Abstract

In this article, we consider a special class of collision problems that are frequently encountered in the field of robotics. Such problems can be described as a kinematic chain with one of its ends striking an external surface, while the remaining ends resting on other surfaces. This type of problem involves complementarity relationships between the normal velocities and impulses at the contacting ends. We present a solution method that takes into account the complementarity conditions at the contacting ends. In addition, we study the critical configurations of particle and rigid-body chains where the impulse wave generated by impact gets blocked before it reaches a contacting end.

References

1.
Kane
,
T. R.
, and
Levinson
,
D. A.
,
1985
,
Dynamics, Theory and Applications
,
McGraw Hill
,
New York, NY
.
2.
Keller
,
J.
,
1986
, “
Impact With Friction
,”
ASME J. Appl. Mech.
,
53
(
1
), pp.
1
5
. 10.1115/1.3171712
3.
Brach
,
R. M.
,
1989
, “
Rigid Body Collisions
,”
ASME J. Appl. Mech.
,
56
(
1
), pp.
133
138
. 10.1115/1.3176033
4.
Stronge
,
W. J.
,
2015
, “
Energetically Consistent Calculations for Oblique Impact in Unbalanced Systems With Friction
,”
ASME J. Appl. Mech.
,
82
(
8
), pp.
1
12
. 10.1115/1.4030459
5.
Wang
,
Y.
, and
Mason
,
M. T.
,
09, 1992
, “
Two-Dimensional Rigid-Body Collisions With Friction
,”
ASME J. Appl. Mech.
,
59
(
3
), pp.
635
642
. 10.1115/1.2893771
6.
Brogliato
,
B.
,
2016
,
Nonsmooth Mechanics: Models, Dynamics and Control
,
Springer
,
New York
.
7.
Stronge
,
W. J.
,
2018
,
Impact Mechanics
,
Cambridge University Press
,
Cambridge, UK
.
8.
Gharib
,
M.
,
Celik
,
A.
, and
Hurmuzlu
,
Y.
,
2011
, “
Shock Absorption Using Linear Particle Chains With Multiple Impacts
,”
ASME J. Appl. Mech.
,
78
(
3
), p.
031005
. 10.1115/1.4003349
9.
Yilmaz
,
C.
,
Gharib
,
M.
, and
Hurmuzlu
,
Y.
,
2009
, “
Solving Frictionless Rocking Block Problem With Multiple Impacts
,”
Proc. Math. Phys. Eng. Sci.
,
465
(
2111
), pp.
3323
3339
. 10.1098/rspa.2009.0273
10.
Hurmuzlu
,
Y.
,
1998
, “
An Energy-Based Coefficient of Restitution for Planar Impacts of Slender Bars With Massive External Surfaces
,”
ASME J. Appl. Mech.
,
65
(
4
), pp.
952
962
. 10.1115/1.2791939
11.
Natsiavas
,
S.
,
2019
, “
Analytical Modeling of Discrete Mechanical Systems Involving Contact, Impact, and Friction
,”
ASME Appl. Mech. Rev.
,
71
(
5
), p.
050802
. 10.1115/1.4044549
12.
Moreau
,
J. J.
,
1966
, “
Quadratic Programming in Mechanics: Dynamics of One-Sided Constraints
,”
SIAM J. Contr.
,
4
(
1
), pp.
153
158
. 10.1137/0304014
13.
Moreau
,
J. J.
,
1988
, “Unilateral Contact and Dry Friction in Finite Freedom Dynamics,”
Nonsmooth Mechanics and Applications, CISM Courses and Lectures
, Vol.
302
,
Panagiotopoulos
,
P.
, and
Moreau
,
J.
, eds.,
Springer Verlag, International Center for Mechanical Sciences
,
Udine, Italy
, pp.
1
82
.
14.
Moreau
,
J. J.
,
1994
, “
Some Numerical Methods in Multibody Dynamics: Application to Granular Materials
,”
Eur. J. Mech. A/Solids
,
13
(
4
), pp.
93
114
.
15.
Glocker
,
C.
, and
Pfeiffer
,
F.
,
1992
, “
Dynamical Systems With Unilateral Contacts
,”
Nonlinear Dyn.
,
3
(
4
), pp.
245
259
. 10.1007/BF00045484
16.
Förg
,
M.
,
Pfeiffer
,
F.
, and
Ulbrich
,
H.
,
2005
, “
Simulation of Unilateral Constrained Systems With Many Bodies
,”
Multibody Syst. Dyn.
,
14
(
2
), pp.
137
154
. 10.1007/s11044-005-0725-x
17.
Ballard
,
P.
,
2000
, “
The Dynamics of Discrete Mechanical Systems With Perfect Unilateral Constraints
,”
Arch. Ration. Mech. Anal.
,
154
(
3
), pp.
199
274
. 10.1007/s002050000105
18.
Chatterjee
,
A.
,
1999
, “
On the Realism of Complementarity Conditions in Rigid Body Collisions
,”
Nonlinear Dyn.
,
20
(
2
), pp.
159
168
. 10.1023/A:1008397905242
19.
Schindler
,
T.
,
Nguyen
,
B.
, and
Trinkle
,
J.
,
2011
, “
Understanding the Difference Between Prox and Complementarity Formulations for Simulation of Systems With Contact
,” 2011
IEEE/RSJ International Conference on Intelligent Robots and Systems
,
San Francisco, CA
, pp.
1433
1438
.
20.
Pereira
,
M. S.
, and
Nikravesh
,
P.
,
1996
, “
Impact Dynamics of Multibody Systems With Frictional Contact Using Joint Coordinates and Canonical Equations of Motion
,”
Nonlinear Dyn.
,
9
(
1–2
), pp.
53
71
. 10.1007/BF01833293
21.
Ahmed
,
S.
,
Lankarani
,
H.
, and
Pereira
,
M.
,
1999
, “
Frictional Impact Analysis in Open-Loop Multibody Mechanical Systems
,”
ASME J. Mech. Des.
,
121
(
1
), pp.
119
–127. 10.1115/1.2829412
22.
Lankarani
,
H. M.
,
2000
, “
A Poisson-Based Formulation for Frictional Impact Analysis of Multibody Mechanical Systems With Open or Closed Kinematic Chains
,”
ASME J. Mech. Des.
,
122
(
4
), pp.
489
497
. 10.1115/1.1319160
23.
Pagilla
,
P. R.
, and
Yu
,
B.
,
2004
, “
An Experimental Study of Planar Impact of a Robot Manipulator
,”
IEEE/ASME Trans. Mech.
,
9
(
1
), pp.
123
128
. 10.1109/TMECH.2004.823888
24.
Marghitu
,
D. B.
, and
Cojocaru
,
D.
,
2014
, “
Simultaneous Impact of a Two-Link Chain
,”
Nonlinear Dyn.
,
77
(
1-2
), pp.
17
29
. 10.1007/s11071-014-1269-5
25.
Brogliato
,
B.
,
Zhang
,
H.
, and
Liu
,
C.
,
2012
, “
Analysis of a Generalized Kinematic Impact Law for Multibody-multicontact Systems, With Application to the Planar Rocking Block and Chains of Balls
,”
Multi. Syst. Dyn.
,
27
(
3
), pp.
351
382
. 10.1007/s11044-012-9301-3
26.
Alluhydan
,
K.
,
Razzaghi
,
P.
, and
Hurmuzlu
,
Y.
,
2019
, “
On Planar Impacts of Cylinders and Balls
,”
ASME J. Appl. Mech.
,
86
(
7
), p.
071009
. 10.1115/1.4043143
27.
Razzaghi
,
P.
,
Alluhydan
,
K.
, and
Hurmuzlu
,
Y.
,
2019
, “
Planar Impacts in Hybrid Chains of Cylinders and Balls
,”
ASME J. Appl. Mech.
,
86
(
12
), p.
124501
. 10.1115/1.4044386
28.
Chatterjee
,
A.
,
Ghaednia
,
H.
,
Bowling
,
A.
, and
Brake
,
M.
,
2020
, “
Estimation of Impact Forces During Multi-Point Collisions Involving Small Deformations
,”
Multi. Syst. Dyn.
, pp.
1
46
.http://dx.doi.org/10.1007/s11044-020-09743-z
29.
Ceanga
,
V.
, and
Hurmuzlu
,
Y.
,
2001
, “
A New Look at an Old Problem: Newton’s Cradle
,”
ASME J. Appl. Mech.
,
68
(
4
), pp.
575
583
. 10.1115/1.1344902
30.
Liu
,
C.
,
Zhao
,
Z.
, and
Brogliato
,
B.
,
2008
, “
Frictionless Multiple Impacts in Multibody Systems. I. Theoretical Framework
,” Proc. Math. Phys. Eng. Sci.,
464
(
2100
), pp.
3193
3211
.
31.
Hurmuzlu
,
Y.
, and
Marghitu
,
D. B.
,
1994
, “
Rigid Body Collisions of Planar Kinematic Chains With Multiple Contact Points
,”
Int. J. Rob. Res.
,
13
(
1
), pp.
82
92
. 10.1177/027836499401300106
32.
Marghitu
,
D. B.
, and
Hurmuzlu
,
Y.
,
1995
, “
Three-Dimensional Rigid-Body Collisions With Multiple Contact Points
,”
ASME J. Appl. Mech.
,
62
(
3
), pp.
725
732
. 10.1115/1.2897006
33.
Hurmuzlu
,
Y.
, and
Moskowitz
,
G.
,
1986
, “
The Role of Impact in the Stability of Bipedal Locomotion
,”
Dyn. Stability Syst.
,
1
(
3
), pp.
217
234
. 10.1080/02681118608806015
34.
Hurmuzlu
,
Y.
, and
Moskowitz
,
G. G. D.
,
1987
, “
Bipedal Locomotion Stabilized by Impact and Switching: I. Two-and Three-Dimensional, Three-Element Models
,”
Dyn. Stability Syst.
,
2
(
2
), pp.
73
96
. 10.1080/02681118708806029
35.
Hurmuzlu
,
Y.
, and
Moskowitz
,
G.
,
1987
, “
Bipedal Locomotion Stabilized by Impact and Switching: II. Structural Stability Analysis of a Four-Element Bipedal Locomotion Model
,”
Dyn. Stability Syst.
,
2
(
2
), pp.
97
112
. 10.1080/02681118708806030
36.
Hurmuzlu
,
Y.
, and
Chang
,
T.-H.
,
1992
, “
Rigid Body Collisions of a Special Class of Planar Kinematic Chains
,”
IEEE Trans. Syst., Man Cybern.
,
22
(
5
), pp.
964
971
. 10.1109/21.179836
You do not currently have access to this content.