructure Evolution in Engineering Materials
,”
Adv. Appl. Mech.
,
36
, pp.
81
162
.10.1016/S0065-2156(08)70185-6
212.
Suo
,
Z.
,
1997
, “
Motions of Microscopic Surfaces in Materials
,”
Adv. Appl. Mech.
,
33
, pp.
193
294
.10.1016/S0065-2156(08)70387-9
213.
Kazyak
,
E.
,
Garcia-Mendez
,
R.
,
LePage
,
W. S.
,
Sharafi
,
A.
,
Davis
,
A. L.
,
Sanchez
,
A. J.
,
Chen
,
K.
,
Haslam
,
C.
,
Sakamoto
,
J.
, and
Dasgupta
,
N. P.
,
2020
, “
Li Penetration in Ceramic Solid Electrolytes: Operando Microscopy Analysis of Morphology, Propagation, and Reversibility
,”
Matter
,
2
(
4
), pp.
1025
1048
.10.1016/j.matt.2020.02.008
214.
Ning
,
Z.
,
Jolly
,
D. S.
,
Li
,
G.
,
De Meyere
,
R.
,
Pu
,
S. D.
,
Chen
,
Y.
,
Kasemchainan
,
J.
,
Ihli
,
J.
,
Gong
,
C.
,
Liu
,
B.
,
Melvin
,
D. L. R.
,
Bonnin
,
A.
,
Magdysyuk
,
O.
,
Adamson
,
P.
,
Hartley
,
G. O.
,
Monroe
,
C. W.
,
Marrow
,
T. J.
, and
Bruce
,
P. G.
,
2021
, “
Visualizing Plating-Induced Cracking in Lithium-Anode Solid-Electrolyte Cells
,”
Nat. Mater.
,
20
(
8
), pp.
1121
1129
.10.1038/s41563-021-00967-8
215.
Hao
,
S.
,
Daemi
,
S. R.
,
Heenan
,
T. M. M.
,
Du
,
W.
,
Tan
,
C.
,
Storm
,
M.
,
Rau
,
C.
,
Brett
,
D. J. L.
, and
Shearing
,
P. R.
,
2021
, “
Tracking Lithium Penetration in Solid Electrolytes in 3D by in-Situ Synchrotron X-Ray Computed Tomography
,”
Nano Energy
,
82
, p.
105744
.10.1016/j.nanoen.2021.105744
216.
Hao
,
S.
,
Bailey
,
J. J.
,
Iacoviello
,
F.
,
Bu
,
J.
,
Grant
,
P. S.
,
Brett
,
D. J. L.
, and
Shearing
,
P. R.
,
2021
, “
3D Imaging of Lithium Protrusions in Solid-State Lithium Batteries Using X-Ray Computed Tomography
,”
Adv. Funct. Mater.
,
31
(
10
), p.
2007564
.10.1002/adfm.202007564
217.
Sargent
,
P. M.
, and
Ashby
,
M. F.
,
1984
, “
Deformation Mechanism Maps for Alkali Metals
,”
Scr. Metall.
,
18
(
2
), pp.
145
150
.10.1016/0036-9748(84)90494-0
218.
Krauskopf
,
T.
,
Mogwitz
,
B.
,
Rosenbach
,
C.
,
Zeier
,
W. G.
, and
Janek
,
J.
,
2019
, “
Diffusion Limitation of Lithium Metal and Li–Mg Alloy Anodes on LLZO Type Solid Electrolytes as a Function of Temperature and Pressure
,”
Adv. Energy Mater.
,
9
(
44
), p.
1902568
.10.1002/aenm.201902568
219.
Zhang
,
X.
,
Wang
,
Q. J.
,
Harrison
,
K. L.
,
Roberts
,
S. A.
, and
Harris
,
S. J.
,
2020
, “
Pressure-Driven Interface Evolution in Solid-State Lithium Metal Batteries
,”
Cell Rep. Phys. Sci.
,
1
(
2
), p.
100012
.10.1016/j.xcrp.2019.100012
220.
Roy
,
U.
,
Fleck
,
N. A.
, and
Deshpande
,
V. S.
,
2021
, “
An Assessment of a Mechanism for Void Growth in Li Anodes
,”
Ext. Mech. Lett.
,
46
, p.
101307
.10.1016/j.eml.2021.101307
221.
Shishvan
,
S. S.
,
Fleck
,
N. A.
, and
Deshpande
,
V. S.
,
2021
, “
The Initiation of Void Growth During Stripping of Li Electrodes in Solid Electrolyte Cells
,”
J. Power Sources
,
488
, p.
229437
.10.1016/j.jpowsour.2020.229437
222.
Frost
,
H. J.
, and
Ashby
,
M. F.
,
1982
,
Deformation-Mechanism Maps: The Plasticity and Creep of Metals and Ceramics
,
Elsevier
, Amsterdam, The Netherlands.
223.
Seeger
,
A.
, and
Haasen
,
P.
,
1958
, “
Density Changes of Crystals Containing Dislocations
,”
Philos. Mag. A
,
3
(
29
), pp.
470
475
.10.1080/14786435808244569
224.
Greer
,
J. R.
, and
De Hosson
,
J. T. M.
,
2011
, “
Plasticity in Small-Sized Metallic Systems: Intrinsic Versus Extrinsic Size Effect
,”
Prog. Mater. Sci.
,
56
(
6
), pp.
654
724
.10.1016/j.pmatsci.2011.01.005
225.
Agier
,
J. A. B.
,
Shishvan
,
S. S.
,
Fleck
,
N. A.
, and
Deshpande
,
V. S.
,
2022
, “
Void Growth Within Li Electrodes in Solid Electrolyte Cells
,”
Acta Mater.
,
240
, p.
118303
.10.1016/j.actamat.2022.118303
226.
Zhang
,
S.
,
Zhao
,
K.
,
Zhu
,
T.
, and
Li
,
J.
,
2017
, “
Electrochemomechanical Degradation of High-Capacity Battery Electrode Materials
,”
Prog. Mater. Sci.
,
89
, pp.
479
521
.10.1016/j.pmatsci.2017.04.014
You do not currently have access to this content.