Fundamentally understanding the temperature-dependent modulus is the key issue for materials serving in high temperature environments. This paper proposes a model based on lattice vibration theory to predict the temperature-dependent modulus with respect to isothermal and isentropic assumption. The thermal vibration free energy is expressed as a function of the two independent scalars from the strain tensor and temperature. By using the Einstein theory, we present the analytical expression for the temperature-dependent Young's modulus, bulk modulus, shear modulus, and Poisson's ratio. The theoretical prediction agrees well with the experimental data. The proposed model is further degenerated to Wachtman's empirical equation and provides the physical meaning to the parameters in Wachtman's equation.

References

1.
Guo
,
Y.
,
Georgarakis
,
K.
,
Yokoyama
,
Y.
, and
Yavari
,
A. R.
,
2013
, “
On the Mechanical Properties of TiNb Based Alloys
,”
J. Alloys Compd.
,
571
, pp.
25
30
.10.1016/j.jallcom.2013.03.192
2.
Oliver
,
W. C.
, and
Pharr
,
G. M.
,
1992
, “
Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments
,”
J. Mater. Res.
,
7
, pp.
1564
1583
.10.1557/JMR.1992.1564
3.
Kalkman
,
A.
,
Verbruggen
,
A.
, and
Janssen
,
G.
,
2001
, “
Young's Modulus Measurements and Grain Boundary Sliding in Free-Standing Thin Metal Films
,”
Appl. Phys. Lett.
,
78
, pp.
2673
2675
.10.1063/1.1367896
4.
Cao
,
Y.
, and
Hutchinson
,
J. W.
,
2012
, “
Wrinkling Phenomena in Neo-Hookean Film/Substrate Bilayers
,”
ASME J. Appl. Mech.
,
79
(
3
), p.
031019
.10.1115/1.4005960
5.
Lilley
,
C. M.
, and
He
,
J.
,
2009
, “
Characterization of Young's Modulus of Nanowires on Microcantilever Beams
,”
ASME J. Appl. Mech.
,
76
(
6
), p.
064502
.10.1115/1.3130443
6.
Born
,
M.
, and
Huang
,
K.
,
1954
,
Dynamical Theory of Crystal Lattices
,
Clarendon
,
Oxford, UK
.
7.
Yamamoto
,
S.
, and
Anderson
,
O. L.
,
1987
, “
Elasticity and Anharmonicity of Potassium Chloride at High Temperature
,”
Phys. Chem. Miner.
,
14
, pp.
332
340
.10.1007/BF00309806
8.
Ledbetter
,
H.
, and
Reed
,
R. P.
,
1973
, “
Elastic Properties of Metals and Alloys, I. Iron, Nickel, and Iron-Nickel Alloys
,”
J. Phys. Chem. Ref. Data
,
2
, pp.
531
619
.10.1063/1.3253127
9.
Wachtman
,
J.
, Jr.
,
Tefft
,
W.
,
Lam
,
D.
, Jr.
, and
Apstein
,
C.
,
1961
, “
Exponential Temperature Dependence of Young's Modulus for Several Oxides
,”
Phys. Rev.
,
122
, pp.
1754
1759
.10.1103/PhysRev.122.1754
10.
Anderson
,
O. L.
,
1966
, “
Derivation of Wachtman's Equation for the Temperature Dependence of Elastic Moduli of Oxide Compounds
,”
Phys. Rev.
,
144
, pp.
553
557
.10.1103/PhysRev.144.553
11.
Anderson
,
O. L.
,
1995
,
Equations of State of Solids for Geophysics and Ceramic Science
,
Oxford University
,
New York
.
12.
Landau
,
L. D.
, and
Lifshitz
,
E. M.
,
1959
,
Theory and Elasticity (Course of Theoretical Physics, Vol. 7)
,
Pergamon
,
New York
.
13.
Farraro
,
R.
, and
Mclellan
,
R. B.
,
1977
, “
Temperature Dependence of the Young's Modulus and Shear Modulus of Pure Nickel, Platinum, and Molybdenum
,”
Metall. Trans. A
,
8
, pp.
1563
1565
.10.1007/BF02644859
14.
Zhao
,
Y.
,
Lawson
,
A. C.
,
Zhang
,
J.
,
Bennett
,
B. I.
, and
Von Dreele
,
R. B.
,
2000
, “
Thermoelastic Equation of State of Molybdenum
,”
Phys. Rev. B
,
62
, pp.
8766
8776
.10.1103/PhysRevB.62.8766
15.
Lide
,
D.
, ed.,
2007
,
CRC Handbook of Chemistry and Physics
,
CRC Press
,
New York
.
You do not currently have access to this content.