Topological defects (TDs) arise in the growth process of two-dimensional (2D) materials, as well as after-growth heat treatment or irradiation. Our atomistic simulation results show that their mechanical modulation of material properties can be understood qualitatively through the theory of elasticity. We find that the in-plane lattice distortion and stress induced by experimentally characterized pentagon-heptagon (5|7) pairs or pentagon-octagon-pentagon (5|8|5) triplets can be captured by 2D models of dislocations or disclinations, although the out-of-plane distortion of the lattice reduces stress localization. Lineups of these TDs create nonlocal stress accumulation within a range of ∼10 nm. Interestingly, pileups of 5|7 and 5|8|5 defects show contrasting tensile and compressive buildups, which lead to opposite grain size dependence of the material strength. These findings improve our understandings of the mechanical properties of 2D materials with TDs, as well as the lattice perfection in forming large-scale continuous graphene films.

References

1.
Nelson
,
D. R.
,
2002
,
Defects and Geometry in Condensed Matter Physics
,
Cambridge University
,
Cambridge, UK
.
2.
Huang
,
P. Y.
,
Ruiz-Vargas
,
C. S.
,
van der Zande
,
A. M.
,
Whitney
,
W. S.
,
Levendorf
,
M. P.
,
Kevek
,
J. W.
,
Garg
,
S.
,
Alden
,
J. S.
,
Hustedt
,
C. J.
,
Zhu
,
Y.
,
Park
,
J.
,
McEuen
,
P. L.
, and
Muller
,
D. A.
,
2011
, “
Grains and Grain Boundaries in Single-Layer Graphene Atomic Patchwork Quilts
,”
Nature
,
469
(7330), pp.
389
392
.10.1038/nature09718
3.
Lahiri
,
J.
,
Lin
,
Y.
,
Bozkurt
,
P.
,
Oleynik
,
I. I.
, and
Batzill
,
M.
,
2010
, “
An Extended Defect in Graphene as a Metallic Wire
,”
Nat. Nanotechnol.
,
5
(5), pp.
326
329
.10.1038/nnano.2010.53
4.
Yazyev
,
O. V.
, and
Louie
,
S. G.
,
2010
, “
Topological Defects in Graphene: Dislocations and Grain Boundaries
,”
Phys. Rev. B
,
81
(19), p.
195420
.10.1103/PhysRevB.81.195420
5.
Liu
,
Y.
, and
Yakobson
,
B. I.
,
2010
, “
Cones, Pringles, and Grain Boundary Landscapes in Graphene Topology
,”
Nano Lett.
,
10
(6), pp.
2178
2183
.10.1021/nl100988r
6.
Yakobson
,
B. I.
, and
Ding
,
F.
,
2011
, “
Observational Geology of Graphene, at the Nanoscale
,”
ACS Nano
,
5
(3), pp.
1569
1574
.10.1021/nn200832y
7.
Carpio
,
A.
, and
Bonilla
,
L. L.
,
2008
, “
Periodized Discrete Elasticity Models for Defects in Graphene
,”
Phys. Rev. B
,
78
(8), p.
085406
.10.1103/PhysRevB.78.085406
8.
Wei
,
Y. J.
,
Wu
,
J.
,
Yin
,
H.
,
Shi
,
X.
,
Yang
,
R.
, and
Dresselhaus
,
M. S.
,
2012
, “
The Nature of Strength Enhancement and Weakening by Pentagon-Heptagon Defects in Graphene
,”
Nat. Mater.
,
11
(9), pp.
759
763
.10.1038/nmat3370
9.
Najmaei
,
S.
,
Liu
,
Z.
,
Zhou
,
W.
,
Zou
,
X.
,
Shi
,
G.
,
Lei
,
S.
,
Yakobson
,
B. I.
,
Idrobo
,
J.-C.
,
Ajayan
,
P. M.
, and
Lou
,
J.
,
2013
, “
Vapour Phase Growth and Grain Boundary Structure of Molybdenum Disulphide Atomic Layers
,”
Nat. Mater.
,
12
(8), pp.
754
759
.10.1038/nmat3673
10.
Yazyev
,
O. V.
, and
Louie
,
S. G.
,
2010
, “
Electronic Transport in Polycrystalline Graphene
,”
Nat. Mater.
,
9
(10), pp.
806
809
.10.1038/nmat2830
11.
Botello-Mendez
,
A. R.
,
Declerck
,
X.
,
Terrones
,
M.
,
Terrones
,
H.
, and
Charlier
,
J. C.
,
2011
, “
One-Dimensional Extended Lines of Divacancy Defects in Graphene
,”
Nanoscale
,
3
(7), pp.
2868
2872
.10.1039/c0nr00820f
12.
Wales
,
D. J.
,
2014
, “
Chemistry, Geometry, and Defects in Two Dimensions
,”
ACS Nano
,
8
(2), pp.
1081
1085
.10.1021/nn500645r
13.
Pacheco Sanjuan
,
A. A.
,
Mehboudi
,
M.
,
Harriss
,
E. O.
,
Terrones
,
H.
, and
Barraza-Lopez
,
S.
,
2014
, “
Quantitative Chemistry and the Discrete Geometry of Conformal Atom-Thin Crystals
,”
ACS Nano
,
8
(2), pp.
1136
1146
.10.1021/nn406532z
14.
Rasool
,
H. I.
,
Ophus
,
C.
,
Klug
,
W. S.
,
Zettl
,
A.
, and
Gimzewski
,
J. K.
,
2013
, “
Measurement of the Intrinsic Strength of Crystalline and Polycrystalline Graphene
,”
Nat. Commun.
,
4
, p. 2811.10.1038/ncomms3811
15.
Kim
,
K.
,
Lee
,
Z.
,
Regan
,
W.
,
Kisielowski
,
C.
,
Crommie
,
M. F.
, and
Zettl
,
A.
,
2011
, “
Grain Boundary Mapping in Polycrystalline Graphene
,”
ACS Nano
,
5
(3), pp.
2142
2146
.10.1021/nn1033423
16.
Landau
,
L. D.
, and
Lifshitz
,
E. M.
,
1986
,
Theory of Elasticity
,
Butterworth-Heinemann
,
Oxford, UK
.
17.
Brenner
,
D. W.
,
Shenderova
,
O. A.
,
Harrison
,
J. A.
,
Stuart
,
S. J.
,
Ni
,
B.
, and
Sinnott
,
S. B.
,
2002
, “
A Second-Generation Reactive Empirical Bond Order (REBO) Potential Energy Expression for Hydrocarbons
,”
J. Phys.: Condens. Matter
,
14
(4), pp.
783
802
.10.1088/0953-8984/14/4/312
18.
Plimpton
,
S.
,
1995
, “
Fast Parallel Algorithms for Short-Range Molecular Dynamics
,”
J. Comput. Phys.
,
117
(1), pp.
1
19
.10.1006/jcph.1995.1039
19.
Song
,
Z.
,
Artyukhov
,
V. I.
,
Yakobson
,
B. I.
, and
Xu
,
Z.
,
2013
, “
Pseudo Hall-Petch Strength Reduction in Polycrystalline Graphene
,”
Nano Lett.
,
13
(4), pp.
1829
1833
.10.1021/nl400542n
20.
Hirth
,
J. P.
, and
Lothe
,
J.
,
1982
,
Theory of Dislocations
, Wiley, New York.
21.
Lehtinen
,
O.
,
Kurasch
,
S.
,
Krasheninnikov
,
A. V.
, and
Kaiser
,
U.
,
2013
, “
Atomic Scale Study of the Life Cycle of a Dislocation in Graphene From Birth to Annihilation
,”
Nat. Commun.
,
4
, p. 2098.10.1038/ncomms3098
22.
Zhang
,
T.
,
Li
,
X.
, and
Gao
,
H.
,
2014
, “
Defects Controlled Wrinkling and Topological Design in Graphene
,”
J. Mech. Phys. Solids
,
67
, pp.
2
13
.10.1016/j.jmps.2014.02.005
You do not currently have access to this content.