Abstract

Fracture in solid solutions, such as electrodes for lithium-ion batteries and fuel cells, is mediated by intricate interactions between solid-state diffusion and crack propagation. In this work, we developed a composition-dependent cohesive zone model and integrated it with a chemo-mechanical coupling constitutive model to study the fracture mechanisms of solid solutions. The computational framework was used to investigate the effective fracture properties of chemo-mechanically coupled solid solutions over a wide range of crack growth velocities and compositional dependence of intrinsic fracture energy. The results revealed an important characteristic crack velocity, which is set by the ratio of the diffusivity to the intrinsic fracture energy and dictates the effective fracture resistance of the material. We also applied the model to study the fracture behavior of two-phase lithiated silicon (Si) and germanium (Ge) nanostructures as candidate high-capacity anodes for next-generation lithium-ion batteries, and showed that Ge nanostructures are more fracture resistant than their Si counterparts. The computational study presented here provides important insights for the rational design, operation, and mechanical testing of chemo-mechanically active material systems for their use in energy storage and conversion.

References

1.
Larché
,
F.
, and
Cahn
,
J. W.
,
1973
, “
A Linear Theory of Thermochemical Equilibrium of Solids Under Stress
,”
Acta Metall.
,
21
(
8
), pp.
1051
1063
.
2.
Larche
,
F. C.
, and
Cahn
,
J. W.
,
1982
, “
The Effect of Self-Stress on Diffusion in Solids
,”
Acta Metall.
,
30
(
10
), pp.
1835
1845
.
3.
Larche
,
F. C.
, and
Cahn
,
J. W.
,
1985
, “
The Interactions of Composition and Stress in Crystalline Solids
,”
Acta Metall.
,
33
(
3
), pp.
331
357
.
4.
Larche
,
F. C.
, and
Cahn
,
J. W.
,
1987
, “
Stress Effects on III–V Solid–Liquid Equilibria
,”
J. Appl. Phys.
,
62
(
4
), pp.
1232
1239
.
5.
Larche
,
F. C.
, and
Cahn
,
J. W.
,
1992
, “
Phase-Changes in a Thin Plate With Nonlocal Self-Stress Effects
,”
Acta Metall. Mater.
,
40
(
5
), pp.
947
955
.
6.
Johnson
,
W. C.
,
1994
, “
Thermodynamic Equilibria in 2-Phase, Elastically Stressed Ionic-Crystals
,”
J. Am. Ceram. Soc.
,
77
(
6
), pp.
1581
1591
.
7.
Johnson
,
W. C.
, and
Schmalzried
,
H.
,
1993
, “
Phenomenological Thermodynamic Treatment of Elastically Stressed Ionic-Crystals
,”
J. Am. Ceram. Soc.
,
76
(
7
), pp.
1713
1719
.
8.
Krishnamurthy
,
R.
, and
Sheldon
,
B. W.
,
2004
, “
Stresses Due to Oxygen Potential Gradients in Non-stoichiometric Oxides
,”
Acta Mater.
,
52
(
7
), pp.
1807
1822
.
9.
Swaminathan
,
N.
, and
Qu
,
J.
,
2007
, “
Interactions Between Non-stoichiometric Stresses and Defect Transport in a Tubular Electrolyte
,”
Fuel Cells
,
7
(
6
), pp.
453
462
.
10.
Swaminathan
,
N.
,
Qu
,
J.
, and
Sun
,
Y.
,
2007
, “
An Electrochemomechanical Theory of Defects in Ionic Solids. I. Theory
,”
Philos. Mag.
,
87
(
11
), pp.
1705
1721
.
11.
Swaminathan
,
N.
,
Qu
,
J.
, and
Sun
,
Y.
,
2007
, “
An Electrochemomechanical Theory of Defects in Ionic Solids. Part II. Examples
,”
Philos. Mag.
,
87
(
11
), pp.
1723
1742
.
12.
Zhou
,
H. G.
,
Qu
,
J. M.
, and
Cherkaoui
,
M.
,
2010
, “
Finite Element Analysis of Oxidation Induced Metal Depletion at Oxide-Metal Interface
,”
Comput. Mater. Sci.
,
48
(
4
), pp.
842
847
.
13.
Zhou
,
H. G.
,
Qu
,
J. M.
, and
Cherkaoui
,
M.
,
2010
, “
Stress-Oxidation Interaction in Selective Oxidation of Cr–Fe Alloys
,”
Mech. Mater.
,
42
(
1
), pp.
63
71
.
14.
Obrovac
,
M. N.
, and
Christensen
,
L.
,
2004
, “
Structural Changes in Silicon Anodes During Lithium Insertion/Extraction
,”
Electrochem. Solid State Lett.
,
7
(
5
), pp.
A93
A96
.
15.
Obrovac
,
M. N.
, and
Krause
,
L. J.
,
2007
, “
Reversible Cycling of Crystalline Silicon Powder
,”
J. Electrochem. Soc.
,
154
(
2
), pp.
A103
A108
.
16.
Beaulieu
,
L. Y.
,
Hatchard
,
T. D.
,
Bonakdarpour
,
A.
,
Fleischauer
,
M. D.
, and
Dahn
,
J. R.
,
2003
, “
Reaction of Li With Alloy Thin Films Studied by In Situ AFM
,”
J. Electrochem. Soc.
,
150
(
11
), pp.
A1457
A1464
.
17.
Liu
,
X. H.
,
Liu
,
Y.
,
Kushima
,
A.
,
Zhang
,
S. L.
,
Zhu
,
T.
,
Li
,
J.
, and
Huang
,
J. Y.
,
2012
, “
In Situ TEM Experiments of Electrochemical Lithiation and Delithiation of Individual Nanostructures
,”
Adv. Energy Mater.
,
2
(
7
), pp.
722
741
.
18.
Xiao
,
X.
,
Liu
,
P.
,
Verbrugge
,
M. W.
,
Haftbaradaran
,
H.
, and
Gao
,
H.
,
2011
, “
Improved Cycling Stability of Silicon Thin Film Electrodes Through Patterning for High Energy Density Lithium Batteries
,”
J. Power Sources
,
196
(
3
), pp.
1409
1416
.
19.
Choi
,
S.
,
Kwon
,
T. W.
,
Coskun
,
A.
, and
Choi
,
J. W.
,
2017
, “
Highly Elastic Binders Integrating Polyrotaxanes for Silicon Microparticle Anodes in Lithium Ion Batteries
,”
Science
,
357
(
6348
), pp.
279
283
.
20.
McDowell
,
M. T.
,
Xia
,
S.
, and
Zhu
,
T.
,
2016
, “
The Mechanics of Large-Volume-Change Transformations in High-Capacity Battery Materials
,”
Extreme Mech. Lett.
,
9
(
3
), pp.
480
494
.
21.
Sethuraman
,
V. A.
,
Chon
,
M. J.
,
Shimshak
,
M.
,
Srinivasan
,
V.
, and
Guduru
,
P. R.
,
2010
, “
In Situ Measurements of Stress Evolution in Silicon Thin Films During Electrochemical Lithiation and Delithiation
,”
J. Power Sources
,
195
(
15
), pp.
5062
5066
.
22.
Sethuraman
,
V. A.
,
Srinivasan
,
V.
,
Bower
,
A. F.
, and
Guduru
,
P. R.
,
2010
, “
In Situ Measurements of Stress-Potential Coupling in Lithiated Silicon
,”
J. Electrochem. Soc.
,
157
(
11
), p.
A1253
.
23.
Papakyriakou
,
M.
,
Wang
,
X.
, and
Xia
,
S.
,
2018
, “
Characterization of Stress–Diffusion Coupling in Lithiated Germanium by Nanoindentation
,”
Exp. Mech.
,
58
(
4
), pp.
613
625
.
24.
Papakyriakou
,
M.
,
Lu
,
M.
, and
Xia
,
S.
,
2022
, “
Nanoindentation Size Effects in Lithiated and Sodiated Battery Electrode Materials
,”
ASME J. Appl. Mech.
,
89
(
7
), p.
071007
.
25.
Christensen
,
J.
, and
Newman
,
J.
,
2006
, “
A Mathematical Model of Stress Generation and Fracture in Lithium Manganese Oxide
,”
J. Electrochem. Soc.
,
153
(
6
), pp.
A1019
A1030
.
26.
Christensen
,
J.
, and
Newman
,
J.
,
2006
, “
Stress Generation and Fracture in Lithium Insertion Materials
,”
J. Solid State Electrochem.
,
10
(
5
), pp.
293
319
.
27.
Zhang
,
X. C.
,
Shyy
,
W.
, and
Sastry
,
A. M.
,
2007
, “
Numerical Simulation of Intercalation-Induced Stress in Li-Ion Battery Electrode Particles
,”
J. Electrochem. Soc.
,
154
(
10
), pp.
A910
A916
.
28.
Zhao
,
K. J.
,
Pharr
,
M.
,
Cai
,
S. Q.
,
Vlassak
,
J. J.
, and
Suo
,
Z. G.
,
2011
, “
Large Plastic Deformation in High-Capacity Lithium-Ion Batteries Caused by Charge and Discharge
,”
J. Am. Ceram. Soc.
,
94
(
1
), pp.
S226
S235
.
29.
Zhao
,
K. J.
,
Pharr
,
M.
,
Vlassak
,
J. J.
, and
Suo
,
Z. G.
,
2011
, “
Inelastic Hosts as Electrodes for High-Capacity Lithium-Ion Batteries
,”
J. Appl. Phys.
,
109
(
1
), p.
016110
.
30.
Anand
,
L.
,
2012
, “
A Cahn–Hilliard-Type Theory for Species Diffusion Coupled With Large Elastic–Plastic Deformations
,”
J. Mech. Phys. Solids
,
60
(
12
), pp.
1983
2002
.
31.
Bower
,
A. F.
,
Guduru
,
P. R.
, and
Sethuraman
,
V. A.
,
2011
, “
A Finite Strain Model of Stress, Diffusion, Plastic Flow, and Electrochemical Reactions in a Lithium-Ion Half-Cell
,”
J. Mech. Phys. Solids
,
59
(
4
), pp.
804
828
.
32.
Cui
,
Z. W.
,
Gao
,
F.
, and
Qu
,
J. M.
,
2012
, “
A Finite Deformation Stress-Dependent Chemical Potential and Its Applications to Lithium Ion Batteries
,”
J. Mech. Phys. Solids
,
60
(
7
), pp.
1280
1295
.
33.
Gao
,
Y. F.
, and
Zhou
,
M.
,
2011
, “
Strong Stress-Enhanced Diffusion in Amorphous Lithium Alloy Nanowire Electrodes
,”
J. Appl. Phys.
,
109
(
1
), p.
014310
.
34.
Gao
,
Y. F.
,
Cho
,
M.
, and
Zhou
,
M.
,
2013
, “
Stress Relaxation Through Interdiffusion in Amorphous Lithium Alloy Electrodes
,”
J. Mech. Phys. Solids
,
61
(
2
), pp.
579
596
.
35.
Huang
,
S.
,
Fan
,
F.
,
Li
,
J.
,
Zhang
,
S.
, and
Zhu
,
T.
,
2013
, “
Stress Generation During Lithiation of High-Capacity Electrode Particles in Lithium ion Batteries
,”
Acta Mater.
,
61
(
12
), pp.
4354
4364
.
36.
Zhao
,
K.
,
Wang
,
W. L.
,
Gregoire
,
J.
,
Pharr
,
M.
,
Suo
,
Z.
,
Vlassak
,
J. J.
, and
Kaxiras
,
E.
,
2011
, “
Lithium-Assisted Plastic Deformation of Silicon Electrodes in Lithium-Ion Batteries: A First-Principles Theoretical Study
,”
Nano Lett.
,
11
(
7
), pp.
2962
2967
.
37.
Wang
,
H.
,
Wang
,
X.
,
Xia
,
S.
, and
Chew
,
H. B.
,
2015
, “
Brittle-to-Ductile Transition of Lithiated Silicon Electrodes: Crazing to Stable Nanopore Growth
,”
J. Chem. Phys.
,
143
(
10
), p.
104703
.
38.
Yan
,
X.
,
Gouissem
,
A.
, and
Sharma
,
P.
,
2015
, “
Atomistic Insights Into Li-Ion Diffusion in Amorphous Silicon
,”
Mech. Mater.
,
91
(
2
), pp.
306
312
.
39.
Yan
,
X.
,
Gouissem
,
A.
,
Guduru
,
P. R.
, and
Sharma
,
P.
,
2017
, “
Elucidating the Atomistic Mechanisms Underpinning Plasticity in Li–Si Nanostructures
,”
Phys. Rev. Mater.
,
1
(
5
), p.
055401
.
40.
Ding
,
B.
,
Wu
,
H.
,
Xu
,
Z. P.
,
Li
,
X. Y.
, and
Gao
,
H. J.
,
2017
, “
Stress Effects on Lithiation in Silicon
,”
Nano Energy
,
38
, pp.
486
493
.
41.
Cheng
,
Y. T.
, and
Verbrugge
,
M. W.
,
2008
, “
The Influence of Surface Mechanics on Diffusion Induced Stresses Within Spherical Nanoparticles
,”
J. Appl. Phys.
,
104
(
8
), p.
083521
.
42.
Cheng
,
Y. T.
, and
Verbrugge
,
M. W.
,
2009
, “
Evolution of Stress Within a Spherical Insertion Electrode Particle Under Potentiostatic and Galvanostatic Operation
,”
J. Power Sources
,
190
(
2
), pp.
453
460
.
43.
Purkayastha
,
R.
, and
McMeeking
,
R. M.
,
2012
, “
A Linearized Model for Lithium Ion Batteries and Maps for Their Performance and Failure
,”
ASME J. Appl. Mech.
,
79
(
3
), p.
031021
.
44.
Aifantis
,
K. E.
,
Hackney
,
S. A.
, and
Dempsey
,
J. P.
,
2007
, “
Design Criteria for Nanostructured Li-Ion Batteries
,”
J. Power Sources
,
165
(
2
), pp.
874
879
.
45.
Zhao
,
K. J.
,
Pharr
,
M.
,
Vlassak
,
J. J.
, and
Suo
,
Z. G.
,
2010
, “
Fracture of Electrodes in Lithium-Ion Batteries Caused by Fast Charging
,”
J. Appl. Phys.
,
108
(
7
), p.
073517
.
46.
Woodford
,
W. H.
,
Carter
,
W. C.
, and
Chiang
,
Y. M.
,
2012
, “
Design Criteria for Electrochemical Shock Resistant Battery Electrodes
,”
Energy Environ. Sci.
,
5
(
7
), pp.
8014
8024
.
47.
Woodford
,
W. H.
,
Chiang
,
Y. M.
, and
Carter
,
W. C.
,
2013
, “
Electrochemical Shock in Ion-Intercalation Materials With Limited Solid-Solubility
,”
J. Electrochem. Soc.
,
160
(
8
), pp.
A1286
A1292
.
48.
Woodford
,
W. H.
,
Chiang
,
Y. M.
, and
Carter
,
W. C.
,
2010
, “
Electrochemical Shock” of Intercalation Electrodes: A Fracture Mechanics Analysis
,”
J. Electrochem. Soc.
,
157
(
10
), pp.
A1052
A1059
.
49.
Gao
,
Y. F.
, and
Zhou
,
M.
,
2013
, “
Coupled Mechano-Diffusional Driving Forces for Fracture in Electrode Materials
,”
J. Power Sources
,
230
, pp.
176
193
.
50.
Zhang
,
M.
,
Qu
,
J.
, and
Rice
,
J. R.
,
2017
, “
Path Independent Integrals in Equilibrium Electro-Chemo-Elasticity
,”
J. Mech. Phys. Solids
,
107
, pp.
525
541
.
51.
Yang
,
H.
, and
Qu
,
J.
,
2019
, “
Fracture Toughness of LixSi Alloys in Lithium Ion Battery
,”
Extreme Mech. Lett.
,
32
, p.
100555
.
52.
Grantab
,
R.
, and
Shenoy
,
V. B.
,
2012
, “
Pressure-Gradient Dependent Diffusion and Crack Propagation in Lithiated Silicon Nanowires
,”
J. Electrochem. Soc.
,
159
(
5
), pp.
A584
A591
.
53.
Bower
,
A. F.
, and
Guduru
,
P. R.
,
2012
, “
A Simple Finite Element Model of Diffusion, Finite Deformation, Plasticity and Fracture in Lithium Ion Insertion Electrode Materials
,”
Modell. Simul. Mater. Sci. Eng.
,
20
(
4
), p.
045004
.
54.
Ding
,
B.
,
Li
,
X. Y.
,
Zhang
,
X.
,
Wu
,
H.
,
Xu
,
Z. P.
, and
Gao
,
H. J.
,
2015
, “
Brittle Versus Ductile Fracture Mechanism Transition in Amorphous Lithiated Silicon: From Intrinsic Nanoscale Cavitation to Shear Banding
,”
Nano Energy
,
18
, pp.
89
96
.
55.
Khosrownejad
,
S. M.
, and
Curtin
,
W. A.
,
2017
, “
Crack Growth and Fracture Toughness of Amorphous Li–Si Anodes: Mechanisms and Role of Charging/Discharging Studied by Atomistic Simulations
,”
J. Mech. Phys. Solids.
,
107
, pp.
542
559
.
56.
Xu
,
R.
, and
Zhao
,
K. J.
,
2018
, “
Corrosive Fracture of Electrodes in Li-Ion Batteries
,”
J. Mech. Phys. Solids
,
121
, pp.
258
280
.
57.
Miehe
,
C.
,
Mauthe
,
S.
, and
Ulmer
,
H.
,
2014
, “
Formulation and Numerical Exploitation of Mixed Variational Principles for Coupled Problems of Cahn–Hilliard-Type and Standard Diffusion in Elastic Solids
,”
Int. J. Numer. Methods Eng.
,
99
(
10
), pp.
737
762
.
58.
Xia
,
S. M.
,
Qi
,
Y.
,
Perry
,
T.
, and
Kim
,
K. S.
,
2009
, “
Strength Characterization of Al/Si Interfaces: A Hybrid Method of Nanoindentation and Finite Element Analysis
,”
Acta Mater.
,
57
(
3
), pp.
695
707
.
59.
Rice
,
J. R.
,
1968
, “
A Path Independent Integral and Approximate Analysis of Strain Concentration by Notches and Cracks
,”
ASME J. Appl. Mech.
,
35
(
2
), pp.
379
386.
60.
Haftbaradaran
,
H.
, and
Qu
,
J. M.
,
2014
, “
A Path-Independent Integral for Fracture of Solids Under Combined Electrochemical and Mechanical Loadings
,”
J. Mech. Phys. Solids
,
71
, pp.
1
14
.
61.
Xia
,
S.
,
Gao
,
Y.
,
Bower
,
A. F.
,
Lev
,
L. C.
, and
Cheng
,
Y.-T.
,
2007
, “
Delamination Mechanism Maps for a Strong Elastic Coating on an Elastic–Plastic Substrate Subjected to Contact Loading
,”
Int. J. Solids Struct.
,
44
(
11
), pp.
3685
3699
.
62.
Gao
,
Y. F.
, and
Bower
,
A. F.
,
2004
, “
A Simple Technique for Avoiding Convergence Problems in Finite Element Simulations of Crack Nucleation and Growth on Cohesive Interfaces
,”
Modell. Simul. Mater. Sci. Eng.
,
12
(
3
), pp.
453
463
.
63.
Robertson
,
S. W.
, and
Ritchie
,
R. O.
,
2007
, “
In Vitro Fatigue-Crack Growth and Fracture Toughness Behavior of Thin-Walled Superelastic Nitinol Tube for Endovascular Stents: A Basis for Defining the Effect of Crack-Like Defects
,”
Biomaterials
,
28
(
4
), pp.
700
709
.
64.
Evans
,
A.
, and
Heuer
,
A.
,
1980
, “
Transformation Toughening in Ceramics: Martensitic Transformations in Crack-Tip Stress Fields
,”
J. Am. Ceram. Soc.
,
63
(
5–6
), pp.
241
248
.
65.
Budiansky
,
B.
,
Hutchinson
,
J.
, and
Lambropoulos
,
J.
,
1983
, “
Continuum Theory of Dilatant Transformation Toughening in Ceramics
,”
Int. J. Solids Struct.
,
19
(
4
), pp.
337
355
.
66.
Wang
,
X. J.
,
Fan
,
F. F.
,
Wang
,
J. W.
,
Wang
,
H. R.
,
Tao
,
S. Y.
,
Yang
,
A.
,
Liu
,
Y.
, et al
,
2015
, “
High Damage Tolerance of Electrochemically Lithiated Silicon
,”
Nat. Commun.
,
6
, p.
8417
.
67.
Wang
,
X.
,
Yang
,
A.
, and
Xia
,
S.
,
2016
, “
Fracture Toughness Characterization of Lithiated Germanium as an Anode Material for Lithium-Ion Batteries
,”
J. Electrochem. Soc.
,
163
(
2
), pp.
A90
A95
.
68.
Morris
,
D. J.
, and
Cook
,
R. F.
,
2008
, “
Indentation Fracture of Low-Dielectric Constant Films: Part II. Indentation Fracture Mechanics Model
,”
J. Mater. Res.
,
23
(
9
), pp.
2443
2457
.
69.
Morris
,
D. J.
, and
Cook
,
R. F.
,
2008
, “
Indentation Fracture of Low-Dielectric Constant Films: Part I. Experiments and Observations
,”
J. Mater. Res.
,
23
(
9
), pp.
2429
2442
.
70.
Wang
,
X.
,
Pan
,
Z.
,
Fan
,
F.
,
Wang
,
J.
,
Liu
,
Y.
,
Mao
,
S. X.
,
Zhu
,
T.
, and
Xia
,
S.
,
2015
, “
Nanoscale Deformation Analysis With High-Resolution Transmission Electron Microscopy and Digital Image Correlation
,”
ASME J. Appl. Mech.
,
82
(
12
), p.
121001
.
71.
Wang
,
J. W.
,
He
,
Y.
,
Fan
,
F. F.
,
Liu
,
X. H.
,
Xia
,
S. M.
,
Liu
,
Y.
,
Harris
,
C. T.
, et al
,
2013
, “
Two-Phase Electrochemical Lithiation in Amorphous Silicon
,”
Nano Lett.
,
13
(
2
), pp.
709
715
.
72.
Liu
,
X. H.
,
Wang
,
J. W.
,
Huang
,
S.
,
Fan
,
F. F.
,
Huang
,
X.
,
Liu
,
Y.
,
Krylyuk
,
S.
, et al
,
2012
, “
In Situ Atomic-Scale Imaging of Electrochemical Lithiation in Silicon
,”
Nat. Nanotechnol.
,
7
(
11
), pp.
749
756
.
73.
Gao
,
F.
, and
Hong
,
W.
,
2016
, “
Phase-Field Model for the Two-Phase Lithiation of Silicon
,”
J. Mech. Phys. Solids
,
94
, pp.
18
32
.
74.
Liu
,
X. H.
,
Zhong
,
L.
,
Huang
,
S.
,
Mao
,
S. X.
,
Zhu
,
T.
, and
Huang
,
J. Y.
,
2012
, “
Size-Dependent Fracture of Silicon Nanoparticles During Lithiation
,”
ACS Nano
,
6
(
2
), pp.
1522
1531
.
75.
Liang
,
W. T.
,
Yang
,
H.
,
Fan
,
F. F.
,
Liu
,
Y.
,
Liu
,
X. H.
,
Huang
,
J. Y.
,
Zhu
,
T.
, and
Zhang
,
S. L.
,
2013
, “
Tough Germanium Nanoparticles Under Electrochemical Cycling
,”
ACS Nano
,
7
(
4
), pp.
3427
3433
.
You do not currently have access to this content.