Previous reviews of the behavior of passive scalars which are convected and mixed by turbulent flows have focused primarily on the case when the Prandtl number Pr, or more generally, the Schmidt number Sc is around 1. The present review considers the extra effects which arise when Sc differs from 1. It focuses mainly on information obtained from direct numerical simulations of homogeneous isotropic turbulence which either decays or is maintained in steady state. The first case is of interest since it has attracted significant theoretical attention and can be related to decaying turbulence downstream of a grid. Topics covered in the review include spectra and structure functions of the scalar, the topology and isotropy of the small-scale scalar field, as well as the correlation between the fluctuating rate of strain and the scalar dissipation rate. In each case, the emphasis is on the dependence with respect to Sc. There are as yet unexplained differences between results on forced and unforced simulations of homogeneous isotropic turbulence. There are 144 references cited in this review article.

1.
Granatstein
VL
,
Buchsbaum
SJ
, and
Bugnolo
DS
(
1966
),
Fluctuation spectrum of a plasma additive in a turbulent gas
,
Phys. Rev. Lett.
16
,
504
507
.
2.
Tatarski VI (1961), Wave Propagation in a Turbulent Medium, McGraw-Hill, New York.
3.
Warhaft
L
(
2000
),
Passive scalars in turbulent flows
,
Annu. Rev. Fluid Mech.
32
,
203
240
.
4.
Shraiman
BI
and
Siggia
ED
(
2000
),
Scalar turbulence
,
Nature (London)
405
,
639
646
.
5.
Nelkin
M
(2000), Resource letter TF-1: Turbulence in fluids, Ann. J. Phys. 68, 310–318.
6.
Buch
KA
Jr
and
Dahm
WJA
(
1996
),
Experimental study of the fine-scale structure of conserved scalar mixing in turbulent shear flows, Part I: Sc≫1,
J. Fluid Mech.
317
,
21
71
.
7.
Gibson
CH
,
Ashurst
WT
, and
Kerstein
AR
(
1988
),
Mixing of strongly diffusive passive scalars like temperature by turbulence
,
J. Fluid Mech.
194
,
261
293
.
8.
Clay JP (1973), Turbulent mixing of temperature in water, air and mercury, PhD Thesis, Univ of California, San Diego.
9.
Buch
KA
Jr
and
Dahm
WJA
(
1998
),
Experimental study of the fine-scale structure of conserved scalar mixing in turbulent shear flows, Part 2
,
J. Fluid Mech.
364
,
1
29
.
10.
Prasad
RR
and
Sreenivasan
KR
(
1990
),
Quantitative three-dimensional imaging and the structure of passive scalar fields in fully turbulent flows
,
J. Fluid Mech.
216
,
1
34
.
11.
Southerland KB and Dahm WJA (1994) A four-dimensional experimental study of conserved scalar mixing in turbulent flows, Report No 026779-12, Dept of Aerospace Engineering, Univ of Michigan, Ann Arbor, MI.
12.
Miller
PL
and
Dimotakis
PE
(
1996
),
Measurements of scalar power spectra in high Schmidt number turbulent jets
,
J. Fluid Mech.
308
,
129
129
.
13.
Rehab
H
,
Antonia
RA
, and
Djenidi
L
(
2001
),
Streamwise evolution of a high Schmidt number passive scalar in a turbulent plane wake
,
Exp. Fluids
31
,
186
192
.
14.
Kerr
RM
(
1985
),
Higher-order derivative correlations and the alignment of small-scale structures in isotropic numerical turbulence
,
J. Fluid Mech.
153
,
31
58
.
15.
Kerr
RM
(
1990
),
Velocity, scalar and transfer spectra in numerical turbulence
,
J. Fluid Mech.
211
,
309
332
.
16.
Eswaran
V
and
Pope
SB
(
1988
),
Direct numerical simulations of the turbulent mixing of a passive scalar
,
Phys. Fluids
31
,
506
520
.
17.
Ruetsch
GR
and
Maxey
MR
(
1991
),
Small-scale features of vorticity and passive scalar fields in homogeneous isotropic turbulence
,
Phys. Fluids A
3
,
1587
1597
.
18.
Holzer
M
and
Siggia
ED
(
1994
),
Turbulent mixing of a passive scalar
,
Phys. Fluids
6
,
1820
1820
.
19.
Pumir
A
(
1994
),
A numerical study of the mixing of a passive scalar in three dimensions in the presence of a mean gradient
,
Phys. Fluids
6
,
2118
2132
.
20.
Pumir
A
(
1994
),
Small-scale properties of scalar and velocity differences in three-dimensional turbulence
,
Phys. Fluids
6
,
3974
3984
.
21.
Overholt
MR
and
Pope
SB
(
1996
),
Direct numerical simulation of a passive scalar with imposed mean gradient in isotropic turbulence
,
Phys. Fluids
8
,
3128
3148
.
22.
Bogucki
D
,
Domaradzki
JA
, and
Yeung
PK
(
1997
),
Direct numerical simulations of passive scalars with Pr>1 advected by turbulent flow
,
J. Fluid Mech.
343
,
111
130
.
23.
Wang
L-P
,
Chen
S
, and
Brasseur
JG
(
1999
),
Examination of hypotheses in the Kolmogorov refined turbulence theory through high-resolution simulations
,
J. Fluid Mech.
400
,
163
197
.
24.
Brethouwer G and Nieuwstadt FTM (1999), Mixing of weakly and strongly diffusive scalars in isotropic turbulence, Direct and Large-Eddy Simulation III, Proc Isaac Newton Institute Symp/ERCOFTAC Workshop, Cambridge.
25.
Nieuwstadt FTM and Brethouwer G (2000), Turbulent transport and mixing, Advances in Turbulence VIII, C Dopazo et al. (eds), CIMNE, Barcelona, 133–140.
26.
Brethouwer
G
,
Hunt
JCR
, and
Nieuwstadt
FTM
(
2002
),
Micro-structure and Lagrangian statistics of the scalar field with a mean gradient in isotropic turbulence
,
J. Fluid Mech.
474
,
193
225
.
27.
Yeung
PK
,
Sykes
MC
, and
Vedula
P
(
2000
),
Direct numerical simulation of differential diffusion with Schmidt numbers up to 4.0
,
Phys. Fluids
12
,
1601
1604
.
28.
Yeung
PK
,
Xu
S
, and
Sreenivasan
KR
(
2002
),
Schmidt number effects on turbulent transport with uniform mean scalar gradient
,
Phys. Fluids
14
,
4178
4191
.
29.
Sreenivasan
KR
(
1991
),
On local isotropy of passive scalars in turbulent shear flows
,
Proc. R. Soc. London, Ser. A
A434
,
165
182
.
30.
Van Atta
CW
(
1991
),
Local isotropy of the smallest scales of turbulent scalar and velocity fields
,
Proc. R. Soc. London, Ser. A
A434
,
139
147
.
31.
Gibson
CH
(
1991
),
Kolmogorov similarity hypotheses for scalar fields: sampling intermittent turbulent mixing in the ocean and galaxy
,
Proc. R. Soc. London, Ser. A
A434
,
149
164
.
32.
Chassaing P, Antonia RA, Anselmet F, Joly L, and Sarkar S (2002), Variable Density Fluid Turbulence, Kluwer Academic Publishers, Dordrecht.
33.
Tennekes H and Lumley JL (1972), A First Course in Turbulence, MIT Press, Cambridge, MA.
34.
Leslie DC (1973), Developments in the Theory of Turbulence, Clarendon Press, Oxford.
35.
Monin AS and Yaglom AM (1975), Statistical Fluid Mechanics, MIT Press, Cambridge, MA.
36.
Hinze JO (1975), Turbulence, McGraw-Hill, New York.
37.
Lesieur M (1997), Turbulence in Fluids, Third revised and enlarged edition, Kluwer Academic Publishers, Dordrecht.
38.
Zhou
Y
and
Speziale
CG
(
1998
),
Advances in the fundamental aspects of turbulence: energy transfer, interacting scales, and self-preservation in isotropic decay
,
Appl. Mech. Rev.
51
,
267
301
.
39.
Kim J and Moin P (1989), Transport of massive scalars in a turbulent channel flow, Turbulent Shear Flows 6, F Durst et al. (eds), Springer, Berlin, 85–96.
40.
Lyons
SL
,
Hanratty
TJ
, and
McLaughlin
JB
(
1991
),
Direct numerical simulation of passive heat transfer in a turbulent channel flow
,
Int. J. Heat Mass Transfer
34
,
1149
1161
.
41.
Kasagi
N
,
Tomita
Y
, and
Kuroda
A
(
1992
),
Direct numerical simulation of passive scalar field in a turbulent channel flow
,
ASME J. Heat Transfer
144
,
598
606
.
42.
Kasagi N and Ohtsubo Y (1993), Direct numerical simulation of low Prandtl number thermal field in a turbulent channel flow, Turbulent Shear Flows 8, F Durst et al., (eds), Springer, Berlin, 97–119.
43.
Kasagi
N
and
Shikazono
N
(
1995
),
Contribution of direct numerical simulation to understanding and modelling turbulent transport
,
Proc. R. Soc. London
451
,
257
292
.
44.
Kawamura
H
,
Ohsaka
K
,
Abe
H
, and
Yamamoto
K
(
1998
),
DNS of turbulent heat transfer in channel flow with low to medium-high Prandtl number fluid
,
Int. J. Heat Fluid Flow
19
,
482
491
.
45.
Kawamura
H
,
Abe
H
, and
Matsuo
Y
(
1999
),
DNS of turbulent heat transfer in channel flow with respect to Reynolds and Prandtl number effects
,
Int. J. Heat Fluid Flow
20
,
196
207
.
46.
Na
Y
,
Papavassiliou
DV
, and
Hanratty
TJ
(
1999
),
Use of direct numerical simulation to study the effect of Prandtl number on temperature fields
,
Int. J. Heat Fluid Flow
20
,
187
195
.
47.
Piller
M
,
Nobile
E
, and
Hanratty
TJ
(
2002
),
DNS study of turbulent transport at low Prandtl numbers in a channel flow
,
J. Fluid Mech.
458
,
419
441
.
48.
Bell DM and Ferziger JH (1993), Turbulent boundary layer DNS with passive scalars, Near-Wall Turbulent Flows, RMC So, CG Speziale, and BE Launder (eds), Elsevier, Amsterdam, 327–336.
49.
Antonia
RA
and
Kim
J
(
1991
),
Turbulent Prandtl number in the near-wall region of a turbulent channel flow
,
Int. J. Heat Fluid Flow
34
,
1905
1908
.
50.
Guezennec Y, Stretch D, and Kim J (1990), The structure of turbulent channel flow with passive scalar transport, Proc 1990 Summer Program, CTR, 127–138.
51.
Kontomaris
K
and
Hanratty
TJ
(
1994
),
Effect of molecular diffusivity on point source diffusion in the centre of a numerically simulated turbulent channel flow
,
Int. J. Heat Mass Transfer
37
,
1817
1828
.
52.
Papavassiliou
DV
and
Hanratty
TJ
(
1997
),
Transport of a passive scalar in a turbulent channel flow
,
Int. J. Heat Mass Transfer
40
,
1303
1311
.
53.
Gibson
CH
(
1968
),
Fine structure of scalar fields mixed by turbulence, II: Spectral theory
,
Phys. Fluids
11
,
2316
2327
.
54.
Van Atta
CW
(
1974
),
Influence of fluctuations in dissipation rates on some statistical properties of turbulent scalar fields
,
Izv Atmos Oceanic Phys
10
,
712
719
.
55.
Gargett
AE
(
1985
),
Evolution of scalar spectra with the decay of turbulence in a stratified fluid
,
J. Fluid Mech.
159
,
379
407
.
56.
Corrsin
S
(
1951
),
On the spectrum of isotropic temperature fluctuations in an isotropic turbulence
,
J. Appl. Phys.
22
,
469
473
.
57.
Obukhov
AM
(
1949
),
Structure of the temperature field in a turbulent flow
,
Izv. Akad. Nauk SSSR, Ser. Geogr. Geofiz.
13
,
58
69
.
58.
Kolmogorov
AN
(
1941
),
The local structure of turbulence in incompressible viscous fluid for very large Reynolds number
,
Dokl. Akad. Nauk SSSR
30
,
299
303
.
59.
Sreenivasan
KR
(
1996
),
The passive scalar spectrum and the Obukhov-Corrsin constant
,
Phys. Fluids
8
,
189
196
.
60.
Sreenivasan
KR
(
1995
),
On the universality of the Kolmogorov constant
,
Phys. Fluids
7
,
2778
2784
.
61.
Batchelor
GK
(
1959
),
Small-scale variation of convected quantities like temperature in turbulent fluid, Part 1: General discussion and the case of small conductivity
,
J. Fluid Mech.
5
,
113
133
.
62.
Gibson
CH
and
Schwarz
WH
(
1963
),
The universal equilibrium spectra of turbulent velocity and scalar fields
,
J. Fluid Mech.
16
,
365
384
.
63.
Batchelor
GK
,
Howells
IK
, and
Townsend
AA
(
1959
),
Small-scale variations of convected quantities like temperature in turbulent fluid, Part 2: The case of large conductivity
,
J. Fluid Mech.
5
,
134
139
.
64.
Gibson
CH
(
1968
),
Fine structure of scalar fields mixed by turbulence. I. Zero-gradient points and minimal gradient surfaces
,
Phys. Fluids
11
,
2305
2315
.
65.
Gibson CH, Rogers M, Chasnov J, and Petresky J (1990), Numerical simulation of low Prandtl number turbulent mixing, Proc 1990 Summer Program, CTR, 211–224.
66.
Korchashkin
NN
(
1970
),
The effect of fluctuations of energy dissipation and temperature dissipation on locally isotropic turbulent fields
,
Izv. Atmos. Ocean. Phys.
6
,
947
949
.
1.
Van Atta
CW
(
1971
),
Influence of fluctuations in local dissipation rates on turbulent scalar characteristics in the inertial subrange
,
Phys. Fluids
14
,
1803
1804
;
2.
[Erratum:
1973
Phys. Fluids
16
,
574]
574]
.
1.
Antonia
RA
and
Van Atta
CW
(
1975
),
On the correlation between temperature and velocity dissipation fields in a heated turbulent jet
,
J. Fluid Mech.
67
,
273
288
.
2.
Antonia
RA
and
Van Atta
CW
(
1978
),
Structure functions of temperature fluctuations in turbulent shear flows
,
J. Fluid Mech.
84
,
561
580
.
3.
Kolmogorov
AN
(
1962
),
A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number
,
J. Fluid Mech.
13
,
82
85
.
4.
Obukhov
AM
(
1962
),
Some specific features of atmospheric turbulence
,
J. Fluid Mech.
13
,
17
20
.
5.
Xu
G
,
Antonia
RA
, and
Rajagopalan
S
(
2000
),
Scaling of mixed longitudinal velocity-temperature structure functions
,
Europhys. Lett.
49
,
4352
4358
.
6.
Sreenivasan
KR
and
Antonia
RA
(
1997
),
The phenomenology of small-scale turbulence
,
Annu. Rev. Fluid Mech.
29
,
435
472
.
7.
Mydlarski
L
and
Warhaft
Z
(
1998
),
Passive scalar statistics in high-Pe´clet-number grid turbulence
,
J. Fluid Mech.
358
,
135
175
.
8.
Mydlarski L (2002), Mixed velocity-passive scalar statistics in high-Reynolds-number turbulence, J. Fluid Mech. (to appear).
9.
Xu G (1999), Small-scale measurements in turbulent shear flows, PhD Thesis, University of Newcastle.
10.
Antonia RA, Zhou T, and Xu G (2001), On the correlation between the energy and temperature dissipation rates in various turbulent flows, IUTAM Symposium on Geometry and Statistics of Turbulence, T Kambe, T Nakano, and T Miyauchi, (eds), Dordrecht, Kluwer, 185–190.
11.
Sreenivasan
KR
and
Kailasnath
P
(
1993
),
An update on the intermittency exponent in turbulence
,
Phys. Fluids
5
,
512
514
.
12.
Kraichnan
RH
(
1968
),
Small-scale structure of a scalar field convected by turbulence
,
Phys. Fluids
11
,
945
953
.
13.
Kraichnan
RH
(
1974
),
Convection of a passive scalar by a quasi-uniform random straining field
,
J. Fluid Mech.
64
,
737
762
.
14.
Mjolsness
RC
(
1975
),
Diffusion of a passive scalar at large Prandtl number according to the abridged Lagrangian interaction theory
,
Phys. Fluids
18
,
1393
1394
.
15.
Hou
TY
,
Wu
X-H
,
Chen
S
, and
Zhou
Y
(
1998
),
Effect of finite computational domain on turbulence scaling law in both physical and spectral spaces
,
Phys. Rev. E
58
,
5841
5844
.
16.
Antonia
RA
and
Orlandi
P
(
2002
),
Dependence of the second-order scalar structure function on the Schmidt number
,
Phys. Fluids
14
,
1552
1554
.
17.
George
WK
(
1992
),
The decay of homogeneous isotropic turbulence
,
Phys. Fluids A
4
,
1492
1509
.
18.
George WK (1992), Self-preservation of temperature fluctuations in isotropic turbulence, Studies in Turbulence, TB Gatski, S Sarkar, and G Speziale (eds), Springer-Verlag, Berlin.
19.
Lange
RE
(
1982
),
An experimental study of turbulence behind towed biplanar grids in salt-stratified fluid
,
J. Phys. Oceanogr.
12
,
1506
1513
.
20.
Orlandi P and Antonia RA (2001), Schmidt number dependence of decaying passive scalar fluctuations in isotropic turbulence, 2nd Int Symp on Turbulence and Shear Flow Phenomena, E Lindborg et al. (eds), Vol III, Stockholm, 245–250.
21.
Orlandi P and Antonia RA (2001), Direct numerical simulations of decaying turbulent passive scalar fluctuations: Schmidt number dependence, Report TN-FM 01/1, Discipline of Mechanical Engineering, Univ of Newcastle.
22.
Orlandi P (1999), Fluid Flow Phenomena, A Numerical Toolkit, Dordrecht, Kluwer Academic Publishers.
23.
Zhou
T
,
Antonia
RA
,
Danaila
L
, and
Anselmet
F
(
2000
),
Transport equations for the mean energy and temperature dissipation rates in grid turbulence
,
Exp. Fluids
28
,
143
151
.
24.
Danaila
L
,
Zhou
T
,
Anselmet
F
, and
Antonia
RA
(
2000
),
Calibration of a temperature dissipation probe in decaying grid turbulence
,
Exp. Fluids
28
,
45
50
.
25.
Be´guier
C
,
Dekeyser
I
, and
Launder
BE
(
1978
),
Ratio of scalar and velocity dissipation time scales in shear turbulence
,
Phys. Fluids
21
,
307
310
.
26.
Tavoularis
S
and
Corrsin
S
(
1981
),
Experiments in nearly homogeneous turbulent shear flow with a uniform mean temperature gradient, Part 2: The fine structure
,
J. Fluid Mech.
104
,
349
367
.
27.
Warhaft
L
and
Lumley
JL
(
1978
),
An experimental study of the decay of temperature fluctuations in grid-generated turbulence
,
J. Fluid Mech.
88
,
659
684
.
28.
Sreenivasan
KR
,
Tavoularis
S
,
Henry
R
, and
Corrsin
S
(
1980
),
Temperature fluctuations and scales in grid-generated turbulence
,
J. Fluid Mech.
100
,
597
621
.
29.
Durbin
PA
(
1982
),
Analysis of the decay of temperature fluctuations in isotropic turbulence
,
Phys. Fluids
25
,
1328
1332
.
30.
Lewalle
J
(
1990
),
Decay of velocity and temperature fluctuations in grid turbulence
,
AIAA J.
28
,
106
112
.
31.
Mell
WE
,
Kosaly
G
, and
Riley
JJ
(
1991
),
The length-scale dependence of scalar mixing
,
Phys. Fluids A
3
,
2474
2476
.
32.
Gonzalez
G
and
Fall
A
(
1998
),
The approach to self-preservation of scalar fluctuations decay in isotropic turbulence
,
Phys. Fluids
10
,
654
661
.
33.
Li JD (1998), The decay of passive scalar fluctuations in self-preserving isotropic turbulence, Proc 13th Australasian Fluid Mechanics Conf, MC Thompson and K Hourigan (eds), Melbourne, 231–234.
34.
Yeung
PK
and
Sawford
BL
(
2002
),
Random-sweeping hypothesis for passive scalars in isotropic turbulence
,
J. Fluid Mech.
459
,
129
138
.
35.
Yeung
PK
(
2001
),
Lagrangian characteristics of turbulence and scalar transport in direct numerical simulations
,
J. Fluid Mech.
427
,
241
274
.
36.
Orlandi
P
and
Antonia
RA
(
2002
),
Dependence of the non-stationary form of Yaglom’s equation on the Schmidt number
,
J. Fluid Mech.
451
,
99
108
.
37.
Nye
JO
and
Brodkey
RS
(
1967
),
The scalar spectrum in the viscous-convective subrange
,
J. Fluid Mech.
29
,
151
163
.
38.
Grant
HL
,
Hughes
BA
,
Vogel
WM
, and
Moilliet
A
(
1968
),
The spectrum of temperature fluctuations in turbulent flow
,
J. Fluid Mech.
34
,
423
442
.
39.
Dillon
TM
and
Caldwell
DR
(
1980
),
The Batchelor spectrum and dissipation in the upper ocean
,
J. Geophys. Res.
85
,
1910
1916
.
40.
Oakey
NS
(
1982
),
Determination of the rate of dissipation of turbulent energy from simultaneous temperature and velocity shear microstructure measurements
,
J. Phys. Oceanogr.
12
,
256
271
.
41.
Dimotakis
PE
and
Miller
PL
(
1990
),
Some consequences of the boundedness of scalar fluctuations
,
Phys. Fluids A
2
,
1919
1920
.
42.
Kerstein
AR
(
1991
),
Scaling properties of the viscous-convective scalar spectral subrange in turbulent jets
,
Phys. Fluids A
3
,
1832
1834
.
43.
Qian
J
(
1990
),
The spectrum of a turbulent passive scalar in the viscous-convective range
,
J. Fluid Mech.
217
,
203
212
.
44.
Rust
JH
and
Sesonske
A
(
1966
),
Turbulent temperature fluctuations in mercury and ethylene glycol in pipe flow
,
Int. J. Heat Mass Transfer
9
,
215
227
.
45.
Fox
J
and
Rungaldier
H
(
1972
),
Electron density fluctuation measurements in projectile wakes
,
AIAA J.
10
,
790
790
.
46.
Chasnov
J
,
Canuto
VM
, and
Rogallo
RS
(
1988
),
Turbulence spectrum of a passive temperature field: Results of a numerical simulation
,
Phys. Fluids
31
,
2065
2067
.
47.
Chasnov
J
(
1990
),
Simulation of the inertial-conductive subrange
,
Phys. Fluids
3
,
1164
1168
.
48.
Wyngaard
JC
(
1971
),
The effect of velocity sensitivity on temperature derivative statistics in isotropic turbulence
,
J. Fluid Mech.
48
,
763
769
.
49.
Corrsin S (1953), Remarks on turbulent heat transfer: an account of some features of the phenomenon in fully turbulent regions, Proc 1st Iowa Symp on Thermodynamics, State Univ of Iowa, 5–30.
50.
Yaglom
AM
(
1949
),
On the local structure of a temperature field in a turbulent flow
,
Dokl. Akad. Nauk SSSR
69
,
743
746
.
51.
Danaila
L
,
Anselmet
F
,
Zhou
T
, and
Antonia
RA
(
1999
),
A generalization of Yaglom’s equation which accounts for the large-scale forcing in heated grid turbulence
,
J. Fluid Mech.
391
,
359
372
.
52.
Antonia
RA
,
Anselmet
F
, and
Chambers
AJ
(
1986
),
Assessment of local isotropy using measurements in a turbulent plane jet
,
J. Fluid Mech.
163
,
365
391
.
53.
Kim
J
and
Antonia
RA
(
1993
),
Isotropy of the small scales of turbulence at low Reynolds number
,
J. Fluid Mech.
251
,
219
238
.
54.
Sreenivasan
KR
and
Prasad
RR
(
1989
),
New results on the fractal and multifractal structure of the large Schmidt number passive scalars in fully turbulent flows
,
Physica D
38
,
322
329
.
55.
Sreenivasan
KR
,
Antonia
RA
, and
Britz
D
(
1979
),
Local isotropy and large structures in a heated turbulent jet
,
J. Fluid Mech.
94
,
745
776
.
56.
Antonia
RA
,
Chambers
AJ
,
Van Atta
CW
,
Frieche
CA
, and
Helland
KN
(
1978
),
Skewness of temperature derivative in a heated grid flow
,
Phys. Fluids
21
,
509
510
.
57.
Danaila
L
,
Le Gal
P
,
Anselmet
F
,
Plaza
F
, and
Pinton
JF
(
1999
),
Some new features of the passive scalar mixing in a turbulent flow
,
Phys. Fluids
11
,
636
646
.
58.
Tong
C
and
Warhaft
Z
(
1994
),
On passive scalar derivative statistics in grid turbulence
,
Phys. Fluids
6
,
2165
2176
.
59.
Corrsin
S
(
1962
),
Turbulent dissipation fluctuations
,
Phys. Fluids
5
,
1301
1302
.
60.
Saffman PG (1968) Lectures on homogeneous turbulence, Topics in Non-Linear Physics, NJ Zabusky (ed), Springer, Berlin, 485–614.
61.
Kuo
AY-S
and
Corrsin
S
(
1971
),
Experiments on internal intermittency and fine-structure distribution functions in fully turbulent fluid
,
J. Fluid Mech.
50
,
285
320
.
62.
Kuo
AY-S
and
Corrsin
S
(
1972
),
Experiment on the geometry of the fine structure regions in fully turbulent fluid
,
J. Fluid Mech.
56
,
447
479
.
63.
Siggia
ED
(
1981
),
Numerical study of small-scale intermittency in three-dimensional turbulence
,
J. Fluid Mech.
107
,
375
406
.
64.
Ashurst
WT
,
Kerstein
AR
,
Kerr
RM
, and
Gibson
CH
(
1987
),
Alignment of vorticity and scalar gradient with strain rate in simulated Navier-Stokes turbulence
,
Phys. Fluids
30
,
2343
2353
.
65.
Yamamoto
K
and
Hosokawa
I
(
1988
),
A decaying isotropic turbulence pursued by the spectral method
,
J. Phys. Soc. Jpn.
57
,
1532
1535
.
66.
She
ZS
,
Jackson
E
, and
Orszag
SA
(
1990
),
Intermittent vortex structures in homogeneous isotropic turbulence
,
Nature (London)
344
,
226
228
.
67.
Vincent
A
and
Meneguzzi
M
(
1991
),
The spatial structure and statistical properties of homogeneous turbulence
,
J. Fluid Mech.
225
,
1
20
.
68.
Vincent
A
and
Meneguzzi
M
(
1994
),
The dynamics of vorticity tubes in homogeneous turbulence
,
J. Fluid Mech.
258
,
245
254
.
69.
Jimenez
J
,
Wray
AA
,
Saffman
PG
, and
Rogallo
RS
(
1993
),
The structure of intense vorticity in homogeneous isotropic turbulence
,
J. Fluid Mech.
255
,
65
90
.
70.
Mestayer
PG
,
Gibson
CH
,
Coantic
MF
, and
Patel
AS
(
1976
),
Local anisotropy in heated and cooled turbulent boundary layers
,
Phys. Fluids
19
,
1279
1286
.
71.
Gibson
CH
,
Friehe
CA
, and
McConnell
SO
(
1977
),
Structure of sheared turbulent fields
,
Phys. Fluids
20
,
S156–S167
S156–S167
.
72.
Sreenivasan
KR
,
Chambers
AJ
, and
Antonia
RA
(
1978
),
Accuracy of moments of velocity and scalar fluctuations in the atmospheric surface layer
,
Boundary-Layer Meteorol.
14
,
341
359
.
73.
Antonia
RA
,
Chambers
AJ
,
Friehe
CA
, and
Van Atta
CW
(
1979
),
Temperature ramps in the atmospheric surface layer
,
J. Atmos. Sci.
36
,
99
108
.
74.
Vedula
P
,
Yeung
PK
, and
Fox
RO
(
2001
),
Dynamics of scalar dissipation in isotropic turbulence: a numerical and modeling study
,
J. Fluid Mech.
427
,
241
274
.
75.
Villermaux E, Innocenti C, and Duplat J (1999), Scalar fluctuation pdfs and kinetics of turbulent mixing, Fundamental Problematic Issues in Turbulence, A Gyr, W Kinzelbach, and A Tsinober (eds), Birkhau¨ser Verlag, Basel, 457–465.
76.
Schumacher
J
,
Sreenivasan
KR
, and
Yeung
PK
(
2003
), Schmidt number dependence of derivative moments for quasistatic straining motion,
J. Fluid Mech.
479
,
221
230
.
77.
Moffatt
HK
(
2002
),
GK Batchelor and the homogenization of turbulence
,
Annu. Rev. Fluid Mech.
34
,
19
35
.
You do not currently have access to this content.