Abstract

A contact mechanics analysis of interfacial delamination in elastic and elastic-plastic homogeneous and layered half-spaces due to normal and shear surface tractions induced by indentation and sliding was performed using the finite element method. Surface separation at the delamination interface was controlled by a surface-based cohesive zone constitutive law. The instigation of interfacial delamination was determined by the critical separation distance of interface node pairs in mixed-mode loading based on a damage initiation criterion exemplified by a quadratic relation of the interfacial normal and shear tractions. Stiffness degradation was characterized by a linear relation of the interface cohesive strength and a scalar degradation parameter, which depended on the effective separation distances corresponding to the critical effective cohesive strength and the fully degraded stiffness, defined by a mixed-mode loading critical fracture energy criterion. Numerical solutions of the delamination profiles, the subsurface stress field, and the development of plasticity illuminated the effects of indentation depth and sliding distance on interfacial delamination in half-spaces with different elastic-plastic properties, interfacial cohesive strength, and layer thickness. Simulations yielded insight into the layer and substrate material property mismatch on interfacial delamination. A notable contribution of the present study is the establishment of a computational mechanics methodology for developing plasticity-induced cumulative damage models for multilayered structures.

References

1.
Kim
,
J.-H.
,
Kil
,
H.-J.
,
Lee
,
S.
,
Park
,
J.
, and
Park
,
J.-W.
,
2022
, “
Interfacial Delamination at Multilayer Thin Films in Semiconductor Devices
,”
ACS Omega
,
7
(
29
), pp.
25219
25228
.
2.
Morris
,
B. A.
,
2022
,
The Science and Technology of Flexible Packaging: Multilayer Films From Resin and Process to End Use
, 2nd ed.,
Elsevier
,
Amsterdam, The Netherlands
.
3.
Ügdüler
,
S.
,
De Somer
,
T.
,
Van Geem
,
K. M.
,
Roosen
,
M.
,
Kulawig
,
A.
,
Leineweber
,
R.
, and
De Meester
,
S.
,
2021
, “
Towards a Better Understanding of Delamination of Multilayer Flexible Packaging Films by Carboxylic Acids
,”
ChemSusChem
,
14
(
19
), pp.
4198
4213
.
4.
Ko
,
S. W.
,
Dechakupt
,
T.
,
Randall
,
C. A.
,
Trolier-McKinstry
,
S.
,
Randall
,
M.
, and
Tajuddin
,
A.
,
2010
, “
Chemical Solution Deposition of Copper Thin Films and Integration Into a Multilayer Capacitor Structure
,”
J. Electroceram.
,
24
(
3
), pp.
161
169
.
5.
Suh
,
N. P.
,
1973
, “
The Delamination Theory of Wear
,”
Wear
,
25
(
1
), pp.
111
124
.
6.
Voevodin
,
A. A.
,
Schneider
,
J. M.
,
Rebholz
,
C.
, and
Matthews
,
A.
,
1996
, “
Multilayer Composite Ceramicmetal-DLC Coatings for Sliding Wear Applications
,”
Tribol. Int.
,
29
(
7
), pp.
559
570
.
7.
Cho
,
S.-S.
, and
Komvopoulos
,
K.
,
1997
, “
Wear Mechanisms of Multi-Layer Coated Cemented Carbide Cutting Tools
,”
ASME J. Tribol.
,
119
(
1
), pp.
8
17
.
8.
Tabakov
,
V. P.
,
Vereschaka
,
A. S.
, and
Vereschaka
,
A. A.
,
2017
, “
Multilayer Composition Coatings for Cutting Tools: Formation and Performance Properties
,”
Mech. Ind.
,
18
(
7
), p.
706
.
9.
Choi
,
S. R.
,
Hutchinson
,
J. W.
, and
Evans
,
A. G.
,
1999
, “
Delamination of Multilayer Thermal Barrier Coatings
,”
Mech. Mater.
,
31
(
7
), pp.
431
447
.
10.
Murthy
,
A. K.
,
Komvopoulos
,
K.
, and
Brown
,
S. D.
,
1990
, “
Processing and Characterization of Multi-Layered Wear-Resistant Ceramic Coatings
,”
ASME J. Eng. Mater. Technol.
,
112
(
2
), pp.
164
174
.
11.
Nagarathnam
,
K.
, and
Komvopoulos
,
K.
,
1993
, “
Microstructural Characterization and In Situ Transmission Electron Microscopy Analysis of Laser-Processed and Thermally Treated Fe-Cr-W-C Clad Coatings
,”
Metal. Trans. A
,
24
(
7
), pp.
1621
1629
.
12.
Gerberich
,
W. W.
,
Kramer
,
D. E.
,
Tymiak
,
N. I.
,
Volinsky
,
A. A.
,
Bahr
,
D. F.
, and
Kriese
,
M. D.
,
1999
, “
Nanoindentation-Induced Defect–Interface Interactions: Phenomena, Methods and Limitations
,”
Acta Mater.
,
47
(
15–16
), pp.
4115
4123
.
13.
He
,
M. Y.
,
Hutchinson
,
J. W.
, and
Evans
,
A. G.
,
2011
, “
A Stretch/Bend Method for In Situ Measurement of the Delamination Toughness of Coatings and Films Attached to Substrates
,”
ASME J. Appl. Mech.
,
78
(
1
), p.
011009
.
14.
Liu
,
M.
, and
Yang
,
F.
,
2012
, “
Finite Element Analysis of the Indentation-Induced Delamination of Bi-Layer Structures
,”
J. Comput. Theoret. Nanosci.
,
9
(
6
), pp.
851
858
.
15.
Dugdale
,
D. S.
,
1960
, “
Yielding of Steel Sheets Containing Slits
,”
J. Mech. Phys. Solids
,
8
(
2
), pp.
100
104
.
16.
Barenblatt
,
G. I.
,
1962
, “
The Mathematical Theory of Equilibrium Cracks in Brittle Fracture
,”
Adv. Appl. Mech.
,
7
, pp.
55
129
.
17.
Alfano
,
M.
,
Furgiuele
,
F.
,
Leonardi
,
A.
,
Maletta
,
C.
, and
Paulino
,
G. H.
,
2009
, “
Mode I Fracture of Adhesive Joints Using Tailored Cohesive Zone Models
,”
Int. J. Fract.
,
157
(
1–2
), pp.
193
204
.
18.
Yan
,
Y.
, and
Shang
,
F.
,
2009
, “
Cohesive Zone Modeling of Interfacial Delamination in PZT Thin Films
,”
Int. J. Solids Struct.
,
46
(
13
), pp.
2739
2749
.
19.
Song
,
Z.
, and
Komvopoulos
,
K.
,
2013
, “
Delamination of an Elastic Film From an Elastic–Plastic Substrate During Adhesive Contact Loading and Unloading
,”
Int. J. Solids Struct.
,
50
(
16–17
), pp.
2549
2560
.
20.
Mróz
,
Z.
, and
Mróz
,
K. P.
,
2015
, “
Analysis of Delamination and Damage Growth in Joined Bi-Layer Systems
,”
Geomech. Energy Environ.
,
4
, pp.
4
28
.
21.
Walter
,
T.
,
Lederer
,
M.
, and
Khatibi
,
G.
,
2016
, “
Delamination of Polyimide/Cu Films Under Mixed Mode Loading
,”
Microelect. Relat.
,
64
, pp.
281
286
.
22.
Lin
,
P.
,
Shen
,
F.
,
Yeo
,
A.
,
Liu
,
B.
,
Xue
,
M.
,
Xu
,
H.
, and
Zhou
,
K.
,
2017
, “
Characterization of Interfacial Delamination in Multi-Layered Integrated Circuit Packaging
,”
Surf. Coat. Technol.
,
320
, pp.
349
356
.
23.
Soroush
,
M.
,
Malekzadeh Fard
,
K.
, and
Shahravi
,
M.
,
2018
, “
Finite Element Simulation of Interlaminar and Intralaminar Damage in Laminated Composite Plates Subjected to Impact
,”
Lat. Am. J. Solids Struct.
,
15
(
6
), p.
e90
.
24.
Hassan
,
M.
,
Ali
,
A.
,
Ilyas
,
M.
,
Hussain
,
G.
, and
ul Haq
,
I.
,
2019
, “
Experimental and Numerical Simulation of Steel/Steel (St/St) Interface in Bi-Layer Sheet Metal
,”
Int. J. Lightweight Mater. Manuf.
,
2
(
2
), pp.
89
96
.
25.
Long
,
H.
,
Liang
,
L.
, and
Wei
,
Y.
,
2019
, “
Failure Characterization of Solid Structures Based on an Equivalence of Cohesive Zone Model
,”
Int. J. Solids Struct.
,
163
, pp.
194
210
.
26.
Liang
,
L.
,
Chen
,
L.
,
Wu
,
L.
, and
Tan
,
H.
,
2021
, “
Interface Strength, Damage and Fracture Between Ceramic Films and Metallic Substrates
,”
Materials
,
14
(
2
), p.
353
.
27.
ABAQUS Analysis User’s Guide, 2022.
28.
Camanho
,
P. P.
,
Davila
,
C. G.
, and
de Moura
,
M. F.
,
2003
, “
Numerical Simulation of Mixed-Mode Progressive Delamination in Composite Materials
,”
J. Compos. Mater.
,
37
(
16
), pp.
1415
1438
.
29.
Turon
,
A.
,
Dávila
,
C. G.
,
Camanho
,
P. P.
, and
Costa
,
J.
,
2007
, “
An Engineering Solution for Mesh Size Effects in the Simulation of Delamination Using Cohesive Zone Models
,”
Eng. Fract. Mech.
,
74
(
10
), pp.
1665
1682
.
30.
Rocha
,
R. J. B.
, and
Campilho
,
R. D. S. G.
,
2018
, “
Evaluation of Different Modelling Conditions in the Cohesive Zone Analysis of Single-Lap Bonded Joints
,”
J. Adhes.
,
94
(
7
), pp.
562
582
.
31.
Krenk
,
S.
,
1992
, “
Energy Release Rate of Symmetric Adhesive Joints
,”
Eng. Fract. Mech.
,
43
(
4
), pp.
549
559
.
32.
Freund
,
L.
, and
Suresh
,
S.
,
2004
,
Thin Film Materials: Stress, Defect Formation and Surface Evolution
,
Cambridge University Press
,
Cambridge, UK
.
33.
Gao
,
Y. F.
, and
Bower
,
A. F.
,
2004
, “
A Simple Technique for Avoiding Convergence Problems in Finite Element Simulations of Crack Nucleation and Growth on Cohesive Interfaces
,”
Model. Simul. Mater. Sci. Eng.
,
12
(
3
), pp.
453
463
.
You do not currently have access to this content.