Recent natural extreme events, such as Hurricane Ike in the U.S. (2008), Tohoku tsunami in Japan (2011), and Typhoon Haiyan in Southeast Asia (2013), have caused significant damage to the decks of coastal bridges. The failure of the structure occurs when wave-induced loads on the decks of coastal bridges exceed the bridge capacity, resulting in partial removal or a complete collapse of bridge decks. Tsunami, storm waves, and storm surge are known to be the ultimate agents of such failures. An understanding of the failure mechanism and possible solutions require a better knowledge of the destructive loads on the structure. Interaction of surface waves with the bridge deck is a complex problem, involving fluid–structure interaction, wave breaking, and overtopping. Possible submergence of the deck and entrapment of air pockets between girders can increase destructive forces and add to the complexities of the problem. In recent years, remarkable progress has been made on this topic, resulting in some new findings about the failure mechanism and the destructive wave loads. A review of the key studies on wave loads on the coastal bridge decks, including those in the past and very recently, is presented here. Emphasis is given to the pioneering works that have significantly improved our understanding of the problem. Challenges associated with the existing solutions are highlighted, and suggestions for future studies are provided.

References

1.
Panchang
,
V. G.
, and
Li
,
D.
,
2006
, “
Large Waves in the Gulf of Mexico Caused by Hurricane Ivan
,”
Bull. Am. Meteorol. Soc.
,
87
(
4
), pp.
481
489
.
2.
Chen
,
Q.
,
Wang
,
L.
,
Zhao
,
H.
, and
Douglass
,
S. L.
,
2007
, “
Prediction of Storm Surges and Wind Waves on Coastal Highways in Hurricane-Prone Areas
,”
J. Coastal Res.
,
23
(5), pp.
1304
1317
.
3.
Mori
,
N.
, and
Takahashi
,
T.
,
2012
, “
Nationwide Post Event Survey and Analysis of the 2011 Tohoku Earthquake Tsunami
,”
Coastal Eng. J.
,
54
(
1
), p.
1250001
.
4.
Yim
,
S. C.
,
Cheung
,
K. F.
,
Olsen
,
M. J.
, and
Yamazaki
,
Y.
,
2012
, “
Tohoku Tsunami Survey, Modeling and Probabilistic Load Estimation Applications
,”
International Symposium on Engineering Lessons Learned From the 2011 Great East Japan Earthquake, Japan Association of Earthquake Engineering
, Tokyo, Japan, Mar. 1–4, pp.
430
443
.
5.
Bricker
,
J. D.
,
Takagi
,
H.
,
Mas
,
E.
,
Kure
,
S.
,
Adriano
,
B.
,
Yi
,
C.
, and
Roeber
,
V.
,
2014
, “
Spatial Variation of Damage Due to Storm Surge and Waves During Typhoon Haiyan in the Philippines
,”
J. Jpn. Soc. Civ. Eng.
,
70
(
2
), pp.
231
235
.
6.
Douglass
,
S. L.
,
Chen
,
Q.
,
Olsen
,
J. M.
,
Edge
,
B. L.
, and
Brown
,
D.
,
2006
, “
Wave Forces on Bridge Decks
,” University of South Alabama, Coastal Transportation Engineering Research and Education Center, University of South Alabama, Mobile, AL, p.
74
.
7.
Riggs
,
H.
,
Robertson
,
I. N.
,
Cheung
,
K. F.
,
Pawlak
,
G.
,
Young
,
Y. L.
, and
Yim
,
S. C.
,
2008
, “
Experimental Simulation of Tsunami Hazards to Buildings and Bridges
,” 2008
NSF
Engineering Research and Innovation Conference
, Knoxville, TN, pp.
1056
1064
.
8.
Robertson
,
I. N.
,
Riggs
,
H. R.
,
Yim
,
S. C. S.
, and
Young
,
Y. L.
,
2007
, “
Lessons From Hurricane Katrina Storm Surge on Bridges and Buildings
,”
J. Waterw., Port, Coastal, Ocean Eng.
,
133
(
6
), pp.
463
483
.
9.
Hayes
,
M. B.
,
2008
, “
Assessing the Vulnerability of Delaware's Coastal Bridges to Hurricane Forces
,”
M.S. thesis
, University of Delaware, Newark, DE, p.
77
.
10.
Lehrman
,
J. B.
,
Higgins
,
C.
, and
Cox
,
D.
,
2012
, “
Performance of Highway Bridge Girder Anchorages Under Simulated Hurricane Wave Induced Loads
,”
J. Bridge Eng.
,
17
(
2
), pp.
259
271
.
11.
Livermore
,
S. N.
,
2014
, “
Evaluation of Tsunami Design Codes and Recommendations for Bridges Susceptible to Tsunami Inundation
,”
Ph.D. thesis
, University of Washington, Seattle, WA, p.
122
.
12.
Maruyama
,
K.
,
Tanaka
,
Y.
,
Kosa
,
K.
,
Hosoda
,
A.
,
Mizutani
,
N.
, and
Nakamura
,
T.
,
2013
, “
Evaluation of Tsunami Force Acted on Bridges by Great East Japan Earthquake
,”
10th International Conference on Urban Earthquake Engineering
, pp.
7
16
.
13.
Denson
,
K. H.
,
1978
, “
Wave Forces on Causeway-Type Coastal Bridges
,” Water Resources Research Institute, Mississippi State University, Department of Civil Engineering, MS,
Report No. MS 39762
, p.
42
.
14.
Sheppard
,
D. M.
, and
Marin
,
J.
,
2009
, “
Wave Loading on Bridge Decks
,” Florida Department of Transportation, Tallahassee, FL,
Technical Report No. FDOT BD545-58, UF 00056675
, p.
177
.
15.
Douglass
,
S. L.
,
Hughes
,
S.
,
Rogers
,
S.
, and
Chen
,
Q.
,
2004
, “
The Impact of Hurricane Ivan on the Coastal Roads of Florida and Alabama: A Preliminary Report
,” Report to Coastal Transportation Engineering Research and Education Center, University of South Alabama, Mobile, AL, p.
19
.
16.
Iemura
,
H.
,
Pradono
,
M. H.
, and
Takahashi
,
Y.
,
2005
, “
Report on the Tsunami Damage of Bridges in Banda Aceh and Some Possible Countermeasures
,”
27th Earthquake Engineering Symposium
, Vol.
28
, pp.
214
214
.
17.
Unjoh
,
S.
,
2006
, “
Damage Investigation of Bridges Affected by Tsunami During 2004 North Sumatra Earthquake, Indonesia
,”
Fourth International Workshop on Seismic Design and Retrofit of Transportation Facilities
, San Francisco, CA, Vol.
81
, p.
10
.
18.
Robertson
,
I. N.
,
Yim
,
S.
,
Young
,
Y. L.
, and
Riggs
,
H. R.
,
2007
, “
Coastal Bridge Performance During Hurricane Katrina
,”
Third International Conference on Structural Engineering, Mechanics and Computation
,
SEMC-2007
, Cape Town, South Africa, Millpress, Rotterdam, The Netherlands, pp.
1864
1870
.
19.
Stearns
,
M.
, and
Padgett
,
J. E.
,
2012
, “
Impact of 2008 Hurricane Ike on Bridge Infrastructure in the Houston/Galveston Region
,”
J. Perform. Constr. Facil.
,
26
(
4
), pp.
441
452
.
20.
Kosa
,
K.
,
2011
, “
Damage Analysis of Bridges Affected by Tsunami Due to Great East Japan Earthquake
,”
27th U.S.-Japan Bridge Engineering Workshop
, pp.
55
65
.
21.
Kawashima
,
K.
, and
Buckle
,
I.
,
2013
, “
Structural Performance of Bridges in the Tohoku-Oki Earthquake
,”
Earthquake Spectra
,
29
(
S1
), pp.
S315
S338
.
22.
Akiyama
,
M.
,
Frangopol
,
D. M.
,
Arai
,
M.
, and
Koshimura
,
S.
,
2013
, “
Reliability of Bridges Under Tsunami Hazards: Emphasis on the 2011 Tohoku-Oki Earthquake
,”
Earthquake Spectra
,
29
(S
1
), pp.
S295
S314
.
23.
Mas
,
E.
,
Bricker
,
J.
,
Kure
,
S.
,
Adriano
,
B.
,
Yi
,
C.
,
Suppasri
,
A.
, and
Koshimura
,
S.
,
2015
, “
Field Survey Report and Satellite Image Interpretation of the 2013 Super Typhoon Haiyan in the Philippines
,”
Nat. Hazards Earth Syst. Sci.
,
15
, pp. 805–816.
24.
Padgett
,
J.
,
DesRoches
,
R.
,
Nielson
,
B.
,
Yashinsky
,
M.
,
Kwon
,
O.-S.
,
Burdette
,
N.
, and
Tavera
,
E.
,
2008
, “
Bridge Damage and Repair Costs From Hurricane Katrina
,”
J. Bridge Eng.
,
13
(
1
), pp.
6
14
.
25.
Mimura
,
N.
,
Yasuhara
,
K.
,
Kawagoe
,
S.
,
Yokoki
,
H.
, and
Kazama
,
S.
,
2011
, “
Damage From the Great East Japan Earthquake and Tsunami—A Quick Report
,”
Mitigation Adapt. Strategies Global Change
,
16
(
7
), pp.
803
818
.
26.
Kawashima
,
K.
,
2012
, “
Damage of Bridges Due to the 2011 Great East Japan Earthquake
,”
J. Japan Assoc. Earthquake Eng.
,
12
(
4
), pp.
319
338
.
27.
Akiyama
,
M.
, and
Frangopol
,
D.
,
2012
, Proceedings of the Third International Symposium on Life-Cycle Civil Engineering (IALCCE'12), Vienna, Austria, Oct. 3–6, CRC Press, Boca Raton, FL. “
Lessons From the 2011 Great East Japan Earthquake: Emphasis on Life-Cycle Structural Performance
,”
Life-Cycle and Sustainability of Civil Infrastructure System
, A. Strauss, D. M. Frangopol, and K. Bergmeister, eds., Taylor & Francis Group, London, pp.
13
20
.
28.
Yim
,
S. C.
,
2005
, “
Modeling and Simulation of Tsunami and Storm Surge Hydrodynamic Loads on Coastal Bridge Structures
,”
21st U.S.-Japan Bridge Engineering Workshop
, pp.
3
5
.
29.
Ghobarah
,
A.
,
Saatcioglu
,
M.
, and
Nistor
,
I.
,
2006
, “
The Impact of the 26 December 2004 Earthquake and Tsunami on Structures and Infrastructure
,”
Eng. Struct.
,
28
(
2
), pp.
312
326
.
30.
Saatcioglu
,
M.
,
Ghobarah
,
A.
, and
Nistor
,
I.
,
2006
, “
Performance of Structures in Indonesia During the December 2004 Great Sumatra Earthquake and Indian Ocean Tsunami
,”
Earthquake Spectra
,
22
(
S3
), pp.
295
319
.
31.
Eamon
,
C. D.
,
Fitzpatrick
,
P.
, and
Truax
,
D. D.
,
2007
, “
Observations of Structural Damage Caused by Hurricane Katrina on the Mississippi Gulf Coast
,”
J. Perform. Constr. Facil.
,
21
(
2
), pp.
117
127
.
32.
DesRoches
,
R.
,
2006
, “
Hurricane Katrina: Performance of Transportation Systems
,” ASCE Technical Council on Lifeline Earthquake Engineering (
TCLEE
), Monograph No. 29, p.
62
.
33.
Okeil
,
A. M.
, and
Cai
,
C.
,
2008
, “
Survey of Short- and Medium-Span Bridge Damage Induced by Hurricane Katrina
,”
J. Bridge Eng.
,
13
(
4
), pp.
377
387
.
34.
Aglipay
,
M. R. I.
,
Keshab
,
S.
,
Kyokawa
,
H.
, and
Konagai
,
K.
,
2011
, “
Bridges Washed Away by Tsunami in Minamisanriku, Miyagi Prefecture in the March 11th 2011 Great East Japan earthquake
,”
Seisan Kenkyu
,
63
(
6
), pp.
723
727
.
35.
Nishida
,
H.
,
2011
, “Proceedings of the 27th U.S.–Japan Bridge Engineering Workshop,”
Center for Advanced Engineering Structural Assessment and Research
, Tsukuba, Ibaraki, Japan, Nov. 7–9, p.
407
.
36.
Kuwabara
,
T.
, and
Yen
,
W. P.
,
2011
, “
U.S.–Japan Joint Reconnaissance Report of Bridge Damage Due to 2011 Tohoku Earthquake
,”
43rd Joint Meeting of U.S.-Japan Panel on Wind And Seismic Effects
UJNR
,
K.
Tamura
, ed., Public Works Research Institute, Tsukuba, Japan, pp.
152
164
.
37.
Suppasri
,
A.
,
Shuto
,
N.
,
Imamura
,
F.
,
Koshimura
,
S.
,
Mas
,
E.
, and
Yalciner
,
A. C.
,
2013
, “
Lessons Learned From the 2011 Great East Japan Tsunami: Performance of Tsunami Countermeasures, Coastal Buildings, and Tsunami Evacuation in Japan
,”
Pure Appl. Geophys.
,
170
(
6–8
), pp.
993
1018
.
38.
Mazinani
,
I.
,
Ismail
,
Z. B.
, and
Hashim
,
A. M.
,
2015
, “
An Overview of Tsunami Wave Force on Coastal Bridge and Open Challenges
,”
J. Earthquake Tsunami
,
9
(
2
), p.
1550006
.
39.
Hayatdavoodi
,
M.
,
Ertekin
,
R. C.
,
Robertson
,
I. N.
, and
Riggs
,
H. R.
,
2015
, “
Vulnerability Assessment of Coastal Bridges on Oahu Impacted by Storm Surge and Waves
,”
Nat. Hazards
,
79
(
2
), pp.
1
25
.
40.
An
,
S.
, and
Faltinsen
,
O. M.
,
2012
, “
Linear Free-Surface Effects on a Horizontally Submerged and Perforated 2D Thin Plate in Finite and Infinite Water Depths
,”
Appl. Ocean Res.
,
37
, pp.
220
234
.
41.
Guo
,
A.
,
Fang
,
Q.
, and
Li
,
H.
,
2015
, “
Analytical Solution of Hurricane Wave Forces Acting on Submerged Bridge Decks
,”
Ocean Eng.
,
108
, pp.
519
528
.
42.
Meng
,
B.
,
2008
, “
Calculation of Extreme Wave Loads on Coastal Highway Bridges
,”
Ph.D. thesis
, Texas A&M University, College Station, TX, p.
126
.
43.
Siew
,
P. F.
, and
Hurley
,
D. G.
,
1977
, “
Long Surface Waves Incident on a Submerged Horizontal Plate
,”
J. Fluid Mech.
,
83
(
10
), pp.
141
151
.
44.
Patarapanich
,
M.
,
1984
, “
Forces and Moment on a Horizontal Plate Due to Wave Scattering
,”
Coastal Eng.
,
8
(
3
), pp.
279
301
.
45.
Boussinesq
,
J.
,
1871
, “
Thorie de l'intumescence liquide appele onde solitaire ou de translation
,”
C. R. Acad. Sci. Paris
,
72
, pp.
755
759
.
46.
Rayleigh
,
L.
,
1876
, “
On Waves
,”
Philos. Mag.
,
1
(
4
), pp.
257
279
.
47.
Korteweg
,
D.
, and
de Vries
,
G.
,
1895
, “
On the Change of Form of Long Waves Advancing in a Rectangular Canal, and on a New Type of Long Stationary Waves
,”
Philos. Mag.
,
39
(
5
), pp.
422
443
.
48.
Green
,
A. E.
, and
Naghdi
,
P. M.
,
1974
, “
On the Theory of Water Waves
,”
Proc. R. Soc. London: Ser. A
,
338
(
1612
), pp.
43
55
.
49.
Green
,
A. E.
, and
Naghdi
,
P. M.
,
1976
, “
A Derivation of Equations for Wave Propagation in Water of Variable Depth
,”
J. Fluid Mech.
,
78
(
10
), pp.
237
246
.
50.
Green
,
A. E.
, and
Naghdi
,
P. M.
,
1976
, “
Directed Fluid Sheets
,”
Proc. R. Soc. London: Ser. A
,
347
(
1651
), pp.
447
473
.
51.
Green
,
A. E.
, and
Naghdi
,
P. M.
,
1986
, “
A Nonlinear Theory of Water Waves for Finite and Infinite Depths
,”
Philos. Trans. R. Soc. London: Ser. A
,
320
(
1552
), pp.
37
70
.
52.
Ertekin
,
R. C.
,
1988
, “
Nonlinear Shallow Water Waves: The Green-Naghdi Equations
,”
Pacific Congress on Marine Science and Technology
,
PACON’88
, Honolulu, HI, pp.
OST6/42
52
.
53.
Naghdi
,
P. M.
,
1991
, “
A Simple Derivation of Equations of Water Wave Theory Motivated by a Direct Approach
,”
Mathematical Approaches in Hydrodynamics
,
T.
Miloh
, ed.,
Society for Industrial and Applied Mathematics
,
Philadelphia, PA
, pp.
182
192
.
54.
Ertekin
,
R. C.
,
1984
, “
Soliton Generation by Moving Disturbances in Shallow Water: Theory, Computation and Experiment
,” Ph.D. thesis, University of California, Berkeley, CA, p.
352
.
55.
Ertekin
,
R. C.
,
Webster
,
W. C.
, and
Wehausen
,
J. V.
,
1986
, “
Waves Caused by a Moving Disturbance in a Shallow Channel of Finite Width
,”
J. Fluid Mech.
,
169
(
7
), pp.
275
292
.
56.
Ertekin
,
R. C.
,
Hayatdavoodi
,
M.
, and
Kim
,
J. W.
,
2014
, “
On Some Solitary and Cnoidal Wave Diffraction Solutions of the Green–Naghdi Equations
,”
Appl. Ocean Res.
,
47
, pp.
125
137
.
57.
Zhao
,
B. B.
,
Duan
,
W. Y.
, and
Ertekin
,
R. C.
,
2014
, “
Application of Higher-Level GN Theory to Some Wave Transformation Problems
,”
Coastal Eng.
,
83
, pp.
177
189
.
58.
Zhao
,
B. B.
,
Ertekin
,
R. C.
,
Duan
,
W. Y.
, and
Hayatdavoodi
,
M.
,
2014
, “
On the Steady Solitary-Wave Solution of the Green–Naghdi Equations of Different Levels
,”
Wave Motion
,
51
(
8
), pp.
1382
1395
.
59.
Zhao
,
B. B.
,
Duan
,
W. Y.
,
Ertekin
,
R. C.
, and
Hayatdavoodi
,
M.
,
2015
, “
High-Level Green–Naghdi Wave Models for Nonlinear Wave Transformation in Three Dimensions
,”
J. Ocean Eng. Mar. Energy
,
1
(
2
), pp.
121
132
.
60.
Hayatdavoodi
,
M.
, and
Ertekin
,
R. C.
,
2015
, “
Wave Forces on a Submerged Horizontal Plate—Part I: Theory and Modelling
,”
J. Fluids Struct.
,
54
, pp.
566
579
.
61.
Jasak
,
H.
,
1996
, “
Error Analysis and Estimation for the Finite Volume Method With Applications to Fluid Flows
,” Ph.D. thesis, University of London, London, UK.
62.
Rusche
,
H.
,
2002
, “
Computational Fluid Dynamics of Dispersed Two-Phase Flows at High Phase Fractions
,” Ph.D. thesis, University of London, London, UK.
63.
Kim
,
J. W.
,
Jang
,
H.
,
Baquet
,
A.
,
O'Sullivan
,
J.
,
Lee
,
S.
,
Kim
,
B.
,
Read
,
A.
, and
Jasak
,
H.
,
2016
, “
Technical and Economic Readiness Review of CFD-Based Numerical Wave Basin for Offshore Floater Design
,”
Offshore Technology Conference
,
Paper No. OTC-27294-MS
.
64.
Xiao
,
H.
,
Huang
,
W.
, and
Chen
,
Q.
,
2010
, “
Effects of Submersion Depth on Wave Uplift Force Acting on Biloxi Bay Bridge Decks During Hurricane Katrina
,”
Comput. Fluids
,
39
(
8
), pp.
1390
1400
.
65.
Bozorgnia
,
M.
, and
Lee
,
J. J.
,
2012
, “
Computational Fluid Dynamic Analysis of Highway Bridges Exposed to Hurricane Waves
,”
33rd Conference on Coastal Engineering
,
ASCE
, Santander, Spain, pp.
1
14
.
66.
Bricker
,
J. D.
,
Kawashima
,
K.
, and
Nakayama
,
A.
,
2012
, “
CFD Analysis of Bridge Deck Failure Due to Tsunami
,”
International Symposium on Engineering Lessons Learned From the 2011 Great East Japan Earthquake
, Tokyo, Japan, Mar. 1–4, pp.
1398
1409
.
67.
Hayatdavoodi
,
M.
, and
Ertekin
,
R. C.
,
2015
, “
Nonlinear Wave Loads on a Submerged Deck by the Green–Naghdi Equations
,”
ASME J. Offshore Mech. Arct. Eng.
,
137
(
1
), p.
011102
.
68.
Xu
,
G.
,
Cai
,
C. S.
, and
Han
,
Y.
,
2015
, “
Investigating the Characteristics of the Solitary Wave-Induced Forces on Coastal Twin Bridge Decks
,”
J. Perform. Constr. Facil.
, p.
04015076
.
69.
Lau
,
T. L.
,
Ohmachi
,
T.
,
Inoue
,
S.
, and
Lukkunaprasit
,
P.
,
2011
, “
Experimental and Numerical Modeling of Tsunami Force on Bridge Decks
,”
Tsunami—A Growing Disaster
,
M.
Mokhtari
, ed.,
InTech
, Rijeka, Croatia, pp.
105
130
.
70.
Motley
,
M. R.
,
Wong
,
H. K.
,
Qin
,
X.
,
Winter
,
A. O.
, and
Eberhard
,
M. O.
,
2016
, “
Tsunami-Induced Forces on Skewed Bridges
,”
J. Waterw., Port, Coastal, Ocean Eng.
,
142
(
3
), p.
04015025
.
71.
Lo
,
H. Y.
, and
Liu
,
P. L.
,
2014
, “
Solitary Waves Incident on a Submerged Horizontal Plate
,”
J. Waterw. Port Coastal Ocean Eng.
,
140
(
3
), p.
04014009
.
72.
Ertekin
,
R. C.
, and
Hayatdavoodi
,
M.
,
2015
, “
Hydrodynamics of Wave Forces on Coastal-Bridge Decks: Calculations by Euler's Equations Versus Nonlinear Shallow-Water Wave Equations
,”
Oceans 2015 Conference
,
MTS/IEEE
, Genova, Italy, May 18–21, Paper No. 141204-084.
73.
Chen
,
S.
, and
Doolen
,
G. D.
,
1998
, “
Lattice Boltzmann Method for Fluid Flows
,”
Annu. Rev. Fluid Mech.
,
30
(
1
), pp.
329
364
.
74.
Aidun
,
C. K.
, and
Clausen
,
J. R.
,
2010
, “
Lattice–Boltzmann Method for Complex Flows
,”
Annu. Rev. Fluid Mech.
,
42
(
1
), pp.
439
472
.
75.
Monaghan
,
J. J.
,
1992
, “
Smoothed Particle Hydrodynamics
,”
Annu. Rev. Astron. Astrophys.
,
30
(
1
), pp.
543
574
.
76.
Monaghan
,
J.
,
2012
, “
Smoothed Particle Hydrodynamics and Its Diverse Applications
,”
Annu. Rev. Fluid Mech.
,
44
(
1
), pp.
323
346
.
77.
Wei
,
Z.
, and
Dalrymple
,
R. A.
,
2016
, “
Numerical Study on Mitigating Tsunami Force on Bridges by an SPH Model
,”
J. Ocean Eng. Mar. Energy
,
2
(
3
), pp.
1
16
.
78.
Nakao
,
H.
,
Zhang
,
G.
,
Sumimura
,
T.
, and
Hoshikuma
,
J.-I.
,
2013
, “
Numerical Assessment of Tsunami-Induced Effect on Bridge Behavior
,”
29th U.S.-Japan Bridge Engineering Workshop
, pp.
1
13
.
79.
Guo
,
A.
,
Fang
,
Q.
,
Bai
,
X.
, and
Li
,
H.
,
2015
, “
Hydrodynamic Experiment of the Wave Force Acting on the Superstructures of Coastal Bridges
,”
J. Bridge Eng.
,
20
(
12
), p.
04015012
.
80.
Bradner
,
C.
,
Schumacher
,
T.
,
Cox
,
D.
, and
Higgins
,
C.
,
2011
, “
Experimental Setup for a Large-Scale Bridge Superstructure Model Subjected to Waves
,”
J. Waterw., Port, Coastal, Ocean Eng.
,
137
(
1
), pp.
3
11
.
81.
Schumacher
,
T.
,
Higgins
,
C.
,
Bradner
,
C.
,
Cox
,
D.
, and
Yim
,
S.
,
2008
, “
Large-Scale Wave Flume Experiments on Highway Bridge Superstructures Exposed to Hurricane Wave Forces
,”
Sixth National Seismic Conference on Bridges and Highways
, Charleston, SC, Paper No. 2A3-5.
82.
Hayatdavoodi
,
M.
,
Seiffert
,
B.
, and
Ertekin
,
R. C.
,
2014
, “
Experiments and Computations of Solitary-Wave Forces on a Coastal-Bridge Deck—Part II: Deck With Girders
,”
Coastal Eng.
,
88
, pp.
210
228
.
83.
Hayatdavoodi
,
M.
,
Seiffert
,
B.
, and
Ertekin
,
R. C.
,
2015
, “
Experiments and Calculations of Cnoidal Wave Loads on a Flat Plate in Shallow Water
,”
J. Ocean Eng. Mar. Energy
,
1
(
1
), pp.
77
99
.
84.
Seiffert
,
B. R.
,
Ertekin
,
R. C.
, and
Robertson
,
I. N.
,
2015
, “
Wave Loads on a Coastal Bridge Deck and the Role of Entrapped Air
,”
Appl. Ocean Res.
,
53
, pp.
91
106
.
85.
El Ghamry
,
O. A.
,
1963
, “
Wave Forces on a Dock
,” University of California, Berkeley, CA, Hydraulic Engineering Laboratory, Wave Research Projects, Hydraulic Engineering Laboratory, Institute of Engineering Research,
Technical Report No. HEL-9-1
.
86.
Wang
,
H.
,
1970
, “
Water Wave Pressure on Horizontal Plate
,”
J. Hydraul. Div.
,
96
(
10
), pp.
1997
2016
.
87.
French
,
J. A.
,
1969
, “
Wave Uplift Pressures on Horizontal Platforms
,” Ph.D. thesis, W. M. Keck Laboratory of Hydraulics and Water Resources, California Institute of Technology, Pasadena, CA, p.
415
.
88.
French
,
J. A.
,
1970
, “
Wave Uplift Pressures on Horizontal Platforms
,”
Civil Engineering in the Oceans IV
, Vol.
1
, pp.
187
202
.
89.
Douglass
,
S. L.
,
McNeill
,
L. P.
, and
Edge
,
B.
,
2007
, “
Wave Loads on U.S. Highway Bridges
,” Coastal Structures, Venice, Italy, July, 2–4, pp.
1659
1670
.
90.
Denson
,
K. H.
,
1980
, “
Wave Forces on Causeway-Type Coastal Bridges: Effects of Angle of Wave Incidence and Cross Section Shape
,” Water Resources Research Institute, Mississippi State University, Department of Civil Engineering, MS,
Report No. MSHD-RD-80-070
, p.
242
.
91.
Shih
,
R. W. K.
, and
Anastasiou
,
K.
,
1992
, “
A Laboratory Study of the Wave-Induced Vertical Loading on Platform Decks
,”
ICE—Water Maritime and Energy
, Vol.
96
(
1
), pp.
19
33
.
92.
Kaplan
,
P.
,
1992
, “
Wave Impact Forces on Offshore Structures: Re-Examination and New Interpretations
,”
Offshore Technology Conference
, Houston, TX, Paper No. OTC-6814-MS, pp.
79
86
.
93.
Kaplan
,
P.
,
Murray
,
J. J.
, and
Yu
,
W. C.
,
1995
, “
Theoretical Analysis of Wave Impact Forces on Platform Deck Structures
,”
Offshore Mechanics and Arctic Engineering
,
OMAE
, ASME, Copenhagen, Denmark, Vol.
1-A
, pp.
189
198
.
94.
Isaacson
,
M.
, and
Bhat
,
S.
,
1996
, “
Wave Forces on a Horizontal Plate
,”
Int. J. Offshore Polar Eng.
,
6
(
1
), pp.
19
26
.
95.
Morison
,
J. R.
,
O'Brien
,
M. P.
,
Johnson
,
J. W.
, and
Schaaf
,
S. A.
,
1950
, “
The Force Exerted by Surface Piles
,”
Pet. Trans.
,
189
, pp.
149
154
.
96.
Tirindelli
,
M.
,
Cuomo
,
G.
,
Allsop
,
W.
, and
McConnell
,
K.
,
2002
, “
Exposed Jetties: Inconsistencies and Gaps in Design Methods for Wave-Induced Forces
,”
International Conference on Coastal Engineering
, Cardiff, Wales,
J. M.
Smith
, ed., pp.
1684
1696
.
97.
McConnell
,
K.
,
Allsop
,
W.
, and
Cruickshank
,
I.
,
2004
,
Piers, Jetties, and Related Structures Exposed to Waves: Guidelines for Hydraulic Loadings
, 1st ed.,
Thomas Telford Press
,
London, UK
, p.
148
.
98.
Cuomo
,
G.
,
Tirindelli
,
M.
, and
Allsop
,
W.
,
2007
, “
Wave-In-Deck Loads on Exposed Jetties
,”
Coastal Eng.
,
54
(
9
), pp.
657
679
.
99.
Marin
,
J.
, and
Sheppard
,
D. M.
,
2009
, “
Storm Surge and Wave Loading on Bridge Superstructures
,”
Structures Congress 2009
,
ASCE
, Austin, TX, pp.
557
566
.
100.
Prasard
,
S.
,
1994
, “
Wave Impact Forces on a Horizontal Cylinder
,”
Ph.D. thesis
, Department of Civil Engineering, The University of British Columbia, Vancouver, BC, p.
185
.
101.
Isaacson
,
M.
, and
Prasad
,
S.
,
1994
, “
Wave Slamming on a Horizontal Circular Cylinder
,”
Int. J. Offshore Polar Eng.
,
4
(
2
), pp.
81
88
.
102.
Bea
,
R. G.
,
Xu
,
T.
,
Stear
,
J.
, and
Ramos
,
R.
,
1999
, “
Wave Forces on Decks of Offshore Platforms
,”
J. Waterw., Port, Coastal, Ocean Eng.
,
125
(
3
), pp.
136
144
.
103.
Bea
,
R. G.
,
Iverson
,
R.
, and
Xu
,
T.
,
2001
, “
Wave-In-Deck Forces on Offshore Platforms
,”
ASME J. Offshore Mech. Arct. Eng.
,
123
(
1
), pp.
10
21
.
104.
Cardone
,
V. J.
, and
Cox
,
A. T.
,
1992
, “
Hindcast Study of Hurricane Andrew (1992) Offshore Gulf of Mexico
,” Joint Industry Project, Oceanweather, Cos Cob, CT, p.
158
.
105.
Vannan
,
M.
,
Thompson
,
H.
,
Griffin
,
J.
, and
Gelpi
,
S.
,
1994
, “
An Automated Procedure for Platform Strength Assessment
,”
Offshore Technology Conference
, pp.
55
64
.
106.
Baarholm
,
R. J.
,
2001
, “
Theoretical and Experimental Studies of Wave Impact Underneath Decks of Offshore Platforms
,” Ph.D. thesis, Department of Marine Hydrodynamics, NTNU, Trondheim, Norway, p.
161
.
107.
Baarholm
,
R.
, and
Faltinsen
,
O. M.
,
2004
, “
Wave Impact Underneath Horizontal Decks
,”
J. Mar. Sci. Technol.
,
9
(
1
), pp.
1
13
.
108.
Wagner
,
H.
,
1932
, “
Über stoiß- und gleitvorgänge an der oberfläche von flüssigkeiten
,”
Z. Angew. Math. Mech.
,
12
(
4
), pp.
193
215
(Translated into English as Phenomena Associated With Impact and Sliding on Liquid Surfaces. N.A.C.A. Translation 1366, p. 60).
109.
Zhao
,
R.
, and
Faltinsen
,
O.
,
1993
, “
Water Entry of Two-Dimensional Bodies
,”
J. Fluid Mech.
,
246
, pp.
593
612
.
110.
Lai
,
C. P.
, and
Lee
,
J. J.
,
1989
, “
Interaction of Finite Amplitude Waves With Platforms or Docks
,”
J. Waterw., Port, Coastal, Ocean Eng.
,
115
(
1
), pp.
19
39
.
111.
Overbeek
,
J.
, and
Klabbers
,
I. M.
,
2001
, “
Design of Jetty Decks for Extreme Vertical Wave Loads
,”
Ports 01
,
ASCE
, Norfolk, VA, pp.
1
10
.
112.
McPherson
,
R. L.
,
2008
, “
Hurricane Induced Wave and Surge Forces on Bridge Decks
,”
M.S. thesis
, Texas A&M University, College Station, TX, p.
90
.
113.
AASHTO
,
2008
, “
Guide Specifications for Bridges Vulnerable to Coastal Storms
,” American Association of State Highway and Transportation Officials, p.
64
.
114.
Bradner
,
C.
,
2008
, “
Large-Scale Laboratory Observations of Wave Forces on a Highway Bridge Superstructure
,”
Ph.D. thesis
, Oregon State University, Corvallis, OR, p.
150
.
115.
Bradner
,
C.
,
Schumacher
,
T.
,
Cox
,
D.
, and
Higgins
,
C.
,
2011
, “
Experimental Setup for a Large-Scale Bridge Superstructure Model Subjected to Waves
,”
J. Waterw.
, Port, Coastal, Ocean Eng.,
137
(
1
), pp.
3
11
.
116.
Iemura
,
H.
,
Pradono
,
M. H.
,
Yasuda
,
T.
, and
Tada
,
T.
,
2007
, “
Experiments of Tsunami Force Acting on Bridge Models
,”
J. Jpn. Soc. Civ. Eng.
,
29
, pp.
902
911
.
117.
Thusyanthan
,
I.
, and
Martinez
,
E.
,
2008
, “
Model Study of Tsunami Wave Loading on Bridges
,”
Eighteenth International Offshore and Polar Engineering Conference
, Vancouver, BC, International Society of Offshore and Polar Engineers, Vancouver, Canada, pp.
174
180
.
118.
Lukkunaprasit
,
P.
,
Lau
,
T. L.
,
Ruangrassamee
,
A.
, and
Ohmachi
,
T.
,
2011
, “
Tsunami Wave Loading on a Bridge Deck With Perforations
,”
Sci. Tsunami Hazards
,
30
(
4
), pp.
244
252
.
119.
Rahman
,
S.
,
Akib
,
S.
, and
Shirazi
,
S.
,
2014
, “
Experimental Investigation on the Stability of Bride Girder Against Tsunami Forces
,”
Sci. China Technol. Sci.
,
57
(
10
), pp.
2028
2036
.
120.
Mazinani
,
I.
,
Ismail
,
Z. B.
,
Shamshirband
,
S.
,
Hashim
,
A. M.
,
Mansourvar
,
M.
, and
Zalnezhad
,
E.
,
2016
, “
Estimation of Tsunami Bore Forces on a Coastal Bridge Using an Extreme Learning Machine
,”
Entropy
,
18
(
5
), p. 16.
121.
Chen
,
Q.
,
Wang
,
L.
, and
Zhao
,
H.
,
2009
, “
Hydrodynamic Investigation of Coastal Bridge Collapse During Hurricane Katrina
,”
J. Hydraul. Eng.
,
135
(
3
), pp.
175
186
.
122.
Booij
,
N.
,
Ris
,
R.
, and
Holthuijsen
,
L.
,
1999
, “
A Third Generation Wave Model for Coastal Regions—Part 1: Model Description and Validation
,”
J. Geophys. Res.
,
104
(C4), pp.
7649
7666
.
123.
Luettich
,
R. J.
,
Westerink
,
J.
, and
Scheffner
,
N. W.
,
1992
, “
ADCIRC: An Advanced Three-Dimensional Circulation Model for Shelves, Coasts, and Estuaries
,” Dredging Research Program, Washington, DC, Report 1. Theory and Methodology of ADCIRC-2DDI and ADCIRC-3DL, Technical Report No. DRP-92-6, p.
143
.
124.
Luettich
,
R. J.
, and
Westerink
,
J.
,
2004
, “
Formulation and Numerical Implementation of the 2D/3D ADCIRC Finite Element Model Version 44.xx
,” p.
74
.
125.
Dietrich
,
J.
,
Zijlema
,
M.
,
Westerink
,
J.
,
Holthuijsen
,
L.
,
Dawson
,
C.
,
Luettich
,
R.
,
Jensen
,
R.
,
Smith
,
J.
,
Stelling
,
G.
, and
Stone
,
G.
,
2011
, “
Modeling Hurricane Waves and Storm Surge Using Integrally-Coupled, Scalable Computations
,”
Coastal Eng.
,
58
(
1
), pp.
45
65
.
126.
Hayatdavoodi
,
M.
, and
Ertekin
,
R. C.
,
2015
, “
Wave Forces on a Submerged Horizontal Plate—Part II: Solitary and Cnoidal Waves
,”
J. Fluids Struct.
,
54
, pp.
580
596
.
127.
Huang
,
W.
, and
Xiao
,
H.
,
2009
, “
Numerical Modeling of Dynamic Wave Force Acting on Escambia Bay Bridge Deck During Hurricane Ivan
,”
J. Waterw., Port, Coastal Ocean Eng.
,
135
(
4
), pp.
164
175
.
128.
Hirt
,
C.
, and
Nichols
,
B.
,
1981
, “
Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries
,”
J. Comput. Phys.
,
39
(
1
), pp.
201
225
.
129.
Sicilian
,
J. M.
,
Hirt
,
C. W.
, and
Harper
,
R. P.
,
1987
, “
FLOW-3D: Computational Modeling Power for Scientists and Engineers
,” Flow Sciences, Technical Report No. FSI-87-00-1, p.
10
.
130.
Liaw
,
K.
,
2005
, “
Simulation of Flow Around Bluff Bodies and Bridge Deck Sections Using CFD
,”
Ph.D. thesis
, University of Nottingham, Nottingham, UK, p.
251
.
131.
Bozorgnia
,
M.
,
Lee
,
J.
, and
Raichlen
,
F.
,
2010
, “
Wave Structure Interaction: Role of Entrapped Air on Wave Impact and Uplift Forces
,”
32nd Conference on Coastal Engineering
,
ASCE
, Shanghai, China, pp.
1
12
.
132.
Jin
,
J.
, and
Meng
,
B.
,
2011
, “
Computation of Wave Loads on the Superstructures of Coastal Highway Bridges
,”
Ocean Eng.
,
38
(
17
), pp.
2185
2200
.
133.
Azadbakht
,
M.
, and
Yim
,
S. C.
,
2015
, “
Simulation and Estimation of Tsunami Loads on Bridge Superstructures
,”
J. Waterw. Port Coastal Ocean Eng.
,
141
(
2
), p.
04014031
.
134.
Xu
,
G.
, and
Cai
,
C. S.
,
2015
, “
Numerical Simulations of Lateral Restraining Stiffness Effect on Bridge Deckwave Interaction Under Solitary Waves
,”
Eng. Struct.
,
101
, pp.
337
351
.
135.
Bozorgnia
,
M.
,
2012
, “
Computational Fluid Dynamic Analysis of Highway Bridge Superstructures Exposed to Hurricane Waves
,”
Ph.D. thesis
, University of Southern California, Los Angeles, CA, p.
169
.
136.
Motley
,
M.
,
Lemoine
,
G.
, and
Livermore
,
S.
,
2014
, “
Three-Dimensional Loading Effects of Tsunamis on Bridge Superstructures
,”
Structures Congress 2014
,
ASCE
, Boston, MA, pp.
1348
1358
.
137.
Seiffert
,
B.
,
Hayatdavoodi
,
M.
, and
Ertekin
,
R. C.
,
2014
, “
Experiments and Computations of Solitary-Wave Forces on a Coastal-Bridge Deck—Part I: Flat Plate
,”
Coastal Eng.
,
88
, pp.
194
209
.
138.
Constantin
,
A.
,
Escher
,
J.
, and
Hsu
,
H.-C.
,
2011
, “
Pressure Beneath a Solitary Water Wave: Mathematical Theory and Experiments
,”
Arch. Ration. Mech. Anal.
,
201
(
1
), pp.
251
269
.
139.
Wiegel
,
R. L.
,
1964
,
Oceanographical Engineering
,
Prentice-Hall
,
Englewood Cliffs, NJ
, p.
532
.
140.
Whitham
,
G. B.
,
1974
,
Linear and Nonlinear Waves
,
Prentice-Hall
,
Englewood Cliffs, NJ
, p.
532
.
141.
Sarpkaya
,
T.
, and
Isaacson
,
M.
,
1981
,
Mechanics of Wave Forces on Offshore Structures
,
Van Nostrand Reinhold Company
, New York, p.
651
.
142.
Svendsen
,
I. A.
, and
Jonsson
,
I. G.
,
1976
,
Hydrodynamics of Coastal Regions
,
Den Private Ingeniørfond, Technical University of Denmark
,
Lyngby, Denmark
, p.
285
.
143.
Seiffert
,
B.
,
Hayatdavoodi
,
M.
, and
Ertekin
,
R. C.
,
2015
, “
Cnoidal Wave Loads on a Bridge Deck With Girders: Experiments and Computations
,”
Eur. J. Mech. B/Fluids
,
52
, pp.
191
205
.
144.
Padgett
,
J. E.
,
Spiller
,
A.
, and
Arnold
,
C.
,
2012
, “
Statistical Analysis of Coastal Bridge Vulnerability Based on Empirical Evidence From Hurricane Katrina
,”
Struct. Infrastruct. Eng.
,
8
(
6
), pp.
595
605
.
145.
Shoji
,
G.
, and
Moriyama
,
T.
,
2007
, “
Evaluation of the Structural Fragility of a Bridge Structure Subjected to a Tsunami Wave Load
,”
J. Nat. Disaster Sci.
,
29
(
2
), pp.
73
81
.
146.
Ataei
,
N.
, and
Padgett
,
J. E.
,
2011
, “
Coastal Bridge Reliability During Hurricane Events: Comparison of Fragility Curves by Static and Dynamic Simulation
,”
ASCE
Structures Congress
, Las Vegas, NV, pp.
2263
2274
.
147.
Akiyama
,
M.
,
Frangopol
,
D. M.
,
Arai
,
M.
, and
Koshimura
,
S.
,
2012
, “
Probabilistic Assessment of Structural Performance of Bridges Under Tsunami Hazard
,”
ASCE
Structures Congress
, Chicago, IL, pp.
1919
1928
.
148.
Sobanjo
,
J.
,
Thompson
,
P.
, and
Kerr
,
R.
,
2013
, “
Modeling Hurricane Hazards and Damage on Florida Bridges
,”
Transp. Res. Rec.: J. Transp. Res. Board
,
2360
, pp.
60
68
.
149.
Ataei
,
N.
, and
Padgett
,
J. E.
,
2015
, “
Influential Fluid–Structure Interaction Modelling Parameters on the Response of Bridges Vulnerable to Coastal Storms
,”
Struct. Infrastruct. Eng.
,
11
(
3
), pp.
321
333
.
150.
Sheng
,
Y. P.
,
Zhang
,
Y.
, and
Paramygin
,
V. A.
,
2010
, “
Simulation of Storm Surge, Wave, and Coastal Inundation in the Northeastern Gulf of Mexico Region During Hurricane Ivan in 2004
,”
Ocean Modell.
,
35
(
4
), pp.
314
331
.
151.
Brater
,
E. F.
,
McNown
,
J. S.
, and
Stair
,
L. D.
,
1958
, “
Wave Forces on Submerged Structures
,”
J. Hydraul. Div., ASCE
,
84
, pp.
1
26
.
152.
Herbich
,
J. B.
, and
Shank
,
G. E.
,
1970
, “
Forces Due to Waves on Submerged Structures Theory and Experiment
,”
Offshore Technology Conference
, Houston, TX, pp.
189
202
.
153.
Durgin
,
W. W.
, and
Shiau
,
J. C.
,
1975
, “
Wave Induced Pressures on Submerged Plates
,”
J. Waterw., Harbor, Coastal Eng.
,
101
, pp.
59
71
.
154.
Rey
,
V.
, and
Touboul
,
J.
,
2011
, “
Forces and Moment on a Horizontal Plate Due to Regular and Irregular Waves in the Presence of Current
,”
Appl. Ocean Res.
,
33
(
2
), pp.
88
99
.
155.
Kulin
,
G.
,
1958
, “
Solitary Wave Forces on Submerged Cylinders and Plates
,” National Bureau of Standards, Washington, DC, Technical Report No. 5876, p.
44
.
156.
Kojima
,
H.
,
Yoshida
,
A.
, and
Nakamura
,
T.
,
1994
, “
Linear and Nonlinear Wave Forces Exerted on a Submerged Horizontal Plate
,”
International Conference on Coastal Engineering
, Kobe, Japan, pp.
1312
1326
.
157.
Hayatdavoodi
,
M.
, and
Ertekin
,
R. C.
,
2012
, “
Nonlinear Forces on a Submerged, Horizontal Plate: The GN Theory
,”
27th International Workshop on Water Waves and Floating Bodies
(
IWWWFB27
), Copenhagen, Denmark, Apr. 22–25, pp.
69
72
.
158.
Hayatdavoodi
,
M.
, and
Ertekin
,
R. C.
,
2014
, “
A Comparative Study of Nonlinear Shallow-Water Wave Loads on a Submerged Horizontal Box
,”
ASME Paper No. OMAE2014-24572
.
159.
Kerenyi
,
K.
,
Sofu
,
T.
, and
Guo
,
J.
,
2009
, “
Hydrodynamic Forces on Inundated Bridge Decks
,” Technical Report No. FHWA-HRT-09-028, Turner-Fairbank Highway Research Center, McLean, VA,
Technical Report No. FHWA-HRT-09-028
, p.
38
.
160.
Bricker
,
J. D.
, and
Nakayama
,
A.
,
2014
, “
Contribution of Trapped Air, Deck Superelevation, and Nearby Structures to Bridge Deck Failure During a Tsunami
,”
J. Hydraul. Eng.
,
140
(
5
), p.
05014002
.
161.
Hayatdavoodi
,
M.
,
2013
, “
Nonlinear Wave Loads on Decks of Coastal Structures
,”
Ph.D. thesis
, University of Hawaii at Manoa, Honolulu, HI, p.
186
.
162.
Bagnold
,
R. A.
,
1939
, “
Interim Report on Wave-Pressure Research
,”
J. Inst. Civ. Eng.
,
12
, pp.
201
226
.
163.
Mitsuyasu
,
H.
,
1966
, “
Shock Pressure of Braking Waves
,”
10th Conference on Coastal Engineering
, ASCE, Tokyo, Japan, pp.
268
283
.
164.
Bullock
,
G. N.
,
Crawford
,
A. R.
,
Hewson
,
P. J.
,
Walkden
,
M. J. A.
, and
Bird
,
P. A. D.
,
2001
, “
The Influence of Air and Scale on Wave Impact Pressures
,”
Coastal Eng.
,
42
(
4
), pp.
291
312
.
165.
Takahashi
,
S.
,
Tanimoto
,
K.
, and
Miyanaga
,
S.
,
1985
, “
Uplift Wave Forces Due to Compression of Enclosed Air Layer and Their Similitude Law
,”
Coastal Eng. Jpn.
,
28
, pp.
191
206
.
166.
Serinaldi
,
F.
, and
Cuomo
,
G.
,
2011
, “
Characterizing Impulsive Wave-In-Deck Loads on Coastal Bridges by Probabilistic Models of Impact Maxima and Rise Times
,”
Coastal Eng.
,
58
(
9
), pp.
908
926
.
167.
Ataei
,
N.
, and
Padgett
,
J. E.
,
2012
, “
Probabilistic Modeling of Bridge Deck Unseating During Hurricane Events
,”
J. Bridge Eng.
,
18
(
4
), pp.
275
286
.
168.
Yung
,
T.
,
Sandström
,
R.
,
He
,
H.
, and
Minta
,
M.
,
2010
, “
On the Physics of Vapor/Liquid Interaction During Impact on Solids
,”
J. Ship Res.
,
54
(
3
), pp.
174
183
.
169.
Wood
,
D. J.
, and
Peregrine
,
D. H.
,
1998
, “
Pressure-Impulse Theory for Water Impact on a Structure With Trapped Air
,”
13th International Workshop on Water Waves and Floating Bodies (IWWWFB13)
,
A. J.
Hermans
, ed., pp.
175
178
.
170.
Evans
,
D. V.
,
1982
, “
Wave-Power Absorption by Systems of Oscillating Surface Pressure Distributions
,”
J. Fluid Mech.
,
114
(
1
), pp.
481
499
.
171.
Suchithra
,
N.
, and
Koola
,
P. M.
,
1995
, “
A Study of Wave Impact of Horizontal Slabs
,”
Ocean Eng.
,
22
(
7
), pp.
687
697
.
172.
Cuomo
,
G.
,
Shimosako
,
K.
, and
Takahashi
,
S.
,
2009
, “
Wave-In-Deck Loads on Coastal Bridges and the Role of Air
,”
Coastal Eng.
,
56
(
8
), pp.
793
809
.
173.
Seiffert
,
B.
,
Ertekin
,
R. C.
, and
Robertson
,
I. N.
,
2015
, “
Effect of Entrapped Air on Solitary Wave Forces on a Coastal Bridge Deck With Girders
,”
J. Bridge Eng.
,
21
(
2
), p.
04015036
.
174.
Suponitsky
,
V.
,
Froese
,
A.
, and
Barsky
,
S.
,
2014
, “
Richtmyer–Meshkov Instability of a Liquid–Gas Interface Driven by a Cylindrical Imploding Pressure Wave
,”
Comput. Fluids
,
89
, pp.
1
19
.
175.
Araki
,
S.
, and
Nishiyama
,
S.
,
2015
, “
Characteristics of Pressure Caused by Air Compression Acting on Underside of Bridges Time Series of Pressure
,”
Twenty-Fifth International Ocean and Polar Engineering Conference
, Kona, HI, June 21–26, pp.
753
758
.
176.
Azadbakht
,
M.
, and
Yim
,
S. C.
,
2016
, “
Effect of Trapped Air on Wave Forces on Coastal Bridge Superstructures
,”
J. Ocean Eng. Mar. Energy
,
2
(
2
), pp.
139
158
.
177.
Hoshikuma
,
J.
,
Zhang
,
G.
,
Nakao
,
H.
, and
Sumimura
,
T.
,
2013
, “
Tsunami-Induced Effects on Girder Bridges
,”
International Symposium for Bridge Earthquake Engineering in Honor of Retirement of Professor Kazuhiko Kawashima
, Tokyo, Japan, p.
13
.
178.
Cuomo
,
G.
,
Piscopia
,
R.
, and
Allsop
,
W.
,
2011
, “
Evaluation of Wave Impact Loads on Caisson Breakwaters Based on Joint Probability of Impact Maxima and Rise Times
,”
Coastal Eng.
,
58
(
1
), pp.
9
27
.
179.
Salem
,
H.
,
Mohssen
,
S.
,
Kosa
,
K.
, and
Hosoda
,
A.
,
2014
, “
Collapse Analysis of Utatsu Ohashi Bridge Damaged by Tohuku Tsunami Using Applied Element Method
,”
J. Adv. Concr. Technol.
,
12
(
10
), pp.
388
402
.
You do not currently have access to this content.