Abstract

Shape memory hydrogel is a type of hydrogel whose shape can transform between a temporary shape and its initial shape when exposed to external stimuli, such as water, temperature, and pH. Over the last decade, shape memory hydrogels have gained increasing interest owing to their distinct properties; however, constitutive models to describe their shape memory mechanism are still lacking. In this paper, we propose a constitutive model for water-triggered shape memory hydrogels based on the transition between the sparse and dense phases. In the model, the shape memory process is identified using two internal variables: the frozen deformation gradient and dense phase volume fraction. To validate the model for describing shape memory effects, we implemented the model in the finite element method using a user-defined element (UEL) subroutine in ABAQUS. To verify the accuracy of the proposed UEL, we simulated the water-triggered shape memory effects in different recovery processes under different uniaxial loads. Furthermore, we investigated the water-triggered shape memory behavior of a self-bending bilayer structure and a four-arm gripper structure using both experiments and simulations. Good agreement was observed between the simulation and experimental results.

References

1.
Cui
,
Y.
,
Tan
,
M.
,
Zhu
,
A.
, and
Guo
,
M.
,
2014
, “
Mechanically Strong and Stretchable PEG-Based Supramolecular Hydrogel With Water-Responsive Shape-Memory Property
,”
J. Mater. Chem. B
,
2
(
20
), pp.
2978
2982
.
2.
Zhang
,
J. L.
,
Huang
,
W. M.
,
Gao
,
G.
,
Fu
,
J.
,
Zhou
,
Y.
,
Salvekar
,
A. V.
,
Venkatraman
,
S. S.
,
Wong
,
Y. S.
,
Tay
,
K. H.
, and
Birch
,
W. R.
,
2014
, “
Shape Memory/Change Effect in a Double Network Nanocomposite Tough Hydrogel
,”
Eur. Polym. J.
,
58
, pp.
41
51
.
3.
Liu
,
Y.
,
Li
,
Y.
,
Chen
,
H.
,
Yang
,
G.
,
Zheng
,
X.
, and
Zhou
,
S.
,
2014
, “
Water-Induced Shape-Memory Poly (d, l-Lactide)/Microcrystalline Cellulose Composites
,”
Carbohydr. Polym.
,
104
, pp.
101
108
.
4.
Chen
,
C.
,
Lei
,
J.
, and
Liu
,
Z.
,
2022
, “
A Ternary Seismic Metamaterial for Low Frequency Vibration Attenuation
,”
Materials
,
15
(
3
), p.
1246
.
5.
Chen
,
Y.
,
Yin
,
L.
,
Ge
,
F.
,
Tong
,
X.
,
Zhang
,
H.
, and
Zhao
,
Y.
,
2021
, “
Liquid Crystalline Hydrogel With Thermally Induced Reversible Shape Change and Water-Triggered Shape Memory
,”
Macromol. Rapid Commun.
,
42
(
23
), p.
2100495
.
6.
Falqi
,
F. H.
,
Bin-Dahman
,
O. A.
,
Khair
,
A.
, and
Al-Harthi
,
M. A.
,
2022
, “
PVA/PEG/Graphene Shape Memory Composites Responsive to Multi-Stimuli
,”
Appl. Phys. A
,
128
(
5
), pp.
1
11
.
7.
Huang
,
J.
,
Zhao
,
L.
,
Wang
,
T.
,
Sun
,
W.
, and
Tong
,
Z.
,
2016
, “
NIR-Triggered Rapid Shape Memory PAM–GO–Gelatin Hydrogels With High Mechanical Strength
,”
ACS Appl. Mater. Interfaces
,
8
(
19
), pp.
12384
12392
.
8.
Chen
,
Y.
,
Liu
,
T.
,
Wang
,
G.
,
Liu
,
J.
,
Zhao
,
L.
,
Zhang
,
R.
, and
Yu
,
Y.
,
2021
, “
Intelligent Response Bilayer Hydrogel With Controllable Deformation-Recovery and Shape Memory
,”
Eur. Polym. J.
,
150
, p.
110399
.
9.
Gong
,
X.-L.
,
Xiao
,
Y.-Y.
,
Pan
,
M.
,
Kang
,
Y.
,
Li
,
B.-J.
, and
Zhang
,
S.
,
2016
, “
pH-and Thermal-Responsive Multishape Memory Hydrogel
,”
ACS Appl. Mater. Interfaces
,
8
(
41
), pp.
27432
27437
.
10.
Hu
,
Q.
,
Zhang
,
Y.
,
Wang
,
T.
,
Sun
,
W.
, and
Tong
,
Z.
,
2021
, “
pH Responsive Strong Polyion Complex Shape Memory Hydrogel With Spontaneous Shape Changing and Information Encryption
,”
Macromol. Rapid Commun.
,
42
(
9
), p.
2000747
.
11.
Ma
,
Y.
,
Hua
,
M.
,
Wu
,
S.
,
Du
,
Y.
,
Pei
,
X.
,
Zhu
,
X.
,
Zhou
,
F.
, and
He
,
X.
,
2020
, “
Bioinspired High-Power-Density Strong Contractile Hydrogel by Programmable Elastic Recoil
,”
Sci. Adv.
,
6
(
47
), p.
eabd2520
.
12.
Cui
,
Y.
,
Li
,
D.
,
Gong
,
C.
, and
Chang
,
C.
,
2021
, “
Bioinspired Shape Memory Hydrogel Artificial Muscles Driven by Solvents
,”
ACS Nano
,
15
(
8
), pp.
13712
13720
.
13.
Li
,
Z.
,
Cai
,
J.
,
Wei
,
M.
, and
Chen
,
J.
,
2022
, “
An UV-Photo and Ionic Dual Responsive Interpenetrating Network Hydrogel With Shape Memory and Self-Healing Properties
,”
RSC Adv.
,
12
(
24
), pp.
15105
15114
.
14.
Liang
,
Y.
,
Shen
,
Y.
, and
Liang
,
H.
,
2022
, “
Solvent-Responsive Strong Hydrogel With Programmable Deformation and Reversible Shape Memory for Load-Carrying Soft Robot
,”
Mater. Today Commun.
,
30
, p.
103067
.
15.
Zhao
,
Z.
,
Zhang
,
K.
,
Liu
,
Y.
,
Zhou
,
J.
, and
Liu
,
M.
,
2017
, “
Highly Stretchable, Shape Memory Organohydrogels Using Phase-Transition Microinclusions
,”
Adv. Mater.
,
29
(
33
), p.
1701695
.
16.
Liu
,
K.
,
Zhang
,
Y.
,
Cao
,
H.
,
Liu
,
H.
,
Geng
,
Y.
,
Yuan
,
W.
,
Zhou
,
J.
,
Wu
,
Z. L.
,
Shan
,
G.
, and
Bao
,
Y.
,
2020
, “
Programmable Reversible Shape Transformation of Hydrogels Based on Transient Structural Anisotropy
,”
Adv. Mater.
,
32
(
28
), p.
2001693
.
17.
Fan
,
W.
,
Zhang
,
Z.
,
Liu
,
Y.
,
Wang
,
J.
,
Li
,
Z.
, and
Wang
,
M.
,
2021
, “
Shape Memory Polyacrylamide/Gelatin Hydrogel With Controllable Mechanical and Drug Release Properties Potential for Wound Dressing Application
,”
Polymer
,
226
, p.
123786
.
18.
Korde
,
J. M.
, and
Kandasubramanian
,
B.
,
2020
, “
Naturally Biomimicked Smart Shape Memory Hydrogels for Biomedical Functions
,”
Chem. Eng. J.
,
379
, p.
122430
.
19.
Zhang
,
Y.
,
Liu
,
K.
,
Liu
,
T.
,
Ni
,
C.
,
Chen
,
D.
,
Guo
,
J.
,
Liu
,
C.
,
Zhou
,
J.
,
Jia
,
Z.
, and
Zhao
,
Q.
,
2021
, “
Differential Diffusion Driven Far-From-Equilibrium Shape-Shifting of Hydrogels
,”
Nat. Commun.
,
12
(
1
), pp.
1
8
.
20.
Zhu
,
C. N.
,
Bai
,
T.
,
Wang
,
H.
,
Ling
,
J.
,
Huang
,
F.
,
Hong
,
W.
,
Zheng
,
Q.
, and
Wu
,
Z. L.
,
2021
, “
Dual-Encryption in a Shape-Memory Hydrogel With Tunable Fluorescence and Reconfigurable Architecture
,”
Adv. Mater.
,
33
(
29
), p.
2102023
.
21.
Qiao
,
L.
,
Liu
,
C.
,
Liu
,
C.
,
Zong
,
L.
,
Gu
,
H.
,
Wang
,
C.
, and
Jian
,
X.
,
2022
, “
Self-Healing, pH-Sensitive and Shape Memory Hydrogels Based on Acylhydrazone and Hydrogen Bonds
,”
Eur. Polym. J.
,
162
, p.
110838
.
22.
Chen
,
Y.
,
Zhang
,
H.
,
Chen
,
J.
,
Kang
,
G.
, and
Hu
,
Y.
,
2021
, “
Hyperelastic Model for Polyacrylamide-Gelatin Double Network Shape-Memory Hydrogels
,”
Acta Mech. Sin.
,
37
(
5
), pp.
748
756
.
23.
Lu
,
H.
,
Li
,
Z.
,
Wang
,
X.
,
Xing
,
Z.
, and
Fu
,
Y. Q.
,
2021
, “
Negatively Thermodynamic Toughening in Double Network Hydrogel Towards Cooling-Triggered Multi-Shape Memory Effect
,”
Smart Mater. Struct.
,
30
(
10
), p.
105011
.
24.
Tobushi
,
H.
,
Hashimoto
,
T.
,
Hayashi
,
S.
, and
Yamada
,
E.
,
1997
, “
Thermomechanical Constitutive Modeling in Shape Memory Polymer of Polyurethane Series
,”
J. Intell. Mater. Syst. Struct.
,
8
(
8
), pp.
711
718
.
25.
Li
,
Y.
,
Hu
,
J.
, and
Liu
,
Z.
,
2017
, “
A Constitutive Model of Shape Memory Polymers Based on Glass Transition and the Concept of Frozen Strain Release Rate
,”
Int. J. Solids Struct.
,
124
, pp.
252
263
.
26.
Huang
,
R.
,
Zheng
,
S.
,
Liu
,
Z.
, and
Ng
,
T. Y.
,
2020
, “
Recent Advances of the Constitutive Models of Smart Materials—Hydrogels and Shape Memory Polymers
,”
Int. J. Appl. Mech.
,
12
(
02
), p.
2050014
.
27.
Li
,
Y.
,
He
,
Y.
, and
Liu
,
Z.
,
2017
, “
A Viscoelastic Constitutive Model for Shape Memory Polymers Based on Multiplicative Decompositions of the Deformation Gradient
,”
Int. J. Plast.
,
91
, pp.
300
317
.
28.
Li
,
Y.
, and
Liu
,
Z.
,
2018
, “
A Novel Constitutive Model of Shape Memory Polymers Combining Phase Transition and Viscoelasticity
,”
Polymer
,
143
, pp.
298
308
.
29.
Xue
,
Y.
,
Lei
,
J.
, and
Liu
,
Z.
,
2022
, “
A Thermodynamic Constitutive Model for Shape Memory Polymers Based on Phase Transition
,”
Polymer
,
243
, p.
124623
.
30.
Liu
,
Y.
,
Gall
,
K.
,
Dunn
,
M. L.
,
Greenberg
,
A. R.
, and
Diani
,
J.
,
2006
, “
Thermomechanics of Shape Memory Polymers: Uniaxial Experiments and Constitutive Modeling
,”
Int. J. Plast.
,
22
(
2
), pp.
279
313
.
31.
Hong
,
W.
,
Liu
,
Z.
, and
Suo
,
Z.
,
2009
, “
Inhomogeneous Swelling of a Gel in Equilibrium With a Solvent and Mechanical Load
,”
Int. J. Solids Struct.
,
46
(
17
), pp.
3282
3289
.
32.
Ding
,
Z.
,
Toh
,
W.
,
Hu
,
J.
,
Liu
,
Z.
, and
Ng
,
T. Y.
,
2016
, “
A Simplified Coupled Thermo-Mechanical Model for the Transient Analysis of Temperature-Sensitive Hydrogels
,”
Mech. Mater.
,
97
, pp.
212
227
.
33.
Miehe
,
C.
,
1996
, “
Numerical Computation of Algorithmic (Consistent) Tangent Moduli in Large-Strain Computational Inelasticity
,”
Comput. Methods Appl. Mech. Eng.
,
134
(
3–4
), pp.
223
240
.
34.
Sun
,
W.
,
Chaikof
,
E. L.
, and
Levenston
,
M. E.
,
2008
, “
Numerical Approximation of Tangent Moduli for Finite Element Implementations of Nonlinear Hyperelastic Material Models
,”
ASME J. Biomech. Eng.
,
130
(
6
), p.
061003
.
35.
Chester
,
S. A.
,
Di Leo
,
C. V.
, and
Anand
,
L.
,
2015
, “
A Finite Element Implementation of a Coupled Diffusion-Deformation Theory for Elastomeric Gels
,”
Int. J. Solids Struct.
,
52
, pp.
1
18
.
36.
Narayan
,
S.
, and
Anand
,
L.
,
2022
, “
A Coupled Electro-Chemo-Mechanical Theory for Polyelectrolyte Gels With Application to Modeling Their Chemical Stimuli-Driven Swelling Response
,”
J. Mech. Phys. Solids
,
159
, p.
104734
.
37.
Kumbhar
,
P.
,
Swaminathan
,
N.
, and
Annabattula
,
R. K.
,
2022
, “
Mesoscale Analysis of Li-Ion Battery Microstructure Using Sequential Coupling of Discrete Element and Finite Element Method
,”
Int. J. Energy Res.
,
46
(
9
), pp.
12003
12025
.
38.
Qi
,
H. J.
,
Nguyen
,
T. D.
,
Castro
,
F.
,
Yakacki
,
C. M.
, and
Shandas
,
R.
,
2008
, “
Finite Deformation Thermo-Mechanical Behavior of Thermally Induced Shape Memory Polymers
,”
J. Mech. Phys. Solids
,
56
(
5
), pp.
1730
1751
.
39.
Hong
,
W.
,
Zhao
,
X.
,
Zhou
,
J.
, and
Suo
,
Z.
,
2008
, “
A Theory of Coupled Diffusion and Large Deformation in Polymeric Gels
,”
J. Mech. Phys. Solids
,
56
(
5
), pp.
1779
1793
.
40.
Ding
,
Z.
,
Liu
,
Z.
,
Hu
,
J.
,
Swaddiwudhipong
,
S.
, and
Yang
,
Z.
,
2013
, “
Inhomogeneous Large Deformation Study of Temperature-Sensitive Hydrogel
,”
Int. J. Solids Struct.
,
50
(
16–17
), pp.
2610
2619
.
41.
Xu
,
S.
, and
Liu
,
Z.
,
2019
, “
A Nonequilibrium Thermodynamics Approach to the Transient Properties of Hydrogels
,”
J. Mech. Phys. Solids
,
127
, pp.
94
110
.
42.
Li
,
Z.
,
Liu
,
Z.
,
Ng
,
T. Y.
, and
Sharma
,
P.
,
2020
, “
The Effect of Water Content on the Elastic Modulus and Fracture Energy of Hydrogel
,”
Extreme Mech. Lett.
,
35
, p.
100617
.
You do not currently have access to this content.