Abstract

Shape memory alloys (SMAs) are often used in applications involving time-varying loads. Under such conditions, fatigue leading to possible fracture is a paramount cause of failure, which has been extensively investigated since the 1960s. This work reviews developments in this field with emphasis on recent results related to additively manufactured SMAs. Multiple factors influencing structural and functional degradation in presence of cyclic loading are considered, including microstructural and surface features, thermal loading history, and heat treatment. For completeness, select modeling approaches proposed in the literature to predict SMA fatigue are briefly overviewed and a discussion is provided on the statistical relevance and uncertainty of published data. Conclusions are then formulated to guide subsequent research.

References

1.
Kumar
,
S.
,
Shivashankar
,
P.
, and
Gopalakrishnan
,
S.
,
2020
, “
A Half a Decade Timeline of Shape Memory Alloys in Modeling and Applications
,”
ISSS J. Micro Smart Syst.
,
9
(
1
), pp.
1
32
.10.1007/s41683-020-00050-5
2.
Yoshinaka
,
F.
,
Sawaguchi
,
T.
,
Nikulin
,
I.
, and
Takamori
,
S.
,
2019
, “
Fatigue Properties and Plastically Deformed Microstructure of Fe-15Mn10Cr-8Ni-4Si Alloy in High-Cycle-Fatigue Regime
,”
Int. J. Fatigue
, 129, pp.
1
10
.10.1016/j.ijfatigue.2019.105224
3.
Izadi
,
M.
,
Motavalli
,
M.
, and
Ghafoori
,
E.
,
2019
, “Iron-Based Shape Memory Alloy (Fe-SMA) for Fatigue Strengthening of Cracked Steel Bridge Connections,”
Constr Build Mater.
, 227, pp.
1
17
.10.1016/j.conbuildmat.2019.116800
4.
Lai
,
M.
,
Lu
,
L.
, and
Lee
,
W.
,
1996
, “
Influence of Heat Treatment on Properties of Copper-Based Shape-Memory Alloy
,”
J. Mater. Sci.
,
31
(
6
), pp.
1537
1543
.10.1007/BF00357862
5.
Delpueyo
,
D.
,
Balandraud
,
X.
,
Grediac
,
M.
,
Stanciu
,
S.
, and
Cimpoesu
,
N.
,
2017
, “
Measurement of Mechanical Dissipation in SMAs by Infrared Thermography
,”
Conference Proceedings of the Society for Experimental Mechanics Series
, Vol. 9, pp.
9
14
.https://link.springer.com/chapter/10.1007/978-3-319-42255-8_2
6.
Casalena
,
L.
,
Bigelow
,
G. S.
,
Gao
,
Y.
,
Benafan
,
O.
,
Noebe
,
R. D.
,
Wang
,
Y.
, and
Mills
,
M. J.
,
2017
, “
Mechanical Behavior and Microstructural Analysis of NiTi-40Au Shape Memory Alloys Exhibiting Work Output Above 400 °C
,”
Intermetallics
,
86
(
C
), pp.
33
44
.10.1016/j.intermet.2017.03.005
7.
Konopatsky
,
A. S.
,
Dubinskiy
,
S. M.
,
Zhukova
,
Y. S.
,
Sheremetyev
,
V.
,
Brailovski
,
V.
,
Prokoshkin
,
S. D.
, and
Filonov
,
M. R.
,
2017
, “
Ternary Ti-Zr-Nb and Quaternary Ti-Zr-Nb-Ta Shape Memory Alloys for Biomedical Applications: Structural Features and Cyclic Mechanical Properties
,”
Mater. Sci. Eng. A
,
702
, pp.
301
311
.10.1016/j.msea.2017.07.046
8.
Sabahi
,
N.
,
Chen
,
W.
,
Wang
,
C.-H.
,
Kruzic
,
J. J.
, and
Li
,
X.
,
2020
, “
A Review on Additive Manufacturing of Shape-Memory Materials for Biomedical Applications
,”
JOM (1989)
,
72
(
3
), pp.
1229
1253
.10.1007/s11837-020-04013-x
9.
Wang
,
X.
,
Speirs
,
M.
,
Kustov
,
S.
,
Vrancken
,
B.
,
Li
,
X.
,
Kruth
,
J.-P.
, and
Humbeeck
,
J. V.
,
2018
, “
Selective Laser Melting Produced Layer-Structured NiTi Shape Memory Alloys With High Damping Properties and Elinvar Effect
,”
Scr. Mater.
,
146
, pp.
246
250
.10.1016/j.scriptamat.2017.11.047
10.
Zhang
,
B.
,
Chen
,
J.
, and
Coddet
,
C.
,
2013
, “
Microstructure and Transformation Behavior of in-Situ Shape Memory Alloys by Selective Laser Melting Ti-Ni Mixed Powder
,”
J. Mater. Sci. Technol.
,
29
(
9
), pp.
863
867
.10.1016/j.jmst.2013.05.006
11.
Belyaev
,
S.
,
Resnina
,
N.
,
Iaparova
,
E.
,
Ivanova
,
A.
,
Rakhimov
,
T.
, and
Andreev
,
V.
,
2019
, “
Influence of Chemical Composition of NiTi Alloy on the Martensite Stabilization Effect
,”
J. Alloys Compd.
,
787
, pp.
1365
1371
.10.1016/j.jallcom.2019.01.326
12.
Otsuka
,
K.
, and
Ren
,
X.
,
2005
, “
Physical Metallurgy of Ti–Ni-Based Shape Memory Alloys
,”
Prog. Mater. Sci.
,
50
(
5
), pp.
511
678
.10.1016/j.pmatsci.2004.10.001
13.
Copaci
,
D.-S.
,
Blanco
,
D.
,
Martin-Clemente
,
A.
, and
Moreno
,
L.
,
2020
, “
Flexible Shape Memory Alloy Actuators for Soft Robotics: Modelling and Control
,”
Int. J. Adv. Rob. Syst.
,
17
(
1
).10.1177/1729881419886747
14.
Xiaojun
,
G. U.
,
2017
, “
Optimization of Shape Memory Alloy Structures With Respect to Fatigue
,” Ph.D. thesis, ENSTA-ParisTech University, Palaiseau, France.
15.
Kang
,
G.
, and
Song
,
D.
,
2015
, “
Review on Structural Fatigue of NiTi Shape Memory Alloys. Pure Mechanical and Thermo-Mechanical Ones
,”
Theor. Appl. Mech. Lett.
,
5
(
6
), pp.
245
254
.10.1016/j.taml.2015.11.004
16.
Chemisky
,
Y.
,
Hartl
,
D. J.
, and
Meraghni
,
F.
,
2018
, “
Three-Dimensional Constitutive Model for Structural and Functional Fatigue of Shape Memory Alloy Actuators
,”
Int. J. Fatigue
,
112
, pp.
263
278
.10.1016/j.ijfatigue.2018.03.016
17.
Dornelas
,
V. M.
,
Oliveira
,
S. A.
, and
Savi
,
M. A.
,
2020
, “
A Macroscopic Description of Shape Memory Alloy Functional Fatigue
,”
Int. J. Mech. Sci.
,
170
, p.
105345
.10.1016/j.ijmecsci.2019.105345
18.
Eggeler
,
G.
,
Hornbogen
,
E.
,
Yawny
,
A.
,
Heckmann
,
A.
, and
Wagner
,
M.
,
2004
, “
Structural and Functional Fatigue of NiTi Shape Memory Alloys
,”
Mater. Sci. Eng. A, Struct. Mater. Prop. Microstruct. Process.
,
378
(
1–2
), pp.
24
33
.10.1016/j.msea.2003.10.327
19.
Abuzaid
,
W.
, and
Sehitoglu
,
H.
,
2018
, “
Superelasticity and Functional Fatigue of Single Crystalline FeNiCoAlTi Iron-Based Shape Memory Alloy
,”
Mater. Des.
,
160
, pp.
642
651
.10.1016/j.matdes.2018.10.003
20.
Miyazaki
,
S.
,
Imai
,
T.
,
Igo
,
Y.
, and
Otsuka
,
K.
,
1986
, “
Effect of Cyclic Deformation on the Pseudoelasticity Characteristics of Ti-Ni Alloys
,”
Metall. Trans. A
,
17
(
1
), pp.
115
120
.10.1007/BF02644447
21.
Iasnii
,
V.
, and
Yasniy
,
P.
,
2019
, “
Degradation of Functional Properties of Pseudoelastic NiTi Alloy Under Cyclic Loading: An Experimental Study
,”
Acta Mech. Autom.
,
13
(
2
), pp.
95
100
.10.2478/ama-2019-0013
22.
Farjam
,
N.
,
Nematollahi
,
M.
,
Andani
,
M. T.
,
Mahtabi
,
M. J.
, and
Elahinia
,
M.
,
2020
, “
Effects of Size and Geometry on the Thermomechanical Properties of Additively Manufactured NiTi Shape Memory Alloy
,”
Int. J. Adv. Manuf. Technol.
,
107
(
7–8
), pp.
3145
3154
.10.1007/s00170-020-05071-w
23.
Waitz
,
T.
,
Antretter
,
T.
,
Fischer
,
F. D.
,
Simha
,
N. K.
, and
Karnthaler
,
H. P.
,
2007
, “
Size Effects on the Martensitic Phase Transformation of NiTi Nanograins
,”
J. Mech. Phys. Solids
,
55
(
2
), pp.
419
444
.10.1016/j.jmps.2006.06.006
24.
Khoo
,
Z. X.
,
Liu
,
Y.
,
An
,
J.
,
Chua
,
C. K.
,
Shen
,
Y. F.
, and
Kuo
,
C. N.
,
2018
, “
A Review of Selective Laser Melted NiTi Shape Memory Alloy
,”
Materials
,
11
(
4
), p.
519
.10.3390/ma11040519
25.
Song
,
B.
,
Zhao
,
X.
,
Li
,
S.
,
Han
,
C.
,
Wei
,
Q.
,
Wen
,
S.
,
Liu
,
J.
, and
Shi
,
Y.
,
2015
, “
Differences in Microstructure and Properties Between Selective Laser Melting and Traditional Manufacturing for Fabrication of Metal Parts. A Review
,”
Front. Mech. Eng.
,
10
(
2
), pp.
111
125
.10.1007/s11465-015-0341-2
26.
Saptaji
,
K.
,
Gebremariam
,
M.
, and
Azhari
,
M.
,
2018
, “
Machining of Biocompatible Materials: A Review
,”
Int. J. Adv. Manuf. Technol.
,
97
(
5–8
), pp.
2255
2292
.10.1007/s00170-018-1973-2
27.
Speirs
,
M.
,
Hooreweder
,
B. V.
,
Humbeeck
,
J. V.
, and
Kruth
,
J. P.
,
2017
, “
Fatigue Behaviour of NiTi Shape Memory Alloy Scaffolds Produced by SLM, a Unit Cell Design Comparison
,”
J. Mech. Behav. Biomed. Mater.
,
70
, pp.
53
59
.10.1016/j.jmbbm.2017.01.016
28.
Zhao
,
M.
,
Qing
,
H.
,
Wang
,
Y.
,
Liang
,
J.
,
Zhao
,
M.
,
Geng
,
Y.
,
Liang
,
J.
, and
Lu
,
B.
,
2021
, “
Superelastic Behaviors of Additively Manufactured Porous NiTi Shape Memory Alloys Designed With Menger Sponge-Like Fractal Structures
,”
Mater. Des.
,
200
, p.
109448
.10.1016/j.matdes.2021.109448
29.
Saedi
,
S.
,
Saghaian
,
S. E.
,
Jahadakbar
,
A.
,
Moghaddam
,
N. S.
,
Andani
,
M. T.
,
Saghaian
,
S. M.
,
Lu
,
Y. C.
,
Elahinia
,
M.
, and
Karaca
,
H. E.
,
2018
, “
Shape Memory Response of Porous NiTi Shape Memory Alloys Fabricated by Selective Laser Melting
,”
J. Mater. Sci. Mater. Med
,
29
(
4
), p.
40
.10.1007/s10856-018-6044-6
30.
Da Cruz Gomes
,
A. A.
,
Grassi
,
E. N. D.
,
da Silva
,
P. C. S.
, and
de Araújo
,
C. J.
,
2021
, “
Mechanical Behavior of a NiTi Superelastic Bone Plate Obtained by Investment Casting Assisted by Additive Manufacturing
,”
Smart Mater. Struct.
,
30
(
2
), p.
025009
.10.1088/1361-665X/abca83
31.
Zhang
,
Y.
,
Attarilar
,
S.
,
Wang
,
L.
,
Lu
,
W.
,
Yang
,
J.
, and
Fu
,
Y.
,
2021
, “
A Review on Design and Mechanical Properties of Additively Manufactured NiTi Implants for Orthopedic Applications
,”
Int. J. Bioprint.
, 7(2), pp.
1
28
.10.18063/ijb.v7i2.340
32.
Bandyopadhyay
,
A.
,
Ciliveri
,
S.
, and
Bose
,
S.
,
2022
, “Recent Findings From Washington State University Has Provided New Information About Science (Metal Additive Manufacturing for Load-Bearing Implants),”
J. Indian Inst. Sci.
, 102, pp.
561
584
.
33.
Chen
,
W.
,
Yang
,
Q.
,
Huang
,
S.
,
Kruzic
,
J. J.
, and
Li
,
X.
,
2021
, “
Compression Behavior of Graded NiTi Gyroid-Structures Fabricated by Laser Powder Bed Fusion Additive Manufacturing Under Monotonic and Cyclic Loading
,”
JOM (1989)
,
73
(
12
), pp.
4154
4165
.10.1007/s11837-021-04938-x
34.
Soul
,
H.
,
Terriault
,
P.
, and
Brailovski
,
V.
,
2018
, “
The Static and Fatigue Behavior of AlSiMg Alloy Plain, Notched, and Diamond Lattice Specimens Fabricated by Laser Powder Bed Fusion
,”
J. Manuf. Mater. Process.
,
2
(
2
), p.
25
.10.3390/jmmp2020025
35.
Safaei
,
K.
,
Nematollahi
,
M.
,
Bayati
,
P.
,
Dabbaghi
,
H.
,
Benafan
,
O.
, and
Elahinia
,
M.
,
2021
, “
Torsional Behavior and Microstructure Characterization of Additively Manufactured NiTi Shape Memory Alloy Tubes
,”
Eng. Struct.
,
226
, p.
111383
.10.1016/j.engstruct.2020.111383
36.
Alagha
,
A. N.
,
Hussain
,
S.
, and
Zaki
,
W.
,
2021
, “
Additive Manufacturing of Shape Memory Alloys: A Review With Emphasis on Powder Bed Systems
,”
Mater. Des.
,
204
, p.
109654
.10.1016/j.matdes.2021.109654
37.
Elahinia
,
M. H.
,
Hashemi
,
M.
,
Tabesh
,
M.
, and
Bhaduri
,
S. B.
,
2012
, “
Manufacturing and Processing of NiTi Implants: A Review
,”
Prog. Mater. Sci.
,
57
(
5
), pp.
911
946
.10.1016/j.pmatsci.2011.11.001
38.
Hamilton
,
R. F.
,
Bimber
,
B. A.
,
Andani
,
M. T.
, and
Elahinia
,
M.
,
2017
, “
Multi-Scale Shape Memory Effect Recovery in NiTi Alloys Additive Manufactured by Selective Laser Melting and Laser Directed Energy Deposition
,”
J. Mater. Process. Technol.
,
250
, pp.
55
64
.10.1016/j.jmatprotec.2017.06.027
39.
Moghaddam
,
N. S.
,
Saedi
,
S.
,
Amerinatanzi
,
A.
,
Hinojos
,
A.
,
Ramazani
,
A.
,
Kundin
,
J.
,
Mills
,
M. J.
,
Karaca
,
H.
, and
Elahinia
,
M.
,
2019
, “
Achieving Superelasticity in Additively Manufactured NiTi in Compression Without Post-Process Heat Treatment
,”
Sci. Rep.
,
9
(
1
), p.
41
.10.1038/s41598-018-36641-4
40.
Benafan
,
O.
,
Bigelow
,
G. S.
,
Elahinia
,
M.
,
Moghaddam
,
N. S.
,
Amerinatanzi
,
A.
,
Saedi
,
S.
,
Toker
,
G. P.
, and
Karaca
,
H.
,
2017
, “
Additive Manufacturing of NiTiHf High Temperature Shape Memory Alloy
,” NASA/Langley Research Center, Cleveland, OH, Report No.
NASA/TM—2017-219523
.https://ntrs.nasa.gov/citations/20170006032
41.
Horvay
,
K. M.
, and
Schade
,
C. T.
,
2018
, “
Development of Nitinol Alloys for Additive Manufacturing
,”
Mater. Sci. Technol.
, pp.
63
70
42.
Collins
,
P. C.
,
Brice
,
D. A.
,
Samimi
,
P.
,
Ghamarian
,
I.
, and
Fraser
,
H. L.
,
2016
, “
Microstructural Control of Additively Manufactured Metallic Materials
,”
Annu. Rev. Mater. Res.
,
46
(
1
), pp.
63
91
.10.1146/annurev-matsci-070115-031816
43.
Kreitcberg
,
A.
,
Brailovski
,
V.
,
Sheremetyev
,
V.
, and
Prokoshkin
,
S.
,
2017
, “
Effect of Laser Powder Bed Fusion Parameters on the Microstructure and Texture Development in Superelastic Ti–18Zr–14Nb Alloy
,”
Shape Memory Superelast. Adv. Sci. Technol.
,
3
(
4
), pp.
361
372
.10.1007/s40830-017-0125-0
44.
Wang
,
T.
,
Zhu
,
Y. Y.
,
Zhang
,
S. Q.
,
Tang
,
H. B.
, and
Wang
,
H. M.
,
2015
, “
Grain Morphology Evolution Behavior of Titanium Alloy Components During Laser Melting Deposition Additive Manufacturing
,”
J. Alloys Compd.
,
632
, pp.
505
513
.10.1016/j.jallcom.2015.01.256
45.
Lee
,
J.
, and
Shin
,
Y. C.
,
2019
, “
Effects of Composition and Post Heat Treatment on Shape Memory Characteristics and Mechanical Properties for Laser Direct Deposited Nitinol
,”
Lasers Manuf. Mater. Process.
,
6
(
1
), pp.
41
58
.10.1007/s40516-019-0079-5
46.
Yang
,
Y.
,
Zhan
,
J. B.
,
Sun
,
Z. Z.
,
Wang
,
H. L.
,
Lin
,
J. X.
,
Liu
,
Y. J.
, and
Zhang
,
L. C.
,
2019
, “
Evolution of Functional Properties Realized by Increasing Laser Scanning Speed for the Selective Laser Melting Fabricated NiTi Alloy
,”
J. Alloys Compd.
,
804
, pp.
220
229
.10.1016/j.jallcom.2019.06.340
47.
DesRoches
,
R.
,
McCormick
,
J.
, and
Delemont
,
M.
,
2004
, “
Cyclic Properties of Superelastic Shape Memory Alloy Wires and Bars
,”
J. Struct. Eng.
,
130
(
1
), pp.
38
46
.10.1061/(ASCE)0733-9445(2004)130:1(38)
48.
Melton
,
K. N.
, and
Mercier
,
O.
,
1978
, “
Deformation Behavior of NiTi-Based Alloys
,”
Metall. Trans. A
,
9
(
10
), pp.
1487
1488
.10.1007/BF02661822
49.
Saedi
,
S.
,
Turabi
,
A. S.
,
Andani
,
M. T.
,
Haberland
,
C.
,
Karaca
,
H.
, and
Elahinia
,
M.
,
2016
, “
The Influence of Heat Treatment on the Thermomechanical Response of Ni-Rich NiTi Alloys Manufactured by Selective Laser Melting
,”
J. Alloys Compd.
,
677
, pp.
204
210
.10.1016/j.jallcom.2016.03.161
50.
Bayati
,
P.
,
Jahadakbar
,
A.
,
Barati
,
M.
,
Nematollahi
,
M.
,
Saint-Sulpice
,
L.
,
Haghshenas
,
M.
,
Chirani
,
S.
,
Mahtabi
,
M.
, and
Elahinia
,
M.
,
2020
, “
Toward Low and High Cycle Fatigue Behavior of SLM-Fabricated NiTi. Considering the Effect of Build Orientation and Employing a Self-Heating Approach
,”
Int. J. Mech. Sci.
, 185, p.
105878
.10.1016/j.ijmecsci.2020.105878
51.
Gupta
,
S.
,
Pelton
,
A. R.
,
Weaver
,
J. D.
,
Gong
,
X.-Y.
, and
Nagaraja
,
S.
,
2015
, “
High Compressive Pre-Strains Reduce the Bending Fatigue Life of Nitinol Wire
,”
J. Mech. Behav. Biomed. Mater.
,
44
, pp.
96
108
.10.1016/j.jmbbm.2014.12.007
52.
Bagheri
,
A.
,
Mahtabi
,
M. J.
, and
Shamsaei
,
N.
,
2018
, “
Fatigue Behavior and Cyclic Deformation of Additive Manufactured NiTi
,”
J. Mater. Process. Technol.
,
252
, pp.
440
453
.10.1016/j.jmatprotec.2017.10.006
53.
Yamashita
,
Y.
,
Murakami
,
T.
,
Mihara
,
R.
,
Okada
,
M.
, and
Murakami
,
Y.
,
2018
, “
Defect Analysis and Fatigue Design Basis for Ni-Based Superalloy 718 Manufactured by Selective Laser Melting
,”
Int. J. Fatigue
,
117
, pp.
485
495
.10.1016/j.ijfatigue.2018.08.002
54.
Brandao
,
A. D.
,
Gumpinger
,
J.
,
Gschweitl
,
M.
,
Seyfert
,
C.
,
Hofbauer
,
P.
, and
Ghidini
,
T.
,
2017
, “
Fatigue Properties of Additively Manufactured AlSi10 Mg - Surface Treatment Effect
,”
Proceedings of the 3rd International Symposium on Fatigue Design and Material Defects
, Vol. 7, pp.
58
66
.10.1016/j.prostr.2017.11.061
55.
Nespoli
,
A.
,
Biffi
,
C.
,
Previtali
,
B.
,
Villa
,
E.
, and
Tuissi
,
A.
,
2014
, “
Laser and Surface Processes of NiTi Shape Memory Elements for Micro-Actuation
,”
Metall. Mater. Trans. A
,
45
(
4
), pp.
2242
2249
.10.1007/s11661-013-2177-x
56.
Barin
,
I. I.
,
1995
,
Thermochemical Data of Pure Substances
, 3rd ed., Weinheim Ed., New York.
57.
Li
,
B.-Y.
,
Rong
,
L.-J.
,
Li
,
Y.-Y.
, and
Gjunter
,
V. E.
,
2000
, “
Fabrication of Cellular NiTi Intermetallic Compounds
,”
J. Mater. Res.
,
15
(
1
), pp.
10
13
.10.1557/JMR.2000.0004
58.
Elahinia
,
M.
,
Moghaddam
,
N. S.
,
Andani
,
M. T.
,
Amerinatanzi
,
A.
,
Bimber
,
B. A.
, and
Hamilton
,
R. F.
,
2016
, “
Fabrication of NiTi Through Additive Manufacturing: A Review
,”
Prog. Mater. Sci.
,
83
, pp.
630
663
.10.1016/j.pmatsci.2016.08.001
59.
Saedi
,
S.
,
Turabi
,
A. S.
,
Andani
,
M. T.
,
Moghaddam
,
N. S.
,
Elahinia
,
M.
, and
Karaca
,
H. E.
,
2017
, “
Texture, Aging, and Superelasticity of Selective Laser Melting Fabricated Ni-Rich NiTi Alloys
,”
Mater. Sci. Eng. A Struct. Mater Prop. Microstruct. Process.
,
686
, pp.
1
10
.10.1016/j.msea.2017.01.008
60.
Yamashita
,
F.
,
Ide
,
Y.
,
Kato
,
S.
,
Ueda
,
K.
,
Narushima
,
T.
,
Kise
,
S.
,
Ishikawa
,
K.
, and
Nishida
,
M.
,
2019
, “
Effect of Nonmetallic Inclusions on Fatigue Properties of Superelastic Ti-Ni Fine Wire
,”
Metals
, 9(9), p.
999
.10.3390/met9090999
61.
Senkevich
,
K.
, and
Gusev
,
D.
,
2019
, “
Effect of Heat Treatment on the Mechanical Behavior and Fracture of TiNi Alloy
,”
Phys. Mesomech.
,
22
(
3
), pp.
224
229
.10.1134/S102995991903007X
62.
Kreitcberg
,
A.
,
Sheremetyev
,
V. V.
,
Tsaturyants
,
M. M.
,
Prokoshkin
,
S. S.
, and
Brailovski
,
V. V.
,
2019
, “
Optimization of Post-Processing Annealing Conditions of the Laser Powder Bed-Fused Ti–18Zr–14Nb Shape Memory Alloy: Structure and Functional Properties
,”
Shape Memory and Superelasticity
, 5, pp.
172
181
.10.1007/s40830-019-00218-5
63.
Wang
,
J.
,
Pan
,
Z.
,
Carpenter
,
K.
,
Han
,
J.
,
Wang
,
Z.
, and
Li
,
H.
,
2021
, “
Comparative Study on Crystallographic Orientation, Precipitation, Phase Transformation and Mechanical Response of Ni-Rich NiTi Alloy Fabricated by WAAM at Elevated Substrate Heating Temperatures
,”
Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process.
,
800
, p.
140307
.10.1016/j.msea.2020.140307
64.
Sehitoglu
,
H.
,
Karaman
,
I.
,
Anderson
,
R.
,
Zhang
,
X.
,
Gall
,
K.
,
Maier
,
H. J.
, and
Chumlyakov
,
Y.
,
2000
, “
Compressive Response of NiTi Single Crystals
,”
Acta Mater.
,
48
(
13
), pp.
3311
3326
.10.1016/S1359-6454(00)00153-1
65.
Xue
,
L.
,
Atli
,
K. C.
,
Picak
,
S.
,
Zhang
,
C.
,
Zhang
,
B.
,
Elwany
,
A.
,
Arroyave
,
R.
, and
Karaman
,
I.
,
2021
, “
Controlling Martensitic Transformation Characteristics in Defect-Free NiTi Shape Memory Alloys Fabricated Using Laser Powder Bed Fusion and a Process Optimization Framework
,”
Acta Mater.
,
215
, p.
117017
.10.1016/j.actamat.2021.117017
66.
McNichols
,
J. L.
,
Brookes
,
P. C.
, and
Cory
,
J. S.
,
1981
, “
NiTi Fatigue Behavior
,”
J. Appl. Phys.
,
52
(
12
), pp.
7442
7444
.10.1063/1.328738
67.
Melton
,
K. N.
, and
Mercier
,
O.
,
1979
, “
The Effect of the Martensitic Phase Transformation on the Low Cycle Fatigue Behaviour of Polycrystalline Ni-Ti and Cu-Zn-Al Alloys
,”
Mater. Sci. Eng.
,
40
(
1
), pp.
81
87
.10.1016/0025-5416(79)90010-7
68.
Melton
,
K. N.
, and
Mercier
,
O.
,
1979
, “
Fatigue of NiTi Thermoelastic Martensites
,”
Acta Metall.
,
27
(
1
), pp.
137
144
.10.1016/0001-6160(79)90065-8
69.
Zaki
,
W.
, and
Moumni
,
Z.
,
2007
, “
A 3D Model of the Cyclic Thermomechanical Behavior of Shape Memory Alloys
,”
J. Mech. Phys. Solids
,
55
(
11
), pp.
2427
2454
.10.1016/j.jmps.2007.03.011
70.
Moumni
,
Z.
,
Zaki
,
W.
, and
Maïtournam
,
H.
,
2009
, “
Cyclic Behavior and Energy Approach to the Fatigue of Shape Memory Alloys
,”
J. Mech. Mater. Struct.
,
4
(
2
), pp.
395
411
.10.2140/jomms.2009.4.395
71.
Gu
,
X.
,
Zhang
,
W.
,
Zaki
,
W.
, and
Moumni
,
Z.
,
2017
, “
An Extended Thermomechanically Coupled 3D Rate-Dependent Model for Pseudoelastic SMAS Under Cyclic Loading
,”
Smart Mater. Struct.
,
26
(
9
), p.
095047
.10.1088/1361-665X/aa7c36
72.
Zhang
,
Y.
,
You
,
Y.
,
Moumni
,
Z.
,
Anlas
,
G.
,
Zhu
,
J.
, and
Zhang
,
W.
,
2019
, “
Stored-Energy-Based Fatigue Criterion for Shape Memory Alloys
,”
Smart Mater. Struct.
,
28
(
6
), p.
065027
.10.1088/1361-665X/ab18b0
73.
Gu
,
X.
,
Moumni
,
Z.
,
Zaki
,
W.
, and
Zhang
,
W.
,
2016
, “
Shakedown Based Model for High-Cycle Fatigue of Shape Memory Alloys
,”
Smart Mater. Struct.
, 25, pp.
1
15
.https://iopscience.iop.org/article/10.1088/0964-1726/25/11/115012/pdf
74.
Rao
,
A.
, and
Srinivasa
,
A. R.
,
2019
, “
A Thermodynamic Driving Force Approach for Analyzing Functional Degradation of Shape Memory Alloy Components
,”
Mech. Adv. Mater. Struct.
,
26
(
18
), pp.
1543
1555
.10.1080/15376494.2018.1444229
75.
Zhao
,
T.
, and
Kang
,
G.
,
2022
, “
Experimental Study and Life Prediction on Fatigue Failure of NiTi Shape Memory Alloy Under Multi-Axial One-Way Shape Memory Cyclic Loadings
,”
Int. J. Fatigue
,
155
, p.
106609
.10.1016/j.ijfatigue.2021.106609
76.
Song
,
D.
,
Kang
,
G.
,
Kan
,
Q.
,
Yu
,
C.
, and
Zhang
,
C.
,
2016
, “
Multiaxial Low-Cycle Fatigue Failure Mechanism of Super-Elastic NiTi Shape Memory Alloy Micro-Tubes
,”
Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process.
,
665
, pp.
17
25
.10.1016/j.msea.2016.04.019
77.
Auricchio
,
F.
,
Constantinescu
,
A.
,
Menna
,
C.
, and
Scalet
,
G.
,
2016
, “
A Shakedown Analysis of High Cycle Fatigue of Shape Memory Alloys
,”
Int. J. Fatigue
,
87
, pp.
112
123
.10.1016/j.ijfatigue.2016.01.017
78.
Robertson
,
S. W.
, and
Ritchie
,
R. O.
,
2007
, “
In Vitro Fatigue–Crack Growth and Fracture Toughness Behavior of Thin-Walled Superelastic Nitinol Tube for Endovascular Stents: A Basis for Defining the Effect of Crack-Like Defects
,”
Biomaterials
,
28
(
4
), pp.
700
709
.10.1016/j.biomaterials.2006.09.034
79.
Mostofizadeh
,
P.
,
Kadkhodaei
,
M.
,
Chirani
,
S. A.
,
Saint-Sulpice
,
L.
,
Rokbani
,
M.
,
Bouraoui
,
T.
, and
Calloch
,
S.
,
2019
, “
Fatigue Analysis of Shape Memory Alloys by Self-Heating Method
,”
Int. J. Mech. Sci.
,
156
, pp.
329
341
.10.1016/j.ijmecsci.2019.04.012
80.
Gu
,
X.
,
Cao
,
Y.
,
Zhu
,
J.
,
Wang
,
J.
,
Zhang
,
W.
, and
Moumni
,
Z.
,
2019
, “
Shape Optimization of SMA Structures With Respect to Fatigue
,”
Mater. Des.
, 189, p.
108456
.10.1016/j.matdes.2019.108456
81.
Sgambitterra
,
E.
,
Maletta
,
C.
,
Magarò
,
P.
,
Renzo
,
D.
,
Furgiuele
,
F.
, and
Sehitoglu
,
H.
,
2019
, “
Effects of Temperature on Fatigue Crack Propagation in Pseudoelastic NiTi Shape Memory Alloys
,”
Shape Memory Superelast. Adv. Sci. Technol.
,
5
(
3
), pp.
278
291
.10.1007/s40830-019-00231-8
82.
Haghgouyan
,
B.
,
Young
,
B.
,
Picak
,
S.
,
Baxevanis
,
T.
,
Karaman
,
I.
, and
Lagoudas
,
D. C.
,
2021
, “
A Unified Description of Mechanical and Actuation Fatigue Crack Growth in Shape Memory Alloys
,”
Acta Mater.
,
217
, p.
117155
.10.1016/j.actamat.2021.117155
83.
Sgambitterra
,
E.
,
Magarò
,
P.
,
Niccoli
,
F.
,
Furgiuele
,
F.
, and
Maletta
,
C.
,
2021
, “
Fatigue Crack Growth in Austenitic and Martensitic NiTi: Modeling and Experiments
,”
Shape Memory Superelast. Adv. Sci. Technol.
,
7
(
2
), pp.
250
261
.10.1007/s40830-021-00327-0
84.
Manchiraju
,
S.
, and
Anderson
,
P. M.
,
2010
, “
Coupling Between Martensitic Phase Transformations and Plasticity: A Microstructure-Based Finite Element Model
,”
Int. J. Plast.
,
26
(
10
), pp.
1508
1526
.10.1016/j.ijplas.2010.01.009
85.
Paul
,
P. P.
,
Fortman
,
M.
,
Paranjape
,
H. M.
,
Anderson
,
P. M.
,
Stebner
,
A. P.
, and
Brinson
,
L. C.
,
2018
, “
Influence of Structure and Microstructure on Deformation Localization and Crack Growth in NiTi Shape Memory Alloys
,”
Shape Memory Superelast. Adv. Sci. Technol.
,
4
(
2
), pp.
285
293
.10.1007/s40830-018-0172-1
86.
Mercier
,
O.
, and
Melton
,
K. N.
,
1976
, “
The Influence of an Anisotropic Elastic Medium on the Motion of Dislocations: Application to the Martensitic Transformation
,” Scr. Mater., 10, pp.
1075
1080
.
87.
Granato
,
A.
, and
Lücke
,
K.
,
1956
, “
Theory of Mechanical Damping Due to Dislocations
,”
J. Appl. Phys.
,
27
(
6
), pp.
583
593
.10.1063/1.1722436
88.
Mercier
,
O.
,
Melton
,
K. N.
, and
Préville
,
Y. D.
,
1979
, “
Low-Frequency Internal Friction Peaks Associated With the Martensitic Phase Transformation of NiTi
,”
Acta Metall.
,
27
(
9
), pp.
1467
1475
.10.1016/0001-6160(79)90169-X
89.
Delorme
,
J. F.
,
Schmid
,
R.
,
Robin
,
M.
, and
Gobin
,
P.
,
1971
, “
Frottement Intérieur et Microdéformation Dans Les Transformations Martensitiques
,”
Le J. Phys. Coll.
,
32
(
C2
), p.
C2
.10.1051/jphyscol:1971221
90.
Dejonghe
,
W.
,
Batist
,
R. D.
, and
Delaey
,
L.
,
1976
, “
Factors Affecting the Internal Friction Peak Due to Thermoelastic Martensitic Transformation
,”
Scr. Metal
., 10(12), pp.
1125
1128
.10.1016/0036-9748(76)90038-7
91.
Hasan
,
M. M.
, and
Baxevanis
,
T.
,
2019
, “
Actuation Fatigue Life Prediction of Notched Shape Memory Alloy Members
,”
ASME J. Appl. Mech.
,
86
(
6
), p. 064501.10.1115/1.4042994
92.
Yadollahi
,
A.
, and
Shamsaei
,
N.
,
2017
, “
Additive Manufacturing of Fatigue Resistant Materials: Challenges and Opportunities
,”
Int. J. Fatigue
,
98
, pp.
14
31
.10.1016/j.ijfatigue.2017.01.001
93.
Shamsaei
,
N.
,
Yadollahi
,
A.
,
Bian
,
L.
, and
Thompson
,
S. M.
,
2015
, “
An Overview of Direct Laser Deposition for Additive Manufacturing; Part II: Mechanical Behavior, Process Parameter Optimization and Control
,”
Addit. Manuf.
,
8
, pp.
12
35
.10.1016/j.addma.2015.07.002
94.
Zhou
,
P.
,
Zhou
,
J.
,
Ye
,
Z.
,
Hong
,
X.
,
Huang
,
H.
, and
Xu
,
W.
,
2016
, “
Effect of Grain Size and Misorientation Angle on Fatigue Crack Growth of Nanocrystalline Materials
,”
Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process.
,
663
, pp.
1
7
.10.1016/j.msea.2016.03.105
95.
Cao
,
Y.
,
Moumni
,
Z.
,
Zhu
,
J.
,
Zhang
,
Y.
,
You
,
Y.
, and
Zhang
,
W.
,
2020
, “
Comparative Investigation of the Fatigue Limit of Additive-Manufactured and Rolled 316 Steel Based on Self-Heating Approach
,”
Eng. Fracture Mech.
,
223
, p.
106746
.10.1016/j.engfracmech.2019.106746
96.
Bagheri
,
A.
,
Yadollahi
,
A.
,
Mahtabi
,
M. J.
,
Paudel
,
Y.
,
Vance
,
E.
,
Shamsaei
,
N.
, and
Horstemeyer
,
M. F.
,
2022
, “Microstructure-Based MultiStage Fatigue Modeling of NiTi Alloy Fabricated Via Direct Energy Deposition (DED),”
J. Mater. Eng. Perform.
, 31, pp.
4761
4775
.10.1007/s11665-022-06603-z
97.
Phillips
,
F. R.
,
Wheeler
,
R. W.
,
Geltmacher
,
A. B.
, and
Lagoudas
,
D. C.
,
2019
, “
Evolution of Internal Damage During Actuation Fatigue in Shape Memory Alloys
,”
Int. J. Fatigue
,
124
, pp.
315
327
.10.1016/j.ijfatigue.2018.12.019
98.
Tabanli
,
R.
,
Simha
,
N.
, and
Berg
,
B.
,
2001
, “
Mean Strain Effects on the Fatigue Properties of Superelastic NiTi
,”
Metall. Mater. Trans. A
,
32
(
7
), pp.
1866
1869
.10.1007/s11661-001-0164-0
99.
Robertson
,
S. W.
,
Pelton
,
A. R.
, and
Ritchie
,
R. O.
,
2012
, “
Mechanical Fatigue and Fracture of Nitinol
,”
Int. Mater. Rev.
,
57
(
1
), pp.
1
37
.10.1179/1743280411Y.0000000009
100.
Gugat
,
J. L.
,
Bechtold
,
C.
,
Chluba
,
C.
,
Quandt
,
E.
, and
de Miranda
,
R. L.
,
2020
, “
High-Cycle Mechanical Fatigue Performance of Sputtered Nitinol
,”
J. Mater. Eng. Perform.
,
29
(
3
), pp.
1892
1900
.10.1007/s11665-020-04668-2
101.
Brocca
,
M.
,
Brinson
,
L. C.
, and
Bažant
,
Z. P.
,
2002
, “
Three-Dimensional Constitutive Model for Shape Memory Alloys Based on Microplane Model
,”
J. Mech. Phys. Solids
,
50
(
5
), pp.
1051
1077
.10.1016/S0022-5096(01)00112-0
102.
Brinson
,
L. C.
,
1993
, “
One-Dimensional Constitutive Behavior of Shape Memory Alloys: Thermomechanical Derivation With Non-Constant Material Functions and Redefined Martensite Internal Variable
,”
J. Intell. Mater. Syst. Struct.
,
4
(
2
), pp.
229
242
.10.1177/1045389X9300400213
103.
Heintze
,
O.
, and
Seelecke
,
S.
,
2008
, “
A Coupled Thermomechanical Model for Shape Memory Alloys–From Single Crystal to Polycrystal
,”
Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process.
,
481–482
, pp.
389
394
.10.1016/j.msea.2007.08.028
104.
Chluba
,
C.
,
Ge
,
W.
,
Dankwort
,
T.
,
Bechtold
,
C.
,
de Miranda
,
R. L.
,
Kienle
,
L.
,
Wuttig
,
M.
, and
Quandt
,
E.
,
2016
, “
Effect of Crystallographic Compatibility and Grain Size on the Functional Fatigue of Sputtered TiNiCuCo Thin Films
,”
Philos. Trans. Royal Soc. A
, 374(2074), p.
20150311
.10.1098/rsta.2015.0311
105.
Chluba
,
C.
,
Ge
,
W.
,
de Miranda
,
R. L.
,
Strobel
,
J.
,
Kienle
,
L.
,
Quandt
,
E.
, and
Wuttig
,
M.
,
2015
, “
Ultralow-Fatigue Shape Memory Alloy Films
,”
Science
,
348
(
6238
), pp.
1004
1007
.10.1126/science.1261164
106.
Bauer
,
A.
,
Vollmer
,
M.
, and
Niendorf
,
T.
,
2021
, “
Effect of Crystallographic Orientation and Grain Boundaries on Martensitic Transformation and Superelastic Response of Oligocrystalline Fe–Mn–Al–Ni Shape Memory Alloys
,”
Shape Memory Superelast. Adv. Sci. Technol.
,
7
(
3
), pp.
373
382
.10.1007/s40830-021-00340-3
107.
Batalha
,
R. L.
,
Pauly
,
S.
,
Kühn
,
U.
,
Kosiba
,
K.
,
Bolfarini
,
C.
,
Kiminami
,
C. S.
, and
Gargarella
,
P.
,
2019
, “
Oligocrystalline Microstructure in an Additively Manufactured Biocompatible Ti-Nb-Zr-Ta Alloy
,”
Mater. Lett.
, 262, p.
127149
.10.1016/j.matlet.2019.127149
108.
Ueland
,
S. M.
, and
Schuh
,
C. A.
,
2012
, “
Superelasticity and Fatigue in Oligocrystalline Shape Memory Alloy Microwires
,”
Acta Mater.
,
60
(
1
), pp.
282
292
.10.1016/j.actamat.2011.09.054
109.
Ueland
,
S. M.
,
Chen
,
Y.
, and
Schuh
,
C. A.
,
2012
, “
Oligocrystalline Shape Memory Alloys
,”
Adv. Funct. Mater.
,
22
(
10
), pp.
2094
2099
.10.1002/adfm.201103019
110.
Choi
,
W. S.
,
Pang
,
E. L.
,
Choi
,
P.-P.
, and
Schuh
,
C. A.
,
2020
, “
FeNiCoAlTaB Superelastic and Shape-Memory Wires With Oligocrystalline Grain Structure
,”
Scr. Mater.
,
188
, pp.
1
5
.10.1016/j.scriptamat.2020.06.067
111.
Yuan
,
B.
,
Zhu
,
X.
,
Zhang
,
X.
, and
Qian
,
M.
,
2019
, “
Elastocaloric Effect With Small Hysteresis in Bamboo-Grained Cu–Al–Mn Microwires
,”
J. Mater. Sci.
,
54
(
13
), pp.
9613
9621
.10.1007/s10853-019-03592-8
112.
Zhou
,
T.
,
Kang
,
G.
,
Yin
,
H.
, and
Yu
,
C.
,
2020
, “
Modeling the Two-Way Shape Memory and Elastocaloric Effects of Bamboo-Grained Oligocrystalline Shape Memory Alloy Microwire
,”
Acta Mater.
,
198
, pp.
10
24
.10.1016/j.actamat.2020.07.057
113.
Hou
,
H.
,
Simsek
,
E.
,
Ma
,
T.
,
Johnson
,
N. S.
,
Qian
,
S.
,
Cissé
,
C.
,
Stasak
,
D.
,
Hasan
,
N. A.
,
Zhou
,
L.
,
Hwang
,
Y.
,
Radermacher
,
R.
,
Levitas
,
V. I.
,
Kramer
,
M. J.
,
Zaeem
,
M. A.
,
Stebner
,
A. P.
,
Ott
,
R. T.
,
Cui
,
J.
, and
Takeuchi
,
I.
,
2019
, “
Fatigue-Resistant High-Performance Elastocaloric Materials Made by Additive Manufacturing Downloaded From
,”
Science
, 366(6469), pp.
1116
1121
.10.1126/science.aax7616
114.
He
,
Y.
, and
Sun
,
Q.
,
2011
, “
On Non-Monotonic Rate Dependence of Stress Hysteresis of Superelastic Shape Memory Alloy Bars
,”
Int. J. Solids Struct.
,
48
(
11–12
), pp.
1688
1695
.10.1016/j.ijsolstr.2011.02.017
115.
Kan
,
Q.
,
Yu
,
C.
,
Kang
,
G.
,
Li
,
J.
, and
Yan
,
W.
,
2016
, “
Experimental Observations on Rate-Dependent Cyclic Deformation of Super-Elastic NiTi Shape Memory Alloy
,”
Mech. Mater.
,
97
, pp.
48
58
.10.1016/j.mechmat.2016.02.011
116.
Morin
,
C.
,
Moumni
,
Z.
, and
Zaki
,
W.
,
2011
, “
Thermomechanical Coupling in Shape Memory Alloys Under Cyclic Loadings: Experimental Analysis and Constitutive Modeling
,”
Int. J. Plast.
,
27
(
12
), pp.
1959
1980
.10.1016/j.ijplas.2011.05.005
117.
Sam
,
J.
,
Franco
,
B.
,
Ma
,
J.
,
Karaman
,
I.
,
Elwany
,
A.
, and
Mabe
,
J. H.
,
2018
, “
Tensile Actuation Response of Additively Manufactured Nickel-Titanium Shape Memory Alloys
,”
Scr. Mater.
,
146
, pp.
164
168
.10.1016/j.scriptamat.2017.11.013
You do not currently have access to this content.