Abstract

In this paper, an innovative interface fracture criterion is proposed based on the concept of configurational forces in material space. In this criterion, the crack-tip configurational forces as the driving force are introduced to describe the interface crack evolution under mixed-mode loading conditions. And it assumes that the interface crack propagates due to the competition of resultant configurational forces with interface fracture toughness. The analytical expression of the configurational forces is obtained by differentiating the elastic strain energy density and conservative integral for interface cracks. And the relation of interface crack-tip configurational forces with classical complex intensity factors is obtained through strict mathematical deduction. The interface crack-tip configurational forces are evaluated for a classic interface crack problem covering a wide range of bimaterial oscillation indexes. The configurational forces-based interface fracture criterion is validated through series interface fracture experiments. The proposed criterion may provide a novel framework for the analysis of interface fracture under complex loading conditions.

References

1.
Uematsu
,
Y.
,
Kakiuchi
,
T.
,
Ogawa
,
D.
, and
Hashiba
,
K.
,
2020
, “
Fatigue Crack Propagation Near the Interface Between Al and Steel in Dissimilar Al/Steel Friction Stir Welds
,”
Int. J. Fatigue
,
138
, p.
105706
.
2.
Yang
,
C.
,
Hu
,
C.
,
Xiang
,
C.
,
Nie
,
H.
,
Gu
,
X.
,
Xie
,
L.
,
He
,
J.
,
Zhang
,
W.
,
Yu
,
Z.
, and
Luo
,
J.
,
2021
, “
Interfacial Superstructures and Chemical Bonding Transitions at Metal-Ceramic Interfaces
,”
Sci. Adv.
,
7
(
11
), p.
eabf6667
.
3.
Burov
,
A.
, and
Fedorova
,
E.
,
2021
, “
Modeling of Interface Failure in a Thermal Barrier Coating System on Ni-Based Superalloys
,”
Eng. Failure Anal.
,
123
, p.
105320
.
4.
Audd
,
C.
,
Davidson
,
B. D.
,
Ratcliffe
,
J. G.
, and
Czabaj
,
M. W.
,
2019
, “
Reexamination of the Edge Crack Torsion Test for Determining the Mode III Delamination Toughness of Laminated Composites
,”
Eng. Fract. Mech.
,
215
, pp.
138
150
.
5.
Williams
,
M.
,
1959
, “
The Stresses Around a Fault or a Crack in Dissimilar Media
,”
Bull. Seismol. Soc. Am.
,
49
(
2
), pp.
199
204
.
6.
England
,
A.
,
1965
, “
A Crack Between Dissimilar Media
,”
ASME J. Appl. Mech.
,
32
(
2
), pp.
400
402
.
7.
Comninou
,
M.
,
1977
, “
Interface Crack With Friction in the Contact Zone
,”
ASME J. Appl. Mech.
,
44
(
4
), pp.
780
781
.
8.
Rice
,
J.
, and
Sih
,
G. C.
,
1965
, “
Plane Problems of Cracks in Dissimilar Media
,”
ASME J. Appl. Mech.
,
32
(
2
), pp.
418
423
.
9.
Rice
,
J. R.
,
1988
, “
Elastic Fracture Mechanics Concepts for Interfacial Cracks
,”
ASME J. Appl. Mech.
,
55
(
1
), pp.
98
103
.
10.
Sun
,
C. T.
, and
Jih
,
C. J.
,
1987
, “
On Strain Energy Release Rates for Interfacial Cracks in Bi-material Media
,”
Eng. Fract. Mech.
,
28
(
1
), pp.
13
20
.
11.
Xu
,
J.-Q.
, and
Mutoh
,
Y.
,
1998
, “
“A New Definition of Stress Intensity Factors for an Interface Crack With Physical Meaning
,”
J. Soc. Mater. Sci., Jpn.
,
47
(
8
), pp.
804
807
.
12.
Ji
,
X.
,
2016
, “
SIF-Based Fracture Criterion for Interface Cracks
,”
Acta Mech. Sin.
,
32
(
3
), pp.
491
496
.
13.
Zhao
,
J.-M.
,
Wang
,
H.-L.
, and
Liu
,
B.
,
2017
, “
Two Objective and Independent Fracture Parameters for Interface Cracks
,”
ASME J. Appl. Mech.
,
84
(
4
).
14.
Wang
,
J. S.
, and
Suo
,
Z.
,
1990
, “
Experimental Determination of Interfacial Toughness Curves Using Brazil-Nut-Sandwiches
,”
Acta Metall. Mater.
,
38
(
7
), pp.
1279
1290
.
15.
Liechti
,
K.
, and
Chai
,
Y.
,
1992
, “
Asymmetric Shielding in Interfacial Fracture Under In-Plane Shear
,”
ASME J. Appl. Mech.
,
59
(
2
), pp.
295
304
.
16.
Hutchinson
,
J. W.
, and
Suo
,
Z.
,
1991
, “Mixed Mode Cracking in Layered Materials,”
Advances in Applied Mechanics
,
J. W.
Hutchinson
, and
T. Y.
Wu
, ed.,
Elsevier
,
New York
, pp.
63
191
.
17.
Banks-Sills
,
L.
,
Travitzky
,
N.
, and
Ashkenazi
,
D.
,
2000
, “Interface Fracture Properties of a Bimaterial Ceramic Composite,”
Mech. Mater.
,
32
(
12
), pp.
711
722
.
18.
Banks-Sills
,
L.
,
2015
, “
Interface Fracture Mechanics: Theory and Experiment
,”
Int. J. Fract.
,
191
(
1
), pp.
131
146
.
19.
Eshelby
,
J.
,
1951
, “
The Force on an Elastic Singularity
,”
Philos. Trans. R. Soc., B
,
244
(
877
), pp.
87
112
.
20.
Eshelby
,
J.
,
1970
, “The Energy Momentum Tensor in Continuum Mechanics,”
Inelastic Behavior of Solids
,
M. F.
Kanninen
, ed.,
McGraw-Hill
,
New York
, pp.
79
114
.
21.
Eshelby
,
J.
,
1956
, “
The Continuum Theory of Lattice Defects
,”
Solid State Phys.
,
3
(
C
), pp.
79
144
.
22.
Budiansky
,
B.
, and
Rice
,
J.
,
1973
, “
Conservation Laws and Energy-Release Rates
,”
ASME J. Appl. Mech.
,
40
(
1
), pp.
201
203
.
23.
Gurtin
,
M.
,
2000
, “
On the Plasticity of Single Crystals: Free Energy, Microforces, Plastic-Strain Gradients
,”
J. Mech. Phys. Solids
,
48
(
5
), pp.
989
1036
.
24.
Li
,
Q.
, and
Chen
,
Y.
,
2008
, “
Surface Effect and Size Dependence on the Energy Release Due to a Nanosized Hole Expansion in Plane Elastic Materials
,”
ASME J. Appl. Mech.
,
75
(
6
), p.
061008
.
25.
Li
,
Q.
, and
Lv
,
J.
,
2017
, “
Invariant Integrals of Crack Interaction With an Inhomogeneity
,”
Eng. Fract. Mech.
,
171
, pp.
76
84
.
26.
Liu
,
R.
,
Hou
,
J.
, and
Li
,
Q.
,
2020
, “
Material Configurational Forces Applied to Mixed-Mode Fatigue Crack Propagation and Life Prediction in Elastic-Plastic Material
,”
Int. J. Fatigue
,
134
, p.
105467
.
27.
Müller
,
R.
,
Kolling
,
S.
, and
Gross
,
D.
,
2002
, “
On Configurational Forces in the Context of the Finite Element Method
,”
Int. J. Numer. Methods Eng.
,
53
(
7
), pp.
1557
1574
.
28.
Muskhelishvili
,
N.
,
1977
, “Fundamental Equations Plane Theory of Elasticity Torsion and Bending,”
Some Basic Problems of the Mathematical Theory of Elasticity
,
Noordhoff International Publishing
,
Leyden, The Netherlands
.
29.
Chou
,
S. I.
,
1990
, “
Note on the Path-Independent Integral for Bi-material Bodies
,”
Int. J. Fract.
,
45
(
4
), pp.
R49
R53
.
You do not currently have access to this content.