The failure behavior of the syntactic foams is investigated based on a three-dimensional (3D) micromechanical finite element (FE) model, by varying the volume fraction, the wall thickness of the hollow particles, and the interfacial strength. The maximum principal stress criterion is adopted to determine the state (damaged or undamaged) for both interface and matrix. Material property degradation is used to describe the mechanical behavior of those damaged elements. The current model can reasonably predict the tensile strength of the syntactic foams with high volume fractions (40%–60%). The failure mechanism of the syntactic foam under uniaxial tension is captured by analyzing the stress–strain curves and the contours of damaging evolution process. Results from the quantitative simulations demonstrate that the tensile strength of the syntactic foam can be improved effectively by enhancing the interfacial strength.

References

1.
Gupta
,
N.
,
Zeltmann
,
S. E.
,
Shunmugasamy
,
V. C.
, and
Pinisetty
,
D.
,
2014
, “
Applications of Polymer Matrix Syntactic Foams
,”
JOM-US
,
66
(
2
), pp.
245
254
.10.1007/s11837-013-0796-8
2.
Tagliavia
,
G.
,
Porfiri
,
M.
, and
Gupta
,
N.
,
2010
, “
Analysis of Flexural Properties of Hollow-Particle Filled Composites
,”
Compos. Part B.
,
41
(
1
), pp.
86
93
.10.1016/j.compositesb.2009.03.004
3.
Yung
,
K. C.
,
Zhu
,
B. L.
,
Yue
,
T. M.
, and
Xie
,
C. S.
,
2009
, “
Preparation and Properties of Hollow Glass Microsphere-Filled Epoxy-Matrix Composites
,”
Compos. Sci. Technol.
,
69
(
2
), pp.
260
264
.10.1016/j.compscitech.2008.10.014
4.
Gupta
,
N.
, and
Maharsia
,
R.
,
2005
, “
Enhancement of Energy Absorption in Syntactic Foams by Nanoclay Incorporation for Sandwich Core Applications
,”
Appl. Compos. Mater.
,
12
(
3–4
), pp.
247
261
.10.1007/s10443-005-1130-6
5.
Narkis
,
M.
,
Kenig
,
S.
, and
Puterman
,
M.
,
1984
, “
3-Phase Syntactic Foams
,”
Polym. Compos.
,
5
(
2
), pp.
159
165
.10.1002/pc.750050208
6.
Orbulov
, I
. N.
, and
Ginsztler
,
J.
,
2012
, “
Compressive Characteristics of Metal Matrix Syntactic Foams
,”
Compos. Part A
,
43
(
4
), pp.
553
561
.10.1016/j.compositesa.2012.01.008
7.
Tao
,
X. F.
,
Zhang
,
L. P.
, and
Zhao
,
Y. Y.
,
2009
, “
Al Matrix Syntactic Foam Fabricated With Bimodal Ceramic Microspheres
,”
Mater. Des.
,
30
(
7
), pp.
2732
2736
.10.1016/j.matdes.2008.11.005
8.
Tao
,
X. F.
, and
Zhao
,
Y. Y.
,
2009
, “
Compressive Behavior of Al Matrix Syntactic Foams Toughened With Al Particles
,”
Scr. Mater.
,
61
(
5
), pp.
461
464
.10.1016/j.scriptamat.2009.04.045
9.
Zhang
,
L. Y.
, and
Ma
,
J.
,
2010
, “
Effect of Coupling Agent on Mechanical Properties of Hollow Carbon Microsphere/Phenolic Resin Syntactic Foam
,”
Compos. Sci. Technol.
,
70
(
8
), pp.
1265
1271
.10.1016/j.compscitech.2010.03.016
10.
Gladysz
,
G. M.
,
Perry
,
B.
,
Mceachen
,
G.
, and
Lula
,
J.
,
2006
, “
Three-Phase Syntactic Foams: Structure-Property Relationships
,”
J. Mater. Sci.
,
41
(
13
), pp.
4085
4092
.10.1007/s10853-006-7646-9
11.
Gupta
,
N.
, and
Woldesenbet
,
E.
,
2004
, “
Microballoon Wall Thickness Effects on Properties of Syntactic Foams
,”
J. Cell. Plast.
,
40
(
6
), pp.
461
480
.10.1177/0021955X04048421
12.
Porfiri
,
M.
, and
Gupta
,
N.
,
2009
, “
Effect of Volume Fraction and Wall Thickness on the Elastic Properties of Hollow Particle Filled Composites
,”
Compos. Part B
,
40
(
2
), pp.
166
173
.10.1016/j.compositesb.2008.09.002
13.
John
,
B.
,
Nair
,
C. P. R.
, and
Ninan
,
K. N.
,
2010
, “
Effect of Nanoclay on the Mechanical, Dynamic Mechanical and Thermal Properties of Cyanate Ester Syntactic Foams
,”
Mater. Sci. Eng. A
,
527
(
21–22
), pp.
5435
5443
.10.1016/j.msea.2010.05.016
14.
Maharsia
,
R. R.
, and
Jerro
,
H. D.
,
2007
, “
Enhancing Tensile Strength and Toughness in Syntactic Foams Through Nanoclay Reinforcement
,”
Mater. Sci. Eng. A
,
454–455
(
25
), pp.
416
422
.10.1016/j.msea.2006.11.121
15.
Wouterson
,
E. M.
,
Boey
,
F. Y. C.
,
Hu
,
X.
, and
Wong
,
S. C.
,
2007
, “
Effect of Fiber Reinforcement on the Tensile, Fracture, and Thermal Properties of Syntactic Foam
,”
Polymer
,
48
(
11
), pp.
3183
3191
.10.1016/j.polymer.2007.03.069
16.
Wouterson
,
E. M.
,
Boey
,
F. Y. C.
,
Wong
,
S. C.
,
Chen
,
L.
, and
Hu
,
X.
,
2007
, “
Nano-Toughening Versus Micro-Toughening of Polymer Syntactic Foams
,”
Compos. Sci. Technol.
,
67
(
14
), pp.
2924
2933
.10.1016/j.compscitech.2007.05.019
17.
Colloca
,
M.
,
Gupta
,
N.
, and
Porfiri
,
M.
,
2013
, “
Tensile Properties of Carbon Nanofiber Reinforced Multiscale Syntactic Foams
,”
Compos. Part B.
,
44
(
1
), pp.
584
591
.10.1016/j.compositesb.2012.02.030
18.
Gupta
,
N.
,
Woldesenbet
,
E.
,
Kishore
, and
Sankaran
,
S.
,
2002
, “
Response of Syntactic Foam Core Sandwich Structured Composites to Three-Point Bending
,”
J. Sandwich Struct. Mater.
,
4
(
3
), pp.
249
272
.10.1177/1099636202004003140
19.
Gupta
,
N.
,
Ye
,
R.
, and
Porfiri
,
M.
,
2010
, “
Comparison of Tensile and Compressive Characteristics of Vinyl Ester/Glass Microballoon Syntactic Foams
,”
Compos. Part B
,
41
(
3
), pp.
236
245
.10.1016/j.compositesb.2009.07.004
20.
Karthikeyan
,
C. S.
,
Sankaran
,
S.
, and
Kishore
,
2005
, “
Flexural Behaviour of Fibre-Reinforced Syntactic Foams
,”
Macromol. Mater. Eng.
,
290
(
1
), pp.
60
65
.10.1002/mame.200400177
21.
Kishore
,
Shankar
,
R.
, and
Sankaran
,
S.
,
2005
, “
Short Beam Three Point Bend Tests in Syntactic Foams. Part 1: Microscopic Characterization of the Failure Zones
,”
J. Appl. Polym. Sci.
,
98
(
2
), pp.
673
679
.10.1002/app.22096
22.
Kishore
,
Shankar
,
R.
, and
Sankaran
,
S.
,
2005
, “
Short-Beam Three-Point Bend Test Study in Syntactic Foam. Part III: Effects of Interface Modification on Strength and Fractographic Features
,”
J. Appl. Polym. Sci.
,
98
(
2
), pp.
687
693
.10.1002/app.22098
23.
Kishore
,
Shankar
,
R.
, and
Sankaran
,
S.
,
2005
, “
Short-Beam Three-Point Bend Tests in Syntactic Foams. Part II: Effect of Microballoons Content on Shear Strength
,”
J. Appl. Polym. Sci.
,
98
(
2
), pp.
680
686
.10.1002/app.22097
24.
Woldesenbet
,
E.
,
Gupta
,
N.
, and
Jerro
,
H. D.
,
2005
, “
Effect of Microballoon Radius Ratio on Syntactic Foam Core Sandwich Composites
,”
J. Sandwich Struct. Mater.
,
7
(
2
), pp.
95
111
.10.1177/1099636205047560
25.
Deruntz
,
J. A.
,
1971
, “
Some Applications of Plasticity Theory to Statics of Syntactic Foam
,”
ASME J. Appl. Mech.
,
38
(
1
), pp.
23
29
.10.1115/1.3408750
26.
Xu
,
W.
, and
Li
,
G. Q.
,
2011
, “
Thermoviscoplastic Modeling and Testing of Shape Memory Polymer Based Self-Healing Syntactic Foam Programmed at Glassy Temperature
,”
ASME J. Appl. Mech.
,
78
(
6
), p.
061017
.10.1115/1.4004554
27.
Gupta
,
N.
,
Woldesenbet
,
E.
, and
Kishore
,
2002
, “
Compressive Fracture Features of Syntactic Foams-Microscopic Examination
,”
J. Mater. Sci.
,
37
(
15
), pp.
3199
3209
.10.1023/A:1016166529841
28.
Gupta
,
N.
,
Woldesenbet
,
E.
, and
Mensah
,
P.
,
2004
, “
Compression Properties of Syntactic Foams: Effect of Cenosphere Radius Ratio and Specimen Aspect Ratio
,”
Compos. Part A.
,
35
(
1
), pp.
103
111
.10.1016/j.compositesa.2003.08.001
29.
Tsui
,
C. P.
,
Tang
,
C. Y.
, and
Lee
,
T. C.
,
2001
, “
Finite Element Analysis of Polymer Composites Filled by Interphase Coated Particles
,”
J. Mater. Process. Technol.
,
117
(
1–2
), pp.
105
110
.10.1016/S0924-0136(01)01117-7
30.
Yu
,
M.
,
Zhu
,
P.
, and
Ma
,
Y. Q.
,
2012
, “
Global Sensitivity Analysis for the Elastic Properties of Hollow Spheres Filled Syntactic Foams Using High Dimensional Model Representation Method
,”
Comput. Mater. Sci.
,
61
, pp.
89
98
.10.1016/j.commatsci.2012.04.005
31.
Yu
,
M.
,
Zhu
,
P.
, and
Ma
,
Y. Q.
,
2013
, “
Identification of the Interface Properties of Hollow Spheres Filled Syntactic Foams: An Inverse Strategy Combining Microstructural Modeling With Kriging Metamodel
,”
Compos. Sci. Technol.
,
74
(
24
), pp.
179
185
.10.1016/j.compscitech.2012.11.002
32.
Guild
,
F. J.
, and
Young
,
R. J.
,
1989
, “
A Predictive Model for Particulate-Filled Composite-Materials 1. Hard Particles
,”
J. Mater. Sci.
,
24
(
1
), pp.
298
306
.10.1007/BF00660971
33.
Bardella
,
L.
, and
Genna
,
F.
,
2001
, “
On the Elastic Behavior of Syntactic Foams
,”
Int. J. Solids Struct.
,
38
(
40–41
), pp.
7235
7260
.10.1016/S0020-7683(00)00228-6
34.
Nguyen
,
N. Q.
, and
Gupta
,
N.
,
2010
, “
Analyzing the Effect of Fiber Reinforcement on Properties of Syntactic Foams
,”
Mater. Sci. Eng A.
,
527
(
23
), pp.
6422
6428
.10.1016/j.msea.2010.06.077
35.
Nian
,
G.
,
Shan
,
Y.
,
Xu
,
Q.
, and
Qu
,
S.
,
2014
, “
Effects of Hollow Particle Shape and Distribution on the Elastic Properties of Syntactic Foams: 3D Computational Modeling
,”
Comput. Mater. Sci.
,
95
, pp.
106
112
.10.1016/j.commatsci.2014.07.012
36.
Yu
,
M.
,
Zhu
,
P.
, and
Ma
,
Y. Q.
,
2012
, “
Experimental Study and Numerical Prediction of Tensile Strength Properties and Failure Modes of Hollow Spheres Filled Syntactic Foams
,”
Comput. Mater. Sci.
,
63
, pp.
232
243
.10.1016/j.commatsci.2012.06.024
37.
Yu
,
M.
,
Zhu
,
P.
, and
Ma
,
Y. Q.
,
2013
, “
Effects of Particle Clustering on the Tensile Properties and Failure Mechanisms of Hollow Spheres Filled Syntactic Foams: A Numerical Investigation by Microstructure Based Modeling
,”
Mater. Des.
,
47
, pp.
80
89
.10.1016/j.matdes.2012.12.004
38.
Allix
,
O.
, and
Ladeveze
,
P.
,
1992
, “
Interlaminar Interface Modeling for the Prediction of Delamination
,”
Compos. Struct.
,
22
(
4
), pp.
235
242
.10.1016/0263-8223(92)90060-P
39.
Corigliano
,
A.
,
1993
, “
Formulation, Identification and Use of Interface Models in the Numerical-Analysis of Composite Delamination
,”
Int. J. Solids Struct.
,
30
(
20
), pp.
2779
2811
.10.1016/0020-7683(93)90154-Y
40.
Zou
,
Z.
,
Reid
,
S. R.
, and
Li
,
S.
,
2003
, “
A Continuum Damage Model for Delaminations in Laminated Composites
,”
J. Mech. Phys. Solids
,
51
(
2
), pp.
333
356
.10.1016/S0022-5096(02)00075-3
41.
Han
,
J. B.
, and
Siegmund
,
T.
,
2012
, “
Cohesive Zone Model Characterization of the Adhesive Hysol EA-9394
,”
J. Adhes. Sci. Technol.
,
26
(
8–9
), pp.
1033
1052
.10.1163/016942410X550003
42.
Qiao
,
H.
,
Chen
,
W. Q.
,
Yang
,
Q. D.
, and
Lua
,
J.
,
2011
, “
Augmented Cohesive Elements for Efficient Delamination Analyses of Composite Laminates
,”
ASME J. Eng. Mater. Technol.
,
133
(
4
), p.
041010
.10.1115/1.4004694
43.
Wang
,
B.
, and
Siegmund
,
T.
,
2005
, “
A Numerical Analysis of Constraint Effects in Fatigue Crack Growth by Use of an Irreversible Cohesive Zone Model
,”
Int. J. Fract.
,
132
(
2
), pp.
175
196
.10.1007/s10704-005-0627-1
44.
Yang
,
Q. D.
,
Thouless
,
M. D.
, and
Ward
,
S. M.
,
2001
, “
Elastic–Plastic Mode-II Fracture of Adhesive Joints
,”
Int. J. Solids Struct.
,
38
(
18
), pp.
3251
3262
.10.1016/S0020-7683(00)00221-3
45.
Gupta
,
N.
, and
Nagorny
,
R.
,
2006
, “
Tensile Properties of Glass Microballoon-Epoxy Resin Syntactic Foams
,”
J. Appl. Polym. Sci.
,
102
(
2
), pp.
1254
1261
.10.1002/app.23548
46.
Dai
,
G. M.
, and
Mishnaevsky
,
L.
,
2014
, “
Fatigue of Hybrid Glass/Carbon Composites: 3D Computational Studies
,”
Compos. Sci. Technol.
,
94
(
9
), pp.
71
79
.10.1016/j.compscitech.2014.01.014
You do not currently have access to this content.