Abstract

Hydrogen embrittlement is an important technological problem underpinning failure of many structural elements. It has been extensively investigated in the literatures; however, several open issues remain that prevent a full understanding of this phenomenon. One important issue is the uncertain knowledge of how hydrogen atoms affect the dislocation core structure. Here, by exploring the hydrogen role on the dissociated edge dislocation, we reveal that there exists an additional attractive force between two partials due to the hydrogen atmosphere, which would reduce the equilibrium separation distance. This hydrogen-induced attractive force is quantitatively estimated by means of continuum mechanics. Furthermore, molecular statics simulations also capture the hydrogen-reduced separation distance under varying hydrogen background fractions, qualitatively verifying the theoretical prediction of attractive force. These findings at the atomistic scale will inform the hydrogen embrittlement modeling and experiments, especially on the hydrogen effect on the dislocation glide, climb, dynamics strain ageing, and so on.

References

1.
Service
,
R. F.
,
2004
, “
The Hydrogen Backlash
,”
Science
,
305
(
5686
), pp.
958
961
.
2.
Murakami
,
Y.
,
2006
, “
The Effect of Hydrogen on Fatigue Properties of Metals Used for Fuel Cell System
,”
Int. J. Fract.
,
138
(
1–4
), pp.
167
195
.
3.
Bechtle
,
S.
,
Kumar
,
M.
,
Somerday
,
B. P.
,
Launey
,
M. E.
, and
Ritchie
,
R. O.
,
2009
, “
Grain-Boundary Engineering Markedly Reduces Susceptibility to Intergranular Hydrogen Embrittlement in Metallic Materials
,”
Acta Mater.
,
57
(
14
), pp.
4148
4157
.
4.
Birnbaum
,
H. K.
, and
Sofronis
,
P.
,
1994
, “
Hydrogen-Enhanced Localized Plasticity—A Mechanism for Hydrogen-Related Fracture
,”
Mater. Sci. Eng. A
,
176
(
1–2
), pp.
191
202
.
5.
Song
,
J.
, and
Curtin
,
W. A.
,
2013
, “
Atomic Mechanism and Prediction of Hydrogen Embrittlement in Iron
,”
Nat. Mater.
,
12
(
2
), pp.
145
151
.
6.
Xie
,
D.
,
Li
,
S.
,
Li
,
M.
,
Wang
,
Z.
,
Gumbsch
,
P.
,
Sun
,
J.
,
Ma
,
E.
,
Li
,
J.
, and
Shan
,
Z.
,
2016
, “
Hydrogenated Vacancies Lock Dislocations in Aluminium
,”
Nat. Commun.
,
7
(
1
), p.
13341
.
7.
Yin
,
S.
,
Cheng
,
G.
,
Chang
,
T.-H.
,
Richter
,
G.
,
Zhu
,
Y.
, and
Gao
,
H.
,
2019
, “
Hydrogen Embrittlement in Metallic Nanowires
,”
Nat. Commun.
,
10
(
1
), p.
2004
.
8.
Barnoush
,
A.
, and
Vehoff
,
H.
,
2010
, “
Recent Developments in the Study of Hydrogen Embrittlement: Hydrogen Effect on Dislocation Nucleation
,”
Acta Mater.
,
58
(
16
), pp.
5274
5285
.
9.
Zhou
,
X.
,
Ouyang
,
B.
,
Curtin
,
W. A.
, and
Song
,
J.
,
2016
, “
Atomistic Investigation of the Influence of Hydrogen on Dislocation Nucleation During Nanoindentation in Ni and Pd
,”
Acta Mater.
,
116
, pp.
364
369
.
10.
Tehranchi
,
A.
, and
Curtin
,
W. A.
,
2019
, “
The Role of Atomistic Simulations in Probing Hydrogen Effects on Plasticity and Embrittlement in Metals
,”
Eng. Fract. Mech.
,
216
, p.
106502
.
11.
Tehranchi
,
A.
,
Zhou
,
X.
, and
Curtin
,
W. A.
,
2020
, “
A Decohesion Pathway for Hydrogen Embrittlement in Nickel: Mechanism and Quantitative Prediction
,”
Acta Mater.
,
185
, pp.
98
109
.
12.
Kang
,
K.
,
Yin
,
J.
, and
Cai
,
W.
,
2014
, “
Stress Dependence of Cross Slip Energy Barrier for Face-Centered Cubic Nickel
,”
J. Mech. Phys. Solids
,
62
, pp.
181
193
.
13.
Chen
,
D.
,
Costello
,
L. L.
,
Geller
,
C. B.
,
Zhu
,
T.
, and
McDowell
,
D. L.
,
2019
, “
Atomistic Modeling of Dislocation Cross-Slip in Nickel Using Free-End Nudged Elastic Band Method
,”
Acta Mater.
,
168
, pp.
436
447
.
14.
Kuykendall
,
W. P.
,
Wang
,
Y.
, and
Cai
,
W.
,
2020
, “
Stress Effects on the Energy Barrier and Mechanisms of Cross-Slip in FCC Nickel
,”
J. Mech. Phys. Solids
,
144
, p.
104105
.
15.
Yu
,
X. X.
, and
Wang
,
C. Y.
,
2009
, “
The Effect of Alloying Elements on the Dislocation Climb Velocity in Ni: A First-Principles Study
,”
Acta Mater.
,
57
(
19
), pp.
5914
5920
.
16.
Chu
,
S.
,
Liu
,
P.
,
Zhang
,
Y.
,
Wang
,
X.
,
Song
,
S.
,
Zhu
,
T.
,
Zhang
,
Z.
,
Han
,
X.
,
Sun
,
B.
, and
Chen
,
M.
,
2022
, “
In Situ Atomic-Scale Observation of Dislocation Climb and Grain Boundary Evolution in Nanostructured Metal
,”
Nat. Commun.
,
13
(
1
), p.
4151
.
17.
Tehranchi
,
A.
, and
Curtin
,
W. A.
,
2017
, “
Atomistic Study of Hydrogen Embrittlement of Grain Boundaries in Nickel: I. Fracture
,”
J. Mech. Phys. Solids
,
101
, pp.
150
165
.
18.
Wen
,
M.
,
Fukuyama
,
S.
, and
Yokogawa
,
K.
,
2004
, “
Hydrogen-Affected Cross-Slip Process in FCC Nickel
,”
Phys. Rev. B
,
69
(
17
), p.
174108
.
19.
Wen
,
M.
,
Fukuyama
,
S.
, and
Yokogawa
,
K.
,
2007
, “
Cross-Slip Process in FCC Nickel With Hydrogen in a Stacking Fault: An Atomistic Study Using the Embedded-Atom Method
,”
Phys. Rev. B
,
75
(
14
), p.
144110
.
20.
Brinckmann
,
S.
,
Sivanesapillai
,
R.
, and
Hartmaier
,
A.
,
2011
, “
On the Formation of Vacancies by Edge Dislocation Dipole Annihilation in Fatigued Copper
,”
Int. J. Fatigue
,
33
(
10
), pp.
1369
1375
.
21.
Pan
,
B.
,
Shibutani
,
Y.
,
Zhang
,
X.
, and
Shang
,
F.
,
2015
, “
Effect of Dislocation Pile-Up on Size-Dependent Yield Strength in Finite Single-Crystal Micro-Samples
,”
J. Appl. Phys.
,
118
(
11
), p.
014305
.
22.
Zhang
,
X.
,
2017
, “
A Continuum Model for Dislocation Pile-Up Problems
,”
Acta Mater.
,
128
, pp.
428
439
.
23.
Leyson
,
G. P. M.
,
Grabowski
,
B.
, and
Neugebauer
,
J.
,
2015
, “
Multiscale Description of Dislocation Induced Nano-Hydrides
,”
Acta Mater.
,
89
, pp.
50
59
.
24.
Sills
,
R. B.
, and
Cai
,
W.
,
2016
, “
Solute Drag on Perfect and Dissociated Dislocations
,”
Philos. Mag.
,
96
(
10
), pp.
895
921
.
25.
Cai
,
W.
, and
Nix
,
W. D.
,
2016
,
Imperfections in Crystalline Solids (MRS-Cambridge Materials Fundamentals)
,
Cambridge University Press
,
Cambridge, UK
. Chap. 11.
26.
Plimpton
,
S.
,
1995
, “
Fast Parallel Algorithms for Short-Range Molecular Dynamics
,”
J. Comput. Phys.
,
117
(
1
), pp.
1
19
.
27.
Angelo
,
J. E.
,
Moody
,
N. R.
, and
Baskes
,
M. I.
,
1995
, “
Trapping of Hydrogen to Lattice Defects in Nickel
,”
Model. Simul. Mater. Sci. Eng.
,
3
(
3
), pp.
289
307
.
28.
Holm
,
E. A.
,
Olmsted
,
D. L.
, and
Foiles
,
S. M.
,
2010
, “
Comparing Grain Boundary Energies in Face-Centered Cubic Metals: Al, Au, Cu and Ni
,”
Scr. Mater.
,
63
(
9
), pp.
905
908
.
29.
Wen
,
M.
,
Barnoush
,
A.
, and
Yokogawa
,
K.
,
2011
, “
Calculation of All Cubic Single-Crystal Elastic Constants From Single Atomistic Simulation: Hydrogen Effect and Elastic Constants of Nickel
,”
Comput. Phys. Commun.
,
182
(
8
), pp.
1621
1625
.
30.
Huang
,
S.
,
Chen
,
D.
,
Song
,
J.
,
McDowell
,
D. L.
, and
Zhu
,
T.
,
2017
, “
Hydrogen Embrittlement of Grain Boundaries in Nickel: An Atomistic Study
,”
Npj Comput. Mater.
,
3
(
1
), p.
28
.
31.
Stukowski
,
A.
,
2009
, “
Visualization and Analysis of Atomistic Simulation Data With OVITO—The Open Visualization Tool
,”
Model. Simul. Mater. Sci. Eng.
,
18
(
1
), p.
015012
.
32.
Zimmerman
,
J. A.
,
Gao
,
H.
, and
Abraham
,
F. F.
,
2000
, “
Generalized Stacking Fault Energies for Embedded Atom FCC Metals
,”
Model. Simul. Mater. Sci. Eng.
,
8
(
2
), pp.
103
115
.
33.
Zhu
,
Y.
,
Zheng
,
Z.
,
Huang
,
M.
,
Liang
,
S.
, and
Li
,
Z.
,
2020
, “
Modeling of Solute Hydrogen Effect on Various Planar Fault Energies
,”
Int. J. Hydrog. Energy
,
45
(
15
), pp.
9162
9173
.
You do not currently have access to this content.