Abstract

This work gives an overview of all types of constant torque mechanisms (CTMs) based on both function and structure. Based on their architecture, they can be divided into five distinct categories, which all have their specific behavior. It is also shown that these CTMs can be divided into two application types, namely, power assistance or torque stabilization. Constant force mechanisms (CFMs) are more prevalent in the literature; therefore, some discussion is proposed on how CFMs can be transformed into CTMs. It is also shown that some of these CTMs have a very high specific energy, which makes them potentially interesting for use as energy storage/power providers in novel fields like robotics.

References

1.
Bicchi
,
A.
,
Tonietti
,
G.
,
Bavaro
,
M.
, and
Piccigallo
,
M.
,
2005
, “
Variable Stiffness Actuators for Fast and Safe Motion Control
,”
The Eleventh International Symposium in Robotics Research
,
Springer
, Berlin, Germany, pp.
527
536
.1007/11008941_56
2.
Vanderborght
,
B.
,
Verrelst
,
B.
,
Van Ham
,
R.
,
Van Damme
,
M.
,
Beyl
,
P.
, and
Lefeber
,
D.
,
2008
, “
Development of a Compliance Controller to Reduce Energy Consumption for Bipedal Robots
,”
Auton. Robots
,
24
(
4
), pp.
419
434
.10.1007/s10514-008-9088-5
3.
Saerens
,
E.
,
Furnemont
,
R.
,
Ducastel
,
V.
,
Crispel
,
S.
,
Vanderborght
,
B.
, and
Lefeber
,
D.
,
2019
, “
Energetic Advantages of Constant Torque Springs in Series Parallel Elastic Actuators
,” IEEE/ASME International Conference on Advanced Intelligent Mechatronics (
AIM
), Hong Kong, China
, July 8–12, pp. 62–67
.10.1109/AIM.2019.8868883
4.
Grioli
,
G.
,
Wolf
,
S.
,
Garabini
,
M.
,
Catalano
,
M.
,
Burdet
,
E.
,
Caldwell
,
D.
,
Carloni
,
R.
, et al.,
2015
, “
Variable Stiffness Actuators: The User's Point of View
,”
Int. J. Rob. Res.
,
34
(
6
), pp.
727
743
.10.1177/0278364914566515
5.
Saerens
,
E.
,
Furnemont
,
R. G.
,
Legrand
,
J.
,
Crispel
,
’ S.
,
Lopez Garcia
,
P.
,
Verstraten
,
T.
,
Vanderborght
,
B.
, and
Lefeber
,
D.
,
2022
, “
Novel Specta Actuator to Improve Energy Recuperation and Efficiency
,”
Actuators
,
11
, p.
64
.10.3390/act11030064
6.
Ahmed
,
A.
, and
Zhou
,
H.
,
2014
, “
Synthesis of Nonlinear Spiral Torsion Springs
,”
Int. J. Eng. Res.
,
3
(
6
), pp.
4
9
.https://www.ijert.org/research/synthesis-of-nonlinear-spiral-torsion-springs-IJERT V3IS060011.pdf
7.
Budynas
,
R. G.
, and
Nisbett
,
J. K.
,
2008
,
Shigley's Mechanical Engineering Design
, Vol.
8
,
McGraw-Hill
,
New York
.
8.
Vanderborght
,
B.
,
Tsagarakis
,
N. G.
,
Semini
,
C.
,
Van Ham
,
R.
, and
Caldwell
,
D. G.
,
2009
, “
Maccepa 2.0: Adjustable Compliant Actuator With Stiffening Characteristic for Energy Efficient Hopping
,”
IEEE International Conference on Robotics and Automation
, Kobe, Japan, May 12–17, pp.
544
549
.10.1109/ROBOT.2009.5152204
9.
Verstraten
,
T.
,
Mathijssen
,
G.
,
Furnemont
,
R.
,
Vanderborght
,
B.
, and
Lefeber
,
D.
,
2015
, “
Modeling and Design of Geared DC Motors for Energy Efficiency: Comparison Between Theory and Experiments
,”
Mechatronics
,
30
, pp.
198
213
.10.1016/j.mechatronics.2015.07.004
10.
McGuire
,
J. R.
, and
Yura
,
J. A.
,
1996
, “
Advances in the Analysis and Design of Constant-Torque Springs
,”
30th Aerospace Mechanisms Symposium, NASA Goddard Space Flight Center
, Greenbelt, MD, pp.
205
220
.https://ntrs.nasa.gov/citations/19960025610
11.
Li
,
X.
,
Zhang
,
Y.
,
Sun
,
K.
, and
Liu
,
H.
,
2018
, “
A Deployable End-Effector With Caging-Based Grasp Capability for Capturing Free-Floating Objects
,”
IEEE International Conference on Mechatronics and Automation
(
ICMA
),
IEEE
, Changchun, China, Aug. 5–8, pp.
455
460
.10.1109/ICMA.2018.8484306
12.
Li
,
X.
,
Sun
,
K.
, and
Liu
,
H.
,
2019
, “
Design of a Novel Deployable Mechanism for Capturing Tumbling Debris
,”
Trans. Can. Soc. Mech. Eng.
,
43
(
3
), pp.
294
305
.10.1139/tcsme-2018-0146
13.
Tkaczyk
,
J. E.
, and
Tiemann
,
J. J.
,
2001
, Spring Motor for Generating Constant Torque,” General Electric Co., Boston, MA, U.S. Patent No.
6,199,664
.https://patents.google.com/patent/US6199664B1/en
14.
McGuire
,
J. R.
,
1996
, “
Analysis and Design of Constant torque Springs used in Aerospace Applications
,”
Ph.D. thesis
,
University of Texas at Austin
, Austin TX.https://www.proquest.com/openview/5bad0f9509755d1fd9431701402e2c11/1?pqorigsite=gscholar&cbl=18750&diss=y
15.
DeCarolis
,
J. P.
, and
Drechsler
,
M. A.
,
1998
, “Tape Rule with Geared Spring Motor Drive,” Stanley Works, New Britain, CT, U.S. Patent No.
5,820,057
.https://patents.google.com/patent/US5820057A/en
16.
Yeh
,
C.-Y.
,
Tsai
,
K.-H.
, and
Chen
,
J.-J.
,
2005
, “
Effects of Prolonged Muscle Stretching With Constant Torque or Constant Angle on Hypertonic Calf Muscles
,”
Arch. Phys. Med. Rehabil.
,
86
(
2
), pp.
235
241
.10.1016/j.apmr.2004.03.032
17.
Ju
,
M.-S.
,
Lin
,
C.-C. K.
,
Chen
,
J.
,
Cheng
,
H.-S.
, and
Lin
,
C.
,
2002
, “
Performance of Elbow Tracking Under Constant Torque Disturbance in Normotonic Stroke Patients and Normal Subjects
,”
Clin. Biomech.
,
17
(
9–10
), pp.
640
649
.10.1016/S0268-0033(02)00131-6
18.
Kipnis
,
A.
, and
Belman
,
Y.
,
1995
, “Constant Torque Range-of-Motion Splint,” Encore Medical Asset Corp, Henderson, NV, U.S. Patent No.
5,399,154
.https://patents.google.com/patent/US5399154A/en
19.
Wiegner
,
A. W.
, and
Wierzbicka
,
M. M.
,
1994
, “
Functional Assessment of a Triceps Orthosis for C5/C6 Tetraplegia
,”
Proceedings of the RESNA Annual Conference
, ERIC, Nashville, TN, pp.
17
22
.
20.
Minamiyama
,
Y.
,
Kiyota
,
T.
,
Mori
,
T.
, and
Sugimoto
,
N.
,
2014
, “
Development of Constant Torque Device and Its Application to Power Assist Systems
,”
IEEE/ASME International Conference on Advanced Intelligent Mechatronics
, Basacon, France, July 8–11, pp. 192–197
.10.1109/AIM.2014.6878077
21.
Sugahara
,
Y.
,
Tsukamoto
,
K.
,
Endo
,
M.
,
Okamoto
,
J.
,
Matsuura
,
D.
, and
Takeda
,
Y.
,
2019
, “
A Multi-DOF Human-Powered Robot Using Regenerative Clutches and Constant-Force Springs
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Macau, China, Nov. 3–8, pp.
4593
4599
.10.1109/IROS40897.2019.8967618
22.
Hill
,
P. W.
,
Wolbrecht
,
E. T.
, and
Perry
,
J. C.
,
2019
, “
Gravity Compensation of an Exoskeleton Joint Using Constant-Force Springs
,”
IEEE 16th International Conference on Rehabilitation Robotics
(
ICORR
), Toronto, ON, Canada, June 24–28, pp.
311
316
.10.1109/ICORR.2019.8779422
23.
Asgari
,
M.
,
Phillips
,
E.
,
Dalton
,
B.
,
Rudl
,
J.
, and
Crouch
,
D. L.
,
2020
, “Design and Performance Evaluation of a Wearable Passive Cable-Driven Shoulder Exoskeleton,”
bioRxiv
.10.1101/2020.05.29.096453
24.
Winter
,
D. A.
,
1984
, “
Biomechanics of Human Movement With Applications to the Study of Human Locomotion
,”
Crit. Rev. Biomed. Eng.
,
9
(
4
), pp.
287
314
.https://pubmed.ncbi.nlm.nih.gov/6368126/
25.
Douglass
,
P. W.
,
1961
, “Constant Torque Escapement,” General Time Corporation, Athens, GA, U.S. Patent No.
2,970,427
.https://patents.google.com/patent/US2970427A/en
26.
Jacob
,
R.
,
1953
, “Constant Torque Clutch,” U.S. Department of Army, Arlington County, VA, U.S. Patent No.
2,644,398
.https://patents.google.com/patent/US2644398
27.
Bullard
,
R. O.
, and
Parker
,
R. J.
,
1950
, “Constant Torque Device,” U.S. Patent No. 2,519,882.
28.
Powers
,
J. J.
,
1925
, Constant-Torque Winding Mechanism,” U.S. Patent No. 1,562,051.
29.
Ishikawa
,
K.
, and
Fujita
,
A.
,
1999
, “Rolled Paper Feeding Apparatus Which Provides a Constant Torque for Uncurling Paper and a Torque Limiting Device Therefor,” Ricoh Co Ltd, Tokyo, Japan, U.S. Patent No.
5,884,860
.https://patents.google.com/patent/US5884860
30.
Hou
,
C.-W.
, and
Lan
,
C.-C.
,
2013
, “
Functional Joint Mechanisms With Constant-Torque Outputs
,”
Mech. Mach. Theory
,
62
, pp.
166
181
.10.1016/j.mechmachtheory.2012.12.002
31.
Bidgoly
,
H. J.
,
Ahmadabadi
,
M. N.
, and
Zakerzadeh
,
M. R.
,
2016
, “
Design and Modeling of a Compact Rotational Nonlinear Spring
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Daejeon, South-Korea, Oct. 9–14, pp.
4356
4361
.10.1109/IROS.2016.7759641
32.
Lesjofors
,
2019
, The Spring Catalog #15, Lesjofors - Gas and Stock Springs, Vällingby, Sweden.
33.
Alcomex
,
2017
, Veren uit voorraad. Alcomex Springs, Spanbroek, The Netherlands.
34.
Bell
,
C. C.
,
Hitchcock
,
H. W.
, and
Keith
,
J. V.
,
1952
, “Winding Machine,” U.S. Patent No. 2,608,355.
35.
Sherman
,
F. A.
,
1957
, “Constant Torque Pulley,” U.S. Patent No. 2,792,095.
36.
Earl
,
A. S.
, and
Jeffrey
,
J. D. C.
,
1950
, “Constant Torque Winding Means for Slitting Machines,” DuPont, Wilmington, DE, U.S. Patent No.
2,533,307
.https://patents.google.com/patent/US2533307
37.
Dmitroff
,
G. A.
,
1954
, “Constant Torque Nut,” U.S. Patent No.
2,685,812
.https://patents.google.com/patent/US2685812A/en
38.
Howell
,
L. L.
,
2013
, “
Compliant Mechanisms
,”
21st Century Kinematics
,
Springer
, London, UK, pp.
189
216
.
39.
Lobontiu
,
N.
,
2002
,
Compliant Mechanisms: Design of Flexure Hinges
,
CRC Press
, Boca Raton, FL.
40.
Salomon
,
D.
,
2007
,
Curves and Surfaces for Computer Graphics
,
Springer Science & Business Media
, New York.
41.
Morteson
,
M.
,
2006
, “Geometric Modeling,” Industrial Press, Inc, New York.
42.
Zhou
,
H.
, and
Ting
,
K.-L.
,
2005
, “
Shape and Size Synthesis of Compliant Mechanisms Using Wide Curve Theory
,”
ASME J. Mech. Des.
,
128
(
3
), pp.
551
558
.10.1115/1.2180809
43.
Zhou
,
H.
, and
Prakashah
,
H. N.
,
2015
, “
Synthesis of Constant Torque Compliant Mechanism
,”
ASME
Paper No. DETC2015-46179.10.1115/DETC2015-46179
44.
Reddy
,
B. P.
, and
Zhou
,
H.
,
2017
, “
Synthesizing Bidirectional Constant Torque Compliant Mechanisms
,”
ASME
Paper No. IMECE2017-70333.10.1115/IMECE2017-70333
45.
Tolman
,
K. A.
,
Merriam
,
E. G.
, and
Howell
,
L. L.
,
2016
, “
Compliant Constant-Force Linear-Motion Mechanism
,”
Mech. Mach. Theory
,
106
, pp.
68
79
.10.1016/j.mechmachtheory.2016.08.009
46.
Carpino
,
G.
,
Accoto
,
D.
,
Sergi
,
F.
,
Luigi Tagliamonte
,
N.
, and
Guglielmelli
,
E.
,
2012
, “
A Novel Compact Torsional Spring for Series Elastic Actuators for Assistive Wearable Robots
,”
ASME J. Mech. Des.
,
134
(
12
), p.
121002
.10.1115/1.4007695
47.
Phan
,
T.-V.
,
Pham
,
H.-T.
, and
Truong
,
C.-N.
,
2020
, “
Design and Analysis of a Compliant Constant-Torque Mechanism for Rehabilitation Devices
,”
Advanced Materials
,
Springer
, Cham, Switzerland, pp.
541
549
.
48.
Phan
,
T. V.
, and
Pham
,
H.-T.
,
2022
, “
Design and Optimization of a Large-Stroke Compliant Constant-Torque Mechanism
,”
J. Tech. Educ. Sci.
, (
68
), pp.
93
100
.10.54644/jte.68.2022.1098
49.
Gandhi
,
I.
, and
Zhou
,
H.
,
2019
, “
Synthesizing Constant Torque Compliant Mechanisms Using Precompressed Beams
,”
ASME J. Mech. Des.
,
141
(
1
), p.
014501
.10.1115/1.4041330
50.
Bilancia
,
P.
,
Smith
,
S. P.
,
Berselli
,
G.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2020
, “
Zero Torque Compliant Mechanisms Employing Pre-Buckled Beams
,”
ASME J. Mech. Des.
,
142
(
11
), p.
113301
.10.1115/1.4046810
51.
Thanaki
,
M.
, and
Zhou
,
H.
,
2018
, “
Synthesizing Bidirectional Constant Torque Compliant Mechanisms Using Precompressed Beams
,”
ASME
Paper No. IMECE2018-86469.10.1115/IMECE2018-86469
52.
Wang
,
P.
,
Yang
,
S.
, and
Xu
,
Q.
,
2018
, “
Design and Optimization of a New Compliant Rotary Positioning Stage With Constant Output Torque
,”
Int. J. Precis. Eng. Manuf.
,
19
(
12
), pp.
1843
1850
.10.1007/s12541-018-0213-x
53.
Huang
,
Y.
,
Zhao
,
J.
, and
Liu
,
S.
,
2016
, “
Design Optimization of Segment-Reinforced Bistable Mechanisms Exhibiting Adjustable Snapping Behavior
,”
Sens. Actuators A Phys.
,
252
, pp.
7
15
.10.1016/j.sna.2016.10.014
54.
Hao
,
G.
, and
Mullins
,
J.
,
2016
, “
On the Comprehensive Static Characteristic Analysis of a Translational Bistable Mechanism
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
230
(
20
), pp.
3803
3817
.10.1177/0954406215616418
55.
Saje
,
M.
, and
Srpčič
,
S.
,
1987
, “
Stability of C-Shaped Spring
,”
J. Eng. Mech.
,
113
(
6
), pp.
943
946
.10.1061/(ASCE)0733-9399(1987)113:6(943)
56.
Meissner
,
M.
, and
Wanke
,
K.
,
1988
, Handbuch Federn. Berechnung und Gestaltung im Machinen-und Geratebaü, Verlag Technik, Berlin, Germany.
57.
Tech-Spring-Manufacturing-Corporation
,
2020
, “Constant Torque Springs (A Type),” Tech-Spring-Manufacturing-Corporation, New Taipei City, Taiwan, accessed Aug. 21, 2020, https://www.da-yi.com.tw/en/product/Constant-Torque-SpringsAtype/constant-torque-springs-atype.html
58.
Tech-Spring-Manufacturing-Corporation
,
2020
, “Constant Torque Springs (B Type),” Tech-Spring-Manufacturing-Corporation, New Taipei City, Taiwan, accessed Aug. 14, 2021, https://www.da-yi.com.tw/en/product/Constant-Torque-SpringsBtype/constant-torque-springs-btype.html
59.
Clarke
,
P. C.
,
1964
, “Spring Motor,” AMETEK, Inc., Berwyn, PA, U.S. Patent No.
3,151,704
.https://patents.google.com/patent/US3151704
60.
Stanley
,
A. P.
,
1958
, “Spring Actuated Motors,” Henry Relay Ltd, Witney, UK, U.S. Patent No.
2,835,344
.https://patents.google.com/patent/US2835344
61.
Worthington
,
R. M.
,
1961
, “Spring Motors,” Graco Metal Products, Atlanta, GA, U.S. Patent No.
2,975,866
.https://patents.google.com/patent/US2975866
62.
Artur
,
G.
,
1952
, “Spring Motor,” U.S. Patent No. 2,622,700.
63.
Scherdel
,
2020
,
Spring Manual
,
Scherdel Gmbh
, Erlangen, Germany.
64.
Spiroflex-Division
,
2020
,
Standard Range Motor/Torque Springs
,
Kern Liebers
, Gainsborough, UK.
65.
Vulcan-Spring
,
2019
,
Design Guide for Constant Force, Constant Torque, Conpower & Power, Motor Brush and Twin Springs
,
Vulcan Spring & Manufacturing
, Telford, PA.
66.
Hunter-Spring-Products
,
2015
,
Stock and Customdesigned, Spring-Powered Devices for the Design Engineer
,
Ametek
, Horsham, PA.
67.
Britten
,
F.
,
1978
,
The Watch & Clock Makers' Handbook, Dictionary and Guide
, 16th ed.,
R. Arco Publishing Company
,
New York
(Revised by Good).
68.
Rawlings
,
A. L.
,
1993
,
The Science of Clocks and Watches
, 3rd ed.,
British Horological Institute
, Nottinghamshire, UK.
69.
Saunier
,
C.
,
1861
, “Treatise on Modern Horology,” Translated by J. Tripplin and E. Rigg, W & G Foyle, London, UK.
70.
Pook
,
L.
,
2011
, “
Pendulum Clocks
,”
Understanding Pendulums
,
Springer
, Dordrecht, The Netherlands, pp.
43
62
.
71.
Pook
,
L. P.
,
2011
, “
An Introduction to Coiled Springs (Mainsprings) as a Power Source
,”
Int. J. Fatigue
,
33
(
8
), pp.
1017
1024
.10.1016/j.ijfatigue.2010.11.014
72.
Swift
,
W.
,
1974
, “
Influence of Spring-Back on the Characteristics of the Spiral Spring
,”
Proc. Inst. Mech. Eng.
,
188
(
1
), pp.
615
625
.10.1243/PIME_PROC_1974_188_073_02
73.
Heldman
,
A.
,
2009
, “
The Spring-Barrel/Fusee/Anchorrecoil-Escapement Pendulum Clock as an Integrated System With Phase-Locked Negative Feedback
,”
Horolog. Sci. Newsl.
,
3
, pp.
2
25
.
74.
Ming-Tai-Industrial-Co.
,
2020
, “
Constant Torque Spring
,” Ming-Tai-Industrial-Co., New Taipei City, Taiwan, accessed Aug. 14, 2021, http://www.powerspring.com.tw/constant_torque_spring.php
75.
Johansson
,
O. E.
,
1962
, “
Power Springs
,” U.S. Patent No. 3,018,097.
76.
Tech-Spring-Manufacturing-Corporation
,
2020
, “
Power Springs
,” Tech-Spring-Manufacturing-Corporation, New Taipei City, Taiwan, accessed Aug. 14, 2021, https://www.da-yi.com.tw/en/product/Power-Springs/power-springclockspringscoil-power-springs.html
77.
Foster
,
E. E.
,
1958
, “
Reverse Wound Spring Motor
,” U.S. Patent No.
2,833,534
.https://patents.google.com/patent/US2833534
78.
Arechaga
,
J. C.
,
1987
, “
Backwound Pre-Stressed Spring Motor and Method
,” U.S. Patent No. 4,635,755.
79.
Tech-Spring-Manufacturing-Corporation
,
2020
, “
Pre-Stressed Power Springs
,” New Taipei City, Taiwan, accessed Aug. 14, 2021, https://www.da-yi.com.tw/en/product/Pre-Stressed-Power-Springs/pre-stressed-power-springs.html
80.
Weaver
,
J. D.
,
1980
, “
The Theory of the Fusee
,”
J. Phys. E: Sci. Instrum.
,
13
(
4
), pp.
396
402
.10.1088/0022-3735/13/4/010
81.
REMA,
2020
,
Tool Balancers
,
REMA - Hoisting &Lifting
, Maastricht, The Netherlands.
82.
Bernhardt
,
S.
,
1963
, “Cable Guide Mechanism for Constant Tension Reel,” U.S. Patent No.
3,075,724
.https://patents.google.com/patent/US3075724
83.
Illingworth
,
L.
,
2003
, “Elastic Motor with Constant Torque Output,” Avionic Instruments LLC, Woodbridge Township, NJ, U.S. Patent No.
6,612,402
.https://patents.google.com/patent/US6612402
84.
Illingworth
,
L.
,
2004
, “Elastic Motor Having Timeaveraged Constant Torque Output,” Avionic Instruments LLC, Woodbridge Township, NJ, U.S. Patent No.
6,742,626
.https://patents.google.com/patent/US6742626
85.
Popov
,
D.
,
Gaponov
,
I.
, and
Ryu
,
J.-H.
,
2013
, “
Bidirectional Elbow Exoskeleton Based on Twisted-String Actuators
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
,
IEEE
, Tokyo, Japan, Nov. 3–7, pp.
5853
5858
.10.1109/IROS.2013.6697204
86.
Popov
,
D.
,
Gaponov
,
I.
, and
Ryu
,
J.-H.
,
2014
, “
Towards Variable Stiffness Control of Antagonistic Twisted String Actuators
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
,
IEEE
, Chicago, IL, Sept. 14–18, pp.
2789
2794
.10.1109/IROS.2014.6942944
87.
Gaponov
,
I.
,
Popov
,
D.
, and
Ryu
,
J.-H.
,
2013
, “
Twisted String Actuation Systems: A Study of the Mathematical Model and a Comparison of Twisted Strings
,”
IEEE/ASME Trans. Mechatronics
,
19
(
4
), pp.
1331
1342
.10.1109/TMECH.2013.2280964
88.
Park
,
I.-W.
, and
SunSpiral
,
V.
,
2014
, “
Impedance Controlled Twisted String Actuators for Tensegrity Robots
,”
14th International Conference on Control, Automation and Systems
(
ICCAS 2014
),
IEEE
, Gyeonggi-do, South-Korea, Oct. 22–25, pp.
1331
1338
.10.1109/ICCAS.2014.6987763
89.
Naval Personnel of B
,
1971
, Basic Machines and How They Work, Dover Publications, Mineola, NY.
90.
Lea
,
W. H.
,
1969
, “Constant Torque Transmission,” U.S. Patent No.
3,459,056
.https://patents.google.com/patent/US3459056A/en
91.
Nishina
,
S.
,
2000
, “Constant-Pressure Mechanism and Constant-Torque Mechanism,” U.S. Patent No. 6,128,968.
92.
Norton
,
R. L.
,
2002
,
Cam Design and Manufacturing Handbook
,
Industrial Press,
Inc, New York.
93.
Allain
,
R.
,
2018
, “How Much Energy Can You Store in a Rubber Band?” Wired, San Francisco, CA, accessed Sept. 10, 2021, https://www.wired.com/story/how-much-energy-can-you-store-in-a-rubber-band/
94.
Saerens
,
E.
,
Furnemont
,
R.
,
Verstraten
,
T.
,
Garcia
,
P. L.
,
Crispel
,
S.
,
Ducastel
,
V.
,
Vanderborght
,
B.
, and
Lefeber
,
D.
,
2019
, “
Scaling Laws of Compliant Elements for High Energy Storage Capacity in Robotics
,”
Mech. Mach. Theory
,
139
, pp.
482
505
.10.1016/j.mechmachtheory.2019.05.013
95.
Su
,
J.
,
2015
, “Explaining the Ups and Downs of Constant Force Mechanisms in Mechanical Movements, SJX, Taizhou, China, accessed Aug. 14, 2021, https://watchesbysjx.com/2015/08/monday-lessons-explaining-the-ups-and-downs-of-constant-force-mechanisms-in-mechanical-movements.html
You do not currently have access to this content.