Abstract

Polydimethylsiloxane (PDMS) is a good choice for the substrate and encapsulation of clinical flexible electronics, since it possesses some distinguished characteristics such as high elasticity, excellent optical characteristic, good biocompatibility, and stability. In the present study, the emulsion polymerization technique was used once more to fabricate porous PDMS, which is expected to assure the sweat penetration through the flexible electronics, and therefore to reduce the irritation to the skin due to the flexible electronics. To assess the mechanical performance of flexible electronics with moisture, the saturated moisture concentration, coefficient of moisture expansion, and elastic modulus of porous PDMS for different relative wetness fraction were measured in experiment. Meanwhile, an asymptotic homogenization method (AHM) was adopted to predict these parameters theoretically. Results indicate that the saturated moisture concentration is linear to the porosity, while the coefficient of moisture expansion is independent of the porosity, both of which are well verified by the experimental data. The fitted formula on the elastic modulus for different porosities suggested in our previous study was developed to take account of the relative wetness fraction based on the experimental data. These three parameters were finally applied in calculating the stretchability of a flexible electronic with serpentine interconnects in moist environment. Numerical stimulation reveals that the stretchability increases with the porosity and relative wetness fraction of the substrate and encapsulation. The present work is hoped to pave the way for flexible electronics in clinical applications.

References

1.
Gao
,
W.
,
Ota
,
H.
,
Kiriya
,
D.
,
Takei
,
K.
, and
Javey
,
A.
,
2019
, “
Flexible Electronics Toward Wearable Sensing
,”
Accounts Chem. Res.
,
52
(
3
), pp.
523
533
. 10.1021/acs.accounts.8b00500
2.
Wang
,
H.
,
Cheng
,
C.
,
Zhang
,
L.
,
Liu
,
H. T.
,
Guo
,
Y. L.
,
Hu
,
W. P.
,
Yu
,
G.
, and
Liu
,
Y. Q.
,
2014
, “
Inkjet Printing Short-Channel Polymer Transistors With High-Performance and Ultrahigh Photoresponsivity
,”
Adv. Mater.
,
26
(
27
), pp.
4683
4689
. 10.1002/adma.201400697
3.
Jeong
,
J. W.
,
Yeo
,
W. H.
,
Akhtar
,
A.
,
Norton
,
J. S.
,
Kwack
,
Y. J.
,
Li
,
S.
,
Jung
,
S. J.
,
Su
,
Y. W.
,
Lee
,
W.
,
Xia
,
J.
,
Cheng
,
H. Y.
,
Huang
,
Y.
,
Choi
,
W. S.
,
Bretl
,
T.
, and
Rogers
,
J. A.
,
2013
, “
Materials and Optimized Designs for Human-Machine Interfaces Via Epidermal Electronics
,”
Adv. Mater.
,
25
(
47
), pp.
6776
6776
. 10.1002/adma.201370294
4.
Kim
,
D. H.
,
Lu
,
N.
,
Ma
,
R.
,
Kim
,
Y. S.
,
Kim
,
R. H.
,
Wang
,
S. D.
,
Wu
,
J.
,
Won
,
S. M.
,
Tao
,
H.
,
Islam
,
A.
,
Yu
,
K. J.
,
Kim
,
T. I.
,
Chowdhury
,
R.
,
Ying
,
M.
,
Xu
,
L. Z.
,
Li
,
M.
,
Chung
,
H. J.
,
Keum
,
H.
,
McCormick
,
M.
,
Liu
,
P.
,
Zhang
,
Y. W.
,
Omenetto
,
F. G.
,
Huang
,
Y.
,
Coleman
,
T.
, and
Rogers
,
J. A.
,
2011
, “
Epidermal Electronics
,”
Science
,
333
(
6044
), pp.
838
843
. 10.1126/science.1206157
5.
Yan
,
C.
,
Wang
,
J.
,
Kang
,
W.
,
Cui
,
M. Q.
,
Wang
,
X.
,
Foo
,
C. Y.
,
Chee
,
K. J.
, and
Lee
,
P. S.
,
2014
, “
Highly Stretchable Piezoresistive Graphene-Nanocellulose Nanopaper for Strain Sensors
,”
Adv. Mater.
,
26
(
13
), pp.
2022
2027
. 10.1002/adma.201304742
6.
Someya
,
T.
,
Bao
,
Z.
, and
Malliaras
,
G. G.
,
2016
, “
The Rise of Plastic Bioelectronics
,”
Nature
,
540
(
7633
), pp.
379
385
. 10.1038/nature21004
7.
Harris
,
K. D.
,
Elias
,
A. L.
, and
Chung
,
H. J.
,
2015
, “
Flexible Electronics Under Strain: A Review of Mechanical Characterization and Durability Enhancement Strategies
,”
J. Mater. Sci.
,
51
(
6
), pp.
2771
2805
. 10.1007/s10853-015-9643-3
8.
Yuan
,
J. H.
,
Pharr
,
M.
,
Feng
,
X.
,
Rogers
,
J. A.
, and
Huang
,
Y.
,
2016
, “
Design of Stretchable Electronics Against Impact
,”
ASME J. Appl. Mech.
,
83
(
10
), p.
101009
. 10.1115/1.4034226
9.
Williams
,
R. L.
,
Wilson
,
D. J.
, and
Rhodes
,
N. P.
,
2004
, “
Stability of Plasma-Treated Silicone Rubber and Its Influence on the Interfacial Aspects of Blood Compatibility
,”
Biomaterials
,
25
(
19
), pp.
4659
4673
. 10.1016/j.biomaterials.2003.12.010
10.
Meng
,
X. H.
,
Liu
,
B. Y.
,
Wang
,
Y.
,
Zhang
,
T. H.
, and
Xiao
,
J. L.
,
2016
, “
Third-Order Polynomials Model for Analyzing Multilayer Hard/Soft Materials in Flexible Electronics
,”
ASME J. Appl. Mech.
,
83
(
8
), p.
081011
. 10.1115/1.4033754
11.
Jin
,
C. R.
, and
Qiao
,
Q. C.
,
2016
, “
Deformation of Pyramidal PDMS Stamps During Microcontact Printing
,”
ASME J. Appl. Mech.
,
83
(
7
), p.
071011
. 10.1115/1.4033432
12.
Gao
,
Y. Y.
,
Li
,
Y. H.
,
Li
,
R.
, and
Song
,
J. Z.
,
2017
, “
An Accurate Thermomechanical Model for Laser-Driven Microtransfer Printing
,”
ASME J. Appl. Mech.
,
84
(
6
), p.
064501
. 10.1115/1.4036257
13.
Chang
,
R.
,
Chen
,
Z.
,
Yu
,
C. J.
, and
Song
,
J. Z.
,
2019
, “
An Experimental Study on Stretchy and Tough PDMS/Fabric Composites
,”
ASME J. Appl. Mech.
,
86
(
1
), p.
011012
. 10.1115/1.4041679
14.
Nie
,
S.
,
Zhang
,
C.
, and
Song
,
J. Z.
,
2018
, “
Thermal Management of Epidermal Electronic Devices/Skin System Considering Insensible Sweating
,”
Sci. Rep.
,
8
(
1
), p.
14121
. 10.1038/s41598-018-32152-4
15.
Zhao
,
S. W.
,
Zhu
,
F.
,
Yan
,
Z. G.
,
Li
,
D. C.
,
Xiang
,
J. W.
,
Huang
,
Y.
, and
Luan
,
H. W.
,
2020
, “
A Nonlinear Mechanics Model of Zigzag Cellular Substrates for Stretchable Electronics
,”
ASME J. Appl. Mech.
,
87
(
6
), p.
061006
. 10.1115/1.4046662
16.
Wang
,
H. Y.
,
Kobayashi
,
T.
,
Saitoh
,
H.
, and
Fujii
,
N.
,
1996
, “
Porous Polydimethylsiloxane Membranes for Enzyme Immobilization
,”
J. Appl. Polym. Sci.
,
60
(
13
), pp.
2339
2346
. 10.1002/(SICI)1097-4628(19960627)60:13<2339::AID-APP5>3.0.CO;2-F
17.
Juchniewicz
,
M.
,
Stadnik
,
D.
,
Biesiada
,
K.
,
Olszyna
,
A.
,
Chudy
,
M.
,
Brzozka
,
Z.
, and
Dybko
,
A.
,
2007
, “
Porous Crosslinked PDMS-Microchannels Coatings
,”
Sens. Actuator B-Chem.
,
126
(
1
), pp.
68
72
. 10.1016/j.snb.2006.10.041
18.
Khorasani
,
M. T.
,
Mirzadeh
,
H.
, and
Kermani
,
Z.
,
2005
, “
Wettability of Porous Polydimethylsiloxane Surface: Morphology Study
,”
Appl. Surf. Sci.
,
242
(
3–4
), pp.
339
345
. 10.1016/j.apsusc.2004.08.035
19.
Liu
,
G. D.
,
Sun
,
L. J.
, and
Su
,
Y. W.
,
2020
, “
Scaling Effects in the Mechanical System of the Flexible Epidermal Electronics and the Human Skin
,”
ASME J. Appl. Mech.
,
87
(
8
), p.
081007
. 10.1115/1.4047039
20.
Wong
,
E. H.
,
Koh
,
S. W.
,
Lee
,
K. H.
, and
Rajoo
,
R.
,
2002
, “
Comprehensive Treatment of Moisture Induced Failure—Recent Advances
,”
ASME J. Electron. Packag.
,
25
(
3
), pp.
223
230
. 10.1109/TEPM.2002.804613
21.
Hu
,
J.
,
Yang
,
L. Q.
, and
Shin
,
M. W.
,
2007
, “
Mechanism and Thermal Effect of Delamination in Light-Emitting Diode Packages
,”
Microelectron. J.
,
38
(
2
), pp.
157
163
. 10.1016/j.mejo.2006.08.001
22.
Chang
,
W. J.
,
Akin
,
D.
,
Sedlak
,
M.
,
Ladisch
,
M. R.
, and
Bashir
,
R.
,
2003
, “
Poly(Dimethylsiloxane) (PDMS) and Silicon Hybrid Biochip for Bacterial Culture
,”
Biomed. Microdevices
,
5
(
4
), pp.
281
290
. 10.1023/A:1027301628547
23.
Blume
,
I.
,
Schwering
,
P. J. F.
,
Mulder
,
M. H. V.
, and
Smolders
,
C. A.
,
1991
, “
Vapour Sorption and Permeation Properties of Poly (Dimethylsiloxane) Films
,”
J. Membr. Sci.
,
61
(
1
), pp.
85
97
. 10.1016/0376-7388(91)80008-T
24.
Wong
,
E. H.
,
Rajoo
,
R.
,
Koh
,
S. W.
, and
Lim
,
T. B.
,
2000
, “
The Mechanics and Impact of Hygroscopic Swelling of Polymeric Materials in Electronic Packaging
,”
ASME J. Electron. Packag.
,
124
(
2
), pp.
122
126
. 10.1115/1.1461367
25.
Ghabezloo
,
S.
,
2010
, “
Effect of Porosity on the Thermal Expansion Coefficient: A Discussion of the Paper ‘Effects of Mineral Admixtures on the Thermal Expansion Properties of Hardened Cement Paste’ by Z.H. Shui, R. Zhang, W. Chen, D. Xuan, Constr. Build. Mater. 24(9) (2010) 1761–1767
,”
Constr. Build. Mater.
,
24
(
9
), pp.
1796
1798
. 10.1016/j.conbuildmat.2010.03.006
26.
Huang
,
C.
,
Bian
,
Z. G.
,
Fang
,
C. F.
,
Zhou
,
X. L.
, and
Song
,
J. Z.
,
2018
, “
Experimental and Theoretical Study on Mechanical Properties of Porous PDMS
,”
ASME J. Appl. Mech.
,
85
(
4
), p.
041009
. 10.1115/1.4039041
27.
Fang
,
C. F.
,
Bian
,
Z. G.
,
Pan
,
P.
, and
Song
,
X.
,
2019
, “
Experimental and Theoretical Study on Thermal Properties of Porous PDMS
,”
Mech. Adv. Mater. Struct.
,
2019
, pp.
1
7
. 10.1080/15376494.2019.1597228
28.
Park
,
S.
,
Zhang
,
H.
,
Zhang
,
X.
,
Ng
,
S. L.
, and
Lee
,
H. C.
,
2009
, “
Temperature Dependency of Coefficient of Hygroscopic Swelling of Molding Compound
,”
IEEE Proc. Electron. Compon. Technol. Conf.
,
2009
, pp.
172
179
. 10.1109/ECTC.2009.5074012
29.
Mei
,
C. C.
,
Auriault
,
J. L.
, and
Ng
,
C. O.
,
1996
, “
Some Applications of the Homogenization Theory
,”
Adv. Appl. Mech.
,
32
(
3
), pp.
277
348
. 10.1016/S0065-2156(08)70078-4
30.
Zhang
,
Y. C.
,
Shang
,
S. P.
, and
Liu
,
S. T.
,
2017
, “
A Novel Implementation Algorithm of Asymptotic Homogenization for Predicting the Effective Coefficient of Thermal Expansion of Periodic Composite Materials
,”
Acta. Mech. Sin.
,
33
(
2
), pp.
368
381
. 10.1007/s10409-016-0618-7
31.
Wong
,
E. H.
,
Chan
,
K. C.
,
Lim
,
T. B.
, and
Lam
,
T. F.
,
1999
, “
Non-Fickian Moisture Properties Characterisation and Diffusion Modeling for Electronic Packages
,”
IEEE Proc. Electron. Compon. Technol. Conf.
,
1999
, pp.
302
306
. 10.1109/ECTC.1999.776189
32.
Hirata
,
Y.
,
Takehara
,
K.
, and
Shimonosono
,
T.
,
2017
, “
Analyses of Young’s Modulus and Thermal Expansion Coefficient of Sintered Porous Alumina Compacts
,”
Ceram. Int.
,
43
(
15
), pp.
12321
12327
. 10.1016/j.ceramint.2017.06.095
33.
Feng
,
P.
,
Yuan
,
J. H.
,
Huang
,
Y.
, and
Li
,
X. Y.
,
2020
, “
Analytical Solutions for the Lateral-Torsional Buckling of Serpentine Interconnects in Stretchable Electronics
,”
ASME J. Appl. Mech.
,
87
(
8
), p.
081005
. 10.1115/1.4047003
34.
Wong
,
E. H.
,
Teo
,
Y. C.
, and
Lim
,
T. B.
,
1998
, “
Moisture Diffusion and Vapour Pressure Modeling of IC Packaging
,”
IEEE Proc. Electron. Compon. Technol. Conf.
,
1998
, pp.
1372
1378
. 10.1109/ECTC.1998.678922
You do not currently have access to this content.