Abstract

Researchers have been studying the pain sensation extensively in the past few decades. Quantitative simulation and theoretical modeling of pain sensation based on experimental results are necessary for pain research. Many theories have been proposed to explain the mechanism of pain from molecular, cellular, and neuron network perspectives. But some phenomena in pain sensation are not fully understood, including wind-up and ramp-off. This paper focused on the theoretical model of wind-up and ramp-off phenomena in the pain sensation. With the addition of the transduction model, the generation mechanism of wind-up and ramp-off is better explained. The simulations were carried out to analyze the skin pain sensation under the mechanical stimulus, consisting of four different parts: the mechanical model of skin, transduction, transmission, modulation, and perception. The stress distribution on the skin was obtained based on the elastic theory. And the modified Hodgkin and Huxley model and the mathematical model of gate control theory were utilized to analyze the process of transduction, modulation, and perception, respectively. The numerical experiments demonstrated the wind-up occurs with a frequent stimulus of 1 Hz and 2 Hz, and ramp-off appears with the withdrawal of constant mechanical stimulus, which could contribute to the understanding of the pain sensation mechanism.

References

1.
Raja
,
S. N.
,
Carr
,
D. B.
,
Cohen
,
M.
,
Finnerup
,
N. B.
,
Flor
,
H.
,
Gibson
,
S.
,
Keefe
,
F. J.
, et al
,
2020
, “
The Revised International Association for the Study of Pain Definition of Pain: Concepts, Challenges, and Compromises
,”
Pain
,
161
(
9
), pp.
1976
1982
.
2.
Lang
,
V. A.
,
Lundh
,
T.
, and
Ortiz-Catalan
,
M.
,
2021
, “
Mathematical and Computational Models for Pain: A Systematic Review
,”
Pain Med.
,
22
(
12
), pp.
2806
2817
.
3.
Woolf
,
C. J.
,
2010
, “
What Is This Thing Called Pain?
,”
J. Clin. Invest.
,
120
(
11
), pp.
3742
3744
.
4.
Colloca
,
L.
,
Ludman
,
T.
,
Bouhassira
,
D.
,
Baron
,
R.
,
Dickenson
,
A. H.
,
Yarnitsky
,
D.
,
Freeman
,
R.
, et al
,
2017
, “
Neuropathic Pain
,”
Nat. Rev. Dis. Primer
,
3
(
1
), p.
17002
.
5.
Murnion
,
B. P.
,
2018
, “
Neuropathic Pain: Current Definition and Review of Drug Treatment
,”
Aust. Prescr.
,
41
(
3
), pp.
60
63
.
6.
Dubin
,
A. E.
, and
Patapoutian
,
A.
,
2010
, “
Nociceptors: The Sensors of the Pain Pathway
,”
J. Clin. Invest.
,
120
(
11
), pp.
3760
3772
.
7.
Koltzenburg
,
M.
,
2000
, “
Neural Mechanisms of Cutaneous Nociceptive Pain
,”
Clin. J. Pain
,
16
(
3 Suppl
), pp.
S131
S138
.
8.
Zhu
,
Y. J.
, and
Lu
,
T. J.
,
2010
, “
A Multi-scale View of Skin Thermal Pain: From Nociception to Pain Sensation
,”
Philos. Trans. R. Soc. Math. Phys. Eng. Sci.
,
368
(
1912
), pp.
521
559
.
9.
Goldscheider
,
A.
,
1894
,
Ueber den Schmerz in Physiologischer und Klinischer Hinsicht: Nach Einem Vortrage in der Berliner Militärärztlichen Gesellschaft
,
Verlag von August Hirschwald
,
Berlin
.
10.
Melzack
,
R.
, and
Wall
,
P. D.
,
1965
, “
Pain Mechanisms: A New Theory
,”
Science
,
150
(
3699
), pp.
971
979
.
11.
Britton
,
N. F.
, and
Skevington
,
S. M.
,
1989
, “
A Mathematical Model of the Gate Control Theory of Pain
,”
J. Theor. Biol.
,
137
(
1
), pp.
91
105
.
12.
Britton
,
N. F.
,
Chaplain
,
M. A. J.
, and
Skevtngtonj
,
S. M.
,
1996
, “
The Role of N-Methyl-D-Aspartate (NMDA) Receptors in Wind-Up: A Mathematical Model
,”
IMA J. Math. Appl. Med. Biol.
,
13
(
3
), pp.
193
205
.
13.
Britton
,
N.
,
Skevington
,
S.
, and
Chaplain
,
M.
,
1995
, “
Mathematical Modelling of Acute Pain
,”
J. Biol. Syst.
,
3
(
04
), pp.
1119
1124
.
14.
Britton
,
N. F.
, and
Skevington
,
S. M.
,
1996
, “
On the Mathematical Modelling of Pain
,”
Neurochem. Res.
,
21
(
9
), pp.
1133
1140
.
15.
Prince
,
K.
,
Campbell
,
J.
,
Picton
,
P.
, and
Turner
,
S.
,
2005
, “
A Computational Model of Acute Pain
,”
Int. J. Simul. Syst. Sci. Technol.
,
6
(
9
), p.
11
.
16.
Xu
,
F.
,
Wen
,
T.
,
Lu
,
T. J.
, and
Seffen
,
K. A.
,
2008
, “
Modeling of Nociceptor Transduction in Skin Thermal Pain Sensation
,”
ASME J. Biomech. Eng.
,
130
(
4
), p.
041013
.
17.
Xu
,
F.
,
Lu
,
T. J.
, and
Seffen
,
K. A.
,
2008
, “
Skin Thermal Pain Modeling—A Holistic Method
,”
J. Therm. Biol.
,
33
(
4
), pp.
223
237
.
18.
Xu
,
F.
,
Wen
,
T.
,
Seffen
,
K.
, and
Lu
,
T.
,
2008
, “
Modeling of Skin Thermal Pain: A Preliminary Study
,”
Appl. Math. Comput.
,
205
(
1
), pp.
37
46
.
19.
Xu
,
F.
,
Lu
,
T. J.
, and
Seffen
,
K. A.
,
2008
, “
Biothermomechanics of Skin Tissues
,”
J. Mech. Phys. Solids
,
56
(
5
), pp.
1852
1884
.
20.
Yin
,
Y.
,
Li
,
M.
,
Li
,
Y.
, and
Song
,
J.
,
2020
, “
Skin Pain Sensation of Epidermal Electronic Device/Skin System Considering Non-Fourier Heat Conduction
,”
J. Mech. Phys. Solids
,
138
, p.
103927
.
21.
Hodgkin
,
A. L.
, and
Huxley
,
A. F.
,
1952
, “
A Quantitative Description of Membrane Current and Its Application to Conduction and Excitation in Nerve
,”
J. Physiol.
,
117
(
4
), pp.
500
544
.
22.
Hodgkin
,
A. L.
, and
Huxley
,
A. F.
,
1952
, “
Currents Carried by Sodium and Potassium Ions Through the Membrane of the Giant Axon of Loligo
,”
J. Physiol.
,
116
(
4
), pp.
449
472
.
23.
Haeri
,
M.
,
Asemani
,
D.
, and
Gharibzadeh
,
S.
,
2003
, “
Modeling of Pain Using Artificial Neural Networks
,”
J. Theor. Biol.
,
220
(
3
), pp.
277
284
.
24.
Minamitani
,
H.
, and
Hagita
,
N.
,
1981
, “
A Neural Network Model of Pain Mechanisms: Computer Simulation of the Central Neural Activities Essential for the Pain and Touch Sensations
,”
IEEE Trans. Syst. Man Cybern.
,
11
(
7
), pp.
481
493
.
25.
Herrero
,
J.
,
Laird
,
J. M. A
, and
Lopez-Garcia
,
J. A.
,
2000
, “
Wind-Up of Spinal Cord Neurones and Pain Sensation: Much Ado About Something?
,”
Prog. Neurobiol.
,
61
(
2
), pp.
169
203
.
26.
Magerl
,
W.
,
Wilk
,
S. H.
, and
Treede
,
R.-D.
,
1998
, “
Secondary Hyperalgesia and Perceptual Wind-Up Following Intradermal Injection of Capsaicin in Humans
,”
Pain
,
74
(
2–3
), pp.
257
268
.
27.
Staud
,
R.
,
Vierck
,
C. J.
,
Cannon
,
R. L.
,
Mauderli
,
A. P.
, and
Price
,
D. D.
,
2001
, “
Abnormal Sensitization and Temporal Summation of Second Pain (Wind-Up) in Patients With Bromyalgia Syndrome
,”
Pain
,
91
(
1–2
), pp.
165
175
.
28.
Humphries
,
S. A.
,
Johnson
,
M. H.
, and
Long
,
N. R.
,
1996
, “
An Investigation of the Gate Control Theory of Pain Using the Experimental Pain Stimulus of Potassium Iontophoresis
,”
Percept. Psychophys.
,
58
(
5
), pp.
693
703
.
29.
Brooks
,
J.
, and
Tracey
,
I.
,
2005
, “
REVIEW: From Nociception to Pain Perception: Imaging the Spinal and Supraspinal Pathways: Imaging the Spinal and Supraspinal Pathways, J. Brooks and I. Tracey
,”
J. Anat.
,
207
(
1
), pp.
19
33
.
30.
Julius
,
D.
, and
Basbaum
,
A. I.
,
2001
, “
Molecular Mechanisms of Nociception
,”
Nature
,
413
(
6852
), pp.
203
210
.
31.
Vexler
,
A.
,
Polyansky
,
I.
, and
Gorodetsky
,
R.
,
1999
, “
Evaluation of Skin Viscoelasticity and Anisotropy by Measurement of Speed of Shear Wave Propagation With Viscoelasticity Skin Analyzer1
,”
J. Invest. Dermatol.
,
113
(
5
), pp.
732
739
.
32.
Gahagnon
,
S.
,
Mofid
,
Y.
,
Josse
,
G.
, and
Ossant
,
F.
,
2012
, “
Skin Anisotropy in Vivo and Initial Natural Stress Effect: A Quantitative Study Using High-Frequency Static Elastography
,”
J. Biomech.
,
45
(
16
), pp.
2860
2865
.
33.
Joodaki
,
H.
, and
Panzer
,
M. B.
,
2018
, “
Skin Mechanical Properties and Modeling: A Review
,”
Proc. Inst. Mech. Eng. H
,
232
(
4
), pp.
323
343
.
34.
Thieulin
,
C.
,
Pailler-Mattei
,
C.
,
Abdouni
,
A.
,
Djaghloul
,
M.
, and
Zahouani
,
H.
,
2020
, “
Mechanical and Topographical Anisotropy for Human Skin: Ageing Effect
,”
J. Mech. Behav. Biomed. Mater.
,
103
, p.
103551
.
35.
Rosicka
,
K.
,
Hill
,
M.
, and
Wdowski
,
M. M.
,
2021
, “
Skin Anisotropy: Finding the Optimal Incision Line for Volar Forearm in Males and Females
,”
J. Mech. Behav. Biomed. Mater.
,
124
, p.
104805
.
36.
Birznieks
,
I.
,
Jenmalm
,
P.
,
Goodwin
,
A. W.
, and
Johansson
,
R. S.
,
2001
, “
Encoding of Direction of Fingertip Forces by Human Tactile Afferents
,”
J. Neurosci.
,
21
(
20
), pp.
8222
8237
.
37.
Moy
,
G.
,
Singh
,
U.
,
Tan
,
E.
, and
Fearing
,
R. S.
,
2000
, “
Human Psychophysics for Teletaction System Design
,”
IEEE Trans. Haptics
,
1
(
3
), p.
20
. http://hdl.handle.net/1773/34881
38.
Timoshenko
,
S.
, and
Goodier
,
J. N.
,
1970
,
The Theory of Elasticity
, 3rd ed.,
McGraw-Hill
,
New York
.
39.
Li
,
J.
, and
Chou
,
T.-W.
,
1997
, “
Elastic Field of a Thin-Film/Substrate System Under an Axisymmetric Loading
,”
Int. J. Solids Struct.
,
34
(
35–36
), pp.
4463
4478
.
40.
Yang
,
F.
,
2003
, “
Thickness Effect on the Indentation of an Elastic Layer
,”
Mater. Sci. Eng. A
,
358
(
1–2
), pp.
226
232
.
41.
Connor
,
J. A.
,
Walter
,
D.
, and
McKown
,
R.
,
1977
, “
Neural Repetitive Firing: Modifications of the Hodgkin-Huxley Axon Suggested by Experimental Results From Crustacean Axons
,”
Biophys. J.
,
18
(
1
), pp.
81
102
.
42.
Cain
,
D. M.
,
Khasabov
,
S. G.
, and
Simone
,
D. A.
,
2001
, “
Response Properties of Mechanoreceptors and Nociceptors in Mouse Glabrous Skin: An In Vivo Study
,”
J. Neurophysiol.
,
85
(
4
), pp.
1561
1574
.
43.
Slugg
,
R.
,
Meyer
,
R.
, and
Campbell
,
J.
,
2000
, “
Response of Cutaneous A-and C-Fiber Nociceptors in the Monkey to Controlled-Force Stimuli
,”
J. Neurophysiol.
,
83
(
4
), pp.
2179
2191
.
44.
Slugg
,
R. M.
,
Campbell
,
J. N.
, and
Meyer
,
R. A.
,
2004
, “
The Population Response of A-and C-Fiber Nociceptors in Monkey Encodes High-Intensity Mechanical Stimuli
,”
J. Neurosci.
,
24
(
19
), pp.
4649
4656
.
45.
Van Hees
,
J.
, and
Gybels
,
J.
,
1981
, “
C Nociceptor Activity in Human Nerve During Painful and Non Painful Skin Stimulation
,”
J. Neurol. Neurosurg. Psychiatry
,
44
(
7
), pp.
600
607
.
You do not currently have access to this content.