An analytical model is derived for the delamination of a thin film from a rigid substrate by a cylindrical shaft with a flat end and finite radius. We show that, within certain limitations, a point-load model can be applied to the system, to give simple relations between the film-substrate energy of adhesion and the measured variables of applied shaft force, blister height, and blister radius. The results are applicable to systems where a finite size cylindrical shaft or disk generates delamination of the film from the substrate.

References

1.
Birringer
,
R. P.
,
Shaviv
,
R.
,
Besser
,
P. R.
, and
Dauskardt
,
R. H.
,
2012
, “
Environmentally Assisted Debonding of Copper/Barrier Interfaces
,”
Acta Mater.
,
60
(
5
), pp.
2219
2228
.
2.
Boddeti
,
N. G.
,
Koenig
,
S. P.
,
Long
,
R.
,
Xiao
,
J.
,
Bunch
,
J. S.
, and
Dunn
,
M. L.
,
2013
, “
Mechanics of Adhered, Pressurized Graphene Blisters
,”
ASME J. Appl. Mech.
,
80
(
4
), p.
040909
.
3.
Zhu
,
T.
,
Li
,
G.
,
Müftü
,
S.
, and
Wan
,
K.-T.
,
2017
, “
Revisiting the Constrained Blister Test to Measure Thin Film Adhesion
,”
ASME J. Appl. Mech.
,
84
(
7
), p.
071005
.
4.
Wan
,
K.-T.
, and
Mai
,
Y.-W.
,
1995
, “
Fracture Mechanics of a Shaft-Loaded Blister of Thin Flexible Membrane on Rigid Substrate
,”
Int. J. Fract.
,
74
(
2
), pp.
181
197
.
5.
Wan
,
K. T.
, and
Liao
,
K.
,
1999
, “
Measuring Mechanical Properties of Thin Flexible Films by a Shaft-Loaded Blister Test
,”
Thin Solid Films
,
352
(
1–2
), pp.
167
172
.
6.
Wan
,
K.-T.
,
Guo
,
S.
, and
Dillard
,
D. A.
,
2003
, “
A Theoretical and Numerical Study of a Thin Clamped Circular Film Under an External Load in the Presence of a Tensile Residual Stress
,”
Thin Solid Films
,
425
(
1–2
), pp.
150
162
.
7.
Wang
,
J.
,
Sorescu
,
D. C.
,
Jeon
,
S.
,
Belianinov
,
A.
,
Kalinin
,
S. V.
,
Baddorf
,
A. P.
, and
Maksymovych
,
P.
,
2016
, “
Atomic Intercalation to Measure Adhesion of Graphene on Graphite
,”
Nat. Commun.
,
7
, p.
13263
.
8.
Zong
,
Z.
,
Chen
,
C.-L.
,
Dokmeci
,
M. R.
, and
Wan
,
K.-T.
,
2010
, “
Direct Measurement of Graphene Adhesion on Silicon Surface by Intercalation of Nanoparticles
,”
J. Appl. Phys.
,
107
(
2
), p.
026104
.
9.
Xiangyang
,
G.
,
Xiyu
,
Y.
,
Buxuan
,
L.
,
Shangchun
,
F.
, and
Cheng
,
L.
,
2017
, “
Measuring Graphene Adhesion on Silicon Substrate by Single and Dual Nanoparticle‐Loaded Blister
,”
Adv. Mater. Interfaces
,
4
(
9
), p.
1601023
.
10.
Wood
,
J. D.
,
Harvey
,
C. M.
, and
Wang
,
S.
,
2017
, “
Adhesion Toughness of Multilayer Graphene Films
,”
Nat. Commun.
,
8
(
1
), p.
1952
.
11.
Lii-Rosales
,
A.
,
Han
,
Y.
,
Evans
,
J. W.
,
Jing
,
D.
,
Zhou
,
Y.
,
Tringides
,
M. C.
,
Kim
,
M.
,
Wang
,
C.-Z.
, and
Thiel
,
P. A.
,
2018
, “
Formation of Multilayer Cu Islands Embedded Beneath the Surface of Graphite: Characterization and Fundamental Insights
,”
J. Phys. Chem. C
,
122
(
8
), pp.
4454
4469
.
12.
Zhou
,
Y.
,
Lii-Rosales
,
A.
,
Kim
,
M.
,
Wallingford
,
M.
,
Jing
,
D.
,
Tringides
,
M. C.
,
Wang
,
C.-Z.
, and
Thiel
,
P. A.
,
2018
, “
Defect-Mediated, Thermally-Activated Encapsulation of Metals at the Surface of Graphite
,”
Carbon
,
127
, pp.
305
311
.
You do not currently have access to this content.