Abstract

Serpentine structures are of growing interest due to its unique mechanical and physical properties for applications in stretchable electronics, mechanical sensing, and biomedical devices. Mechanics-guided, deterministic three-dimensional (3D) assembly provides routes to form remarkable 3D structures, which in turn significantly improve its potential for applications. Therefore, an accurate postbuckling analysis is essential to the complex 3D serpentine structures with arbitrary geometry/material parameters. Here, simple, analytical expressions are obtained for the displacement and effective rigidity of serpentine structures during postbuckling. By tuning geometry parameters, the amplitude of assembled 3D serpentine structures can span a very broad range from zero to that of a straight ribbon. The analytical model can be used in design, fabrication, and application of versatile 3D serpentine structures to ensure their compatibility with the ultra-low rigidity biological tissues. A hierarchical 3D serpentine structure with ultra-low rigidity is presented to demonstrate the application of the analytical model.

References

1.
Xu
,
S.
,
Zhang
,
Y.
,
Cho
,
J.
,
Lee
,
J.
,
Huang
,
X.
,
Jia
,
L.
,
Fan
,
J. A.
, et al
,
2013
, “
Stretchable Batteries with Self-Similar Serpentine Interconnects and Integrated Wireless Recharging Systems
,”
Nat. Commun.
,
4
(
1
), p.
1543
.
2.
Zhang
,
Y.
,
Xu
,
S.
,
Fu
,
H.
,
Lee
,
J.
,
Su
,
J.
,
Hwang
,
K. C.
,
Rogers
,
J. A.
, and
Huang
,
Y.
,
2013
, “
Buckling in Serpentine Microstructures and Applications in Elastomer-Supported Ultra-Stretchable Electronics With High Areal Coverage
,”
Soft Matter
,
9
(
33
), pp.
8062
8070
.
3.
Fan
,
Z.
,
Zhang
,
Y.
,
Ma
,
Q.
,
Zhang
,
F.
,
Fu
,
H.
,
Hwang
,
K. C.
, and
Huang
,
Y.
,
2016
, “
A Finite Deformation Model of Planar Serpentine Interconnects for Stretchable Electronics
,”
Int. J. Solids Struct.
,
91
, pp.
46
54
.
4.
Pan
,
T. S.
,
Pharr
,
M.
,
Ma
,
Y. J.
,
Ning
,
R.
,
Yan
,
Z.
,
Xu
,
R. X.
,
Feng
,
X.
,
Huang
,
Y. G.
, and
Rogers
,
J. A.
,
2017
, “
Experimental and Theoretical Studies of Serpentine Interconnects on Ultrathin Elastomers for Stretchable Electronics
,”
Adv. Funct. Mater.
,
27
(
37
), p.
1702589
.
5.
Huang
,
Y.
,
Mu
,
Z. Z.
,
Feng
,
P.
, and
Yuan
,
J. H.
,
2019
, “
Mechanics Design for Compatible Deformation of Fractal Serpentine Interconnects in High-Density Stretchable Electronics
,”
ASME J. Appl. Mech.
,
86
(
3
), p.
031011
.
6.
Liu
,
S. Y.
,
Ha
,
T.
, and
Lu
,
N. S.
,
2019
, “
Experimentally and Numerically Validated Analytical Solutions to Nonbuckling Piezoelectric Serpentine Ribbons
,”
ASME J. Appl. Mech.
,
86
(
5
), p.
051010
.
7.
Feng
,
P.
,
Yuan
,
J. H.
,
Huang
,
Y.
, and
Li
,
X. Y.
,
2020
, “
Analytical Solutions for the Lateral-Torsional Buckling of Serpentine Interconnects in Stretchable Electronics
,”
ASME J. Appl. Mech.
,
87
(
8
), p.
081005
.
8.
Zhou
,
Y. D.
, and
Fei
,
Q. G.
,
2020
, “
Evaluating Deformation Modes of Sandwich Serpentine Structures for High Stretchability
,”
Thin-Walled Struct.
,
157
, p.
107087
.
9.
Liu
,
Y.
,
Wang
,
X.
,
Xu
,
Y.
,
Xue
,
Z.
,
Zhang
,
Y.
,
Ning
,
X.
,
Cheng
,
X.
, et al
,
2019
, “
Harnessing the Interface Mechanics of Hard Films and Soft Substrates for 3D Assembly by Controlled Buckling
,”
Proc. Natl. Acad. Sci. U. S. A.
,
116
(
31
), pp.
15368
15377
.
10.
Li
,
S. P.
,
Han
,
M. D.
,
Rogers
,
J. A.
,
Zhang
,
Y. H.
,
Huang
,
Y. G.
, and
Wang
,
H. L.
,
2019
, “
Mechanics of Buckled Serpentine Structures Formed via Mechanics-Guided, Deterministic Three-Dimensional Assembly
,”
J. Mech. Phys. Solids
,
125
, pp.
736
748
.
11.
Nan
,
K.
,
Kang
,
S. D.
,
Li
,
K.
,
Yu
,
K. J.
,
Zhu
,
F.
,
Wang
,
J.
,
Dunn
,
A. C.
, et al
,
2018
, “
Compliant and Stretchable Thermoelectric Coils for Energy Harvesting in Miniature Flexible Devices
,”
Sci. Adv.
,
4
(
11
), p.
eaau5849
.
12.
Su
,
Y.
,
Ping
,
X.
,
Yu
,
K. J.
,
Lee
,
J. W.
,
Fan
,
J. A.
,
Wang
,
B.
,
Li
,
M.
, et al
,
2017
, “
In-Plane Deformation Mechanics for Highly Stretchable Electronics
,”
Adv. Mater.
,
29
(
8
), p.
1604989
.
13.
Ma
,
Y.
,
Feng
,
X.
,
Rogers
,
J. A.
,
Huang
,
Y.
, and
Zhang
,
Y.
,
2017
, “
Design and Application of ‘J-Shaped’ Stress-Strain Behavior in Stretchable Electronics: a Review
,”
Lab Chip
,
17
(
10
), pp.
1689
1704
.
14.
Jang
,
K. I.
,
Li
,
K.
,
Chung
,
H. U.
,
Xu
,
S.
,
Jung
,
H. N.
,
Yang
,
Y.
,
Kwak
,
J. W.
, et al
,
2017
, “
Self-assembled Three Dimensional Network Designs for Soft Electronics
,”
Nat. Commun.
,
8
, p.
15894
.
15.
Liu
,
Y.
,
Yan
,
Z.
,
Lin
,
Q.
,
Guo
,
X.
,
Han
,
M.
,
Nan
,
K.
,
Hwang
,
K. C.
,
Huang
,
Y.
,
Zhang
,
Y.
, and
Rogers
,
J. A.
,
2016
, “
Guided Formation of 3D Helical Mesostructures by Mechanical Buckling: Analytical Modeling and Experimental Validation
,”
Adv. Funct. Mater.
,
26
(
17
), pp.
2909
2918
.
16.
Xu
,
S.
,
Yan
,
Z.
,
Jang
,
K.-I.
,
Huang
,
W.
,
Fu
,
H.
,
Kim
,
J.
,
Wei
,
Z.
, et al
,
2015
, “
Assembly of Micro/Nanomaterials Into Complex, Three-Dimensional Architectures by Compressive Buckling
,”
Science
,
347
(
6218
), pp.
154
159
.
17.
Kim
,
D. H.
,
Lu
,
N.
,
Ma
,
R.
,
Kim
,
Y. S.
,
Kim
,
R. H.
,
Wang
,
S.
,
Wu
,
J.
, et al
,
2011
, “
Epidermal Electronics
,”
Science
,
333
(
6044
), pp.
838
843
.
18.
Ma
,
Q.
,
Cheng
,
H.
,
Jang
,
K.-I.
,
Luan
,
H.
,
Hwang
,
K.-C.
,
Rogers
,
J. A.
,
Huang
,
Y.
, and
Zhang
,
Y.
,
2016
, “
A Nonlinear Mechanics Model of bio-Inspired Hierarchical Lattice Materials Consisting of Horseshoe Microstructures
,”
J. Mech. Phys. Solids
,
90
, pp.
179
202
.
19.
Liu
,
J.
,
Yan
,
D.
, and
Zhang
,
Y.
,
2021
, “
Mechanics of Unusual Soft Network Materials with Rotatable Structural Nodes
,”
J. Mech. Phys. Solids
,
146
, p.
104210
.
20.
Zhao
,
J.
,
Li
,
W.
,
Guo
,
X.
,
Wang
,
H.
,
Rogers
,
J. A.
, and
Huang
,
Y.
,
2020
, “
Theoretical Modeling of Tunable Vibrations of Three-Dimensional Serpentine Structures for Simultaneous Measurement of Adherent Cell Mass and Modulus
,”
MRS Bull.
,
46
(
1
), pp.
107
114
.
21.
Han
,
M.
,
Wang
,
H.
,
Yang
,
Y.
,
Liang
,
C.
,
Bai
,
W.
,
Yan
,
Z.
,
Li
,
H.
, et al
,
2019
, “
Three-dimensional Piezoelectric Polymer Microsystems for Vibrational Energy Harvesting, Robotic Interfaces and Biomedical Implants
,”
Nat. Electron.
,
2
(
1
), pp.
26
35
.
22.
Lu
,
N. S.
,
Lu
,
C.
,
Yang
,
S. X.
, and
Rogers
,
J.
,
2012
, “
Highly Sensitive Skin-Mountable Strain Gauges Based Entirely on Elastomers
,”
Adv. Funct. Mater.
,
22
(
19
), pp.
4044
4050
.
23.
Yu
,
X.
,
Xie
,
Z.
,
Yu
,
Y.
,
Lee
,
J.
,
Vazquez-Guardado
,
A.
,
Luan
,
H.
,
Ruban
,
J.
, et al
,
2019
, “
Skin-integrated Wireless Haptic Interfaces for Virtual and Augmented Reality
,”
Nature
,
575
(
7783
), pp.
473
479
.
24.
Han
,
M.
,
Chen
,
L.
,
Aras
,
K.
,
Liang
,
C.
,
Chen
,
X.
,
Zhao
,
H.
,
Li
,
K.
, et al
,
2020
, “
Catheter-integrated Soft Multilayer Electronic Arrays for Multiplexed Sensing and Actuation During Cardiac Surgery
,”
Nat. Biomed. Eng.
,
4
(
10
), pp.
997
1009
.
25.
Wang
,
X. J.
,
Feiner
,
R.
,
Luan
,
H. W.
,
Zhang
,
Q. H.
,
Zhao
,
S. W.
,
Zhang
,
Y.
,
Han
,
M. D.
, et al
,
2020
, “
Three-dimensional Electronic Scaffolds for Monitoring and Regulation of Multifunctional Hybrid Tissues
,”
Extreme Mech. Lett.
,
35
, p.
100634
.
26.
Kim
,
D.-H.
,
Lu
,
N.
,
Ghaffari
,
R.
,
Kim
,
Y.-S.
,
Lee
,
S. P.
,
Xu
,
L.
,
Wu
,
J.
, et al
,
2011
, “
Materials for Multifunctional Balloon Catheters with Capabilities in Cardiac Electrophysiological Mapping and Ablation Therapy
,”
Nat. Mater.
,
10
(
4
), pp.
316
323
.
27.
Zhao
,
J.
,
Zhang
,
F.
,
Guo
,
X.
,
Huang
,
Y.
,
Zhang
,
Y.
, and
Wang
,
H.
,
2021
, “
Torsional Deformation Dominated Buckling of Serpentine Structures to Form Three-Dimensional Architectures with Ultra-low Rigidity
,”
J. Mech. Phys. Solids
,
155
, p.
104568
.
28.
Yan
,
Z.
,
Wang
,
B.
,
Wang
,
K.
,
Zhao
,
S.
,
Li
,
S.
,
Huang
,
Y.
, and
Wang
,
H.
,
2020
, “
Cellular Substrate to Facilitate Global Buckling of Serpentine Structures
,”
ASME J. Appl. Mech.
,
87
(
2
), p.
024501
.
29.
Meitl
,
M. A.
,
Zhu
,
Z.-T.
,
Kumar
,
V.
,
Lee
,
K. J.
,
Feng
,
X.
,
Huang
,
Y. Y.
,
Adesida
,
I.
,
Nuzzo
,
R. G.
, and
Rogers
,
J. A.
,
2005
, “
Transfer Printing by Kinetic Control of Adhesion to an Elastomeric Stamp
,”
Nat. Mater.
,
5
(
1
), pp.
33
38
.
30.
DelRio
,
F. W.
,
de Boer
,
M. P.
,
Knapp
,
J. A.
,
David Reedy
,
E.
,
Clews
,
P. J.
, and
Dunn
,
M. L.
,
2005
, “
The Role of van der Waals Forces in Adhesion of Micromachined Surfaces
,”
Nat. Mater.
,
4
(
8
), pp.
629
634
.
31.
Yan
,
Z.
,
Han
,
M.
,
Shi
,
Y.
,
Badea
,
A.
,
Yang
,
Y.
,
Kulkarni
,
A.
,
Hanson
,
E.
, et al
,
2017
, “
Three-dimensional Mesostructures as High-Temperature Growth Templates, Electronic Cellular Scaffolds, and Self-Propelled Microrobots
,”
Proc. Natl. Acad. Sci. U. S. A.
,
114
(
45
), pp.
E9455
E9464
.
32.
Zhang
,
F.
,
Li
,
S.
,
Shen
,
Z.
,
Cheng
,
X.
,
Xue
,
Z.
,
Zhang
,
H.
,
Song
,
H.
, et al
,
2021
, “
Rapidly Deployable and Morphable 3D Mesostructures with Applications in Multimodal Biomedical Devices
,”
Proc. Natl. Acad. Sci. U. S. A.
,
118
(
11
), p.
e2026414118
.
33.
Yang
,
Y.
,
Wu
,
M.
,
Vazquez-Guardado
,
A.
,
Wegener
,
A. J.
,
Grajales-Reyes
,
J. G.
,
Deng
,
Y.
,
Wang
,
T.
, et al
,
2021
, “
Wireless Multilateral Devices for Optogenetic Studies of Individual and Social Behaviors
,”
Nat. Neurosci.
,
24
(
7
), pp.
1035
1045
.
34.
Xu
,
Z.
,
Fan
,
Z.
,
Zi
,
Y.
,
Zhang
,
Y.
, and
Huang
,
Y.
,
2020
, “
An Inverse Design Method of Buckling-Guided Assembly for Ribbon-Type 3D Structures
,”
ASME J. Appl. Mech.
,
87
(
3
), p.
031004
.
35.
Li
,
K.
,
Chen
,
L.
,
Zhu
,
F.
, and
Huang
,
Y.
,
2021
, “
Thermal and Mechanical Analyses of Compliant Thermoelectric Coils for Flexible and Bio-Integrated Devices
,”
ASME J. Appl. Mech.
,
88
(
2
), p.
021011
.
36.
Young
,
W. C.
,
Budynas
,
R. G.
, and
Sadegh
,
A. M.
,
2012
,
Roark's Formulas for Stress and Strain
,
McGraw-Hill
,
New York
.
37.
Su
,
Y. W.
,
Wu
,
J.
,
Fan
,
Z. C.
,
Hwang
,
K. C.
,
Song
,
J. Z.
,
Huang
,
Y. G.
, and
Rogers
,
J. A.
,
2012
, “
Postbuckling Analysis and its Application to Stretchable Electronics
,”
J. Mech. Phys. Solids
,
60
(
3
), pp.
487
508
.
38.
Chung
,
H. U.
,
Kim
,
B. H.
,
Lee
,
J. Y.
,
Lee
,
J.
,
Xie
,
Z.
,
Ibler
,
E. M.
,
Lee
,
K.
, et al
,
2019
, “
Binodal, Wireless Epidermal Electronic Systems with in-Sensor Analytics for Neonatal Intensive Care
,”
Science
,
363
(
6430
), p.
eaau0780
.
You do not currently have access to this content.