Various applications of dielectric elastomers (DEs) have been realized in recent years due to their lightweight, low cost, large actuation and fast response. In this paper, experiments and simulations are performed on the active shape control of DE structures with various two-dimensional patterned electrodes by applying voltage. A DE membrane with a pattern of electrodes is mounted on an air chamber. It is first inflated by air pressure and then further deformed by applying voltage, which actively controls the membrane shape. Under higher voltage, an acrylic membrane with larger actuation can induce shape instability and demonstrate multiphase coexistence behavior. In the framework of electromechanical theory, finite element simulations are carried out and the results are in good agreement with those obtained by experiments.

References

1.
Hirai
,
T.
,
Nemoto
,
H.
,
Hirai
,
M.
, and
Hayashi
,
S.
,
1994
, “
Electrostriction of Highly Swollen Polymer Gel: Possible Application for Gel Actuator
,”
J. Appl. Polym. Sci.
,
53
(
1
), pp.
79
84
.10.1002/app.1994.070530109
2.
Liang
,
C.
,
Sun
,
F.
, and
Rogers
,
C.
,
1994
, “
Coupled Electro-Mechanical Analysis of Adaptive Material Systems—Determination of the Actuator Power Consumption and System Energy Transfer
,”
J. Intell. Mater. Syst. Struct.
,
5
(
1
), pp.
12
20
.10.1177/1045389X9400500102
3.
Heydt
,
R.
,
Kornbluh
,
R.
,
Pelrine
,
R.
, and
Mason
,
V.
,
1998
, “
Design and Performance of an Electrostrictive-Polymer-Film Acoustic Actuator
,”
J. Sound Vib.
,
215
(
2
), pp.
297
311
.10.1006/jsvi.1998.1642
4.
Pelrine
,
R. E.
,
Kornbluh
,
R. D.
, and
Joseph
,
J. P.
,
1998
, “
Electrostriction of Polymer Dielectrics With Compliant Electrodes as a Means of Actuation
,”
Sens. Actuators A
,
64
(
1
), pp.
77
85
.10.1016/S0924-4247(97)01657-9
5.
Zanna
,
J.
,
Nguyen
,
H.
,
Parneix
,
J.
,
Ruffié
,
G.
, and
Mauzac
,
M.
,
1999
, “
Dielectric Properties of Side Chain Liquid Crystalline Elastomers: Influence of Crosslinking on Side Chain Dynamics
,”
Eur. Phys. J. B
,
10
(
2
), pp.
345
351
.10.1007/s100510050863
6.
Koh
,
S. J. A.
,
Li
,
T.
,
Zhou
,
J.
,
Zhao
,
X.
,
Hong
,
W.
,
Zhu
,
J.
, and
Suo
,
Z.
,
2011
, “
Mechanisms of Large Actuation Strain in Dielectric Elastomers
,”
J. Polym. Sci. B
,
49
(
7
), pp.
504
515
.10.1002/polb.22223
7.
Pelrine
,
R.
,
Kornbluh
,
R.
,
Pei
,
Q.
, and
Joseph
,
J.
,
2000
, “
High-Speed Electrically Actuated Elastomers With Strain Greater Than 100%
,”
Science
,
287
(
5454
), pp.
836
839
.10.1126/science.287.5454.836
8.
Carpi
,
F.
,
De Rossi
,
D.
, and
Kornbluh
,
R.
,
2008
,
Dielectric Elastomers as Electromechanical Transducers: Fundamentals, Materials, Devices, Models and Applications of an Emerging Electroactive Polymer Technology
,
Elsevier Science
,
Amsterdam
.
9.
Anderson
,
I. A.
,
Ieropoulos
,
I. A.
,
Mckay
,
T.
,
O'Brien
,
B.
, and
Melhuish
,
C.
,
2011
, “
Power for Robotic Artificial Muscles
,”
IEEE/ASME Trans. Mechatron.
,
16
(
1
), pp.
107
111
.10.1109/TMECH.2010.2090894
10.
O'Brien
,
B. M.
,
Calius
,
E. P.
,
Inamura
,
T.
,
Xie
,
S. Q.
, and
Anderson
,
I. A.
,
2010
, “
Dielectric Elastomer Switches for Smart Artificial Muscles
,”
Appl. Phys. A
,
100
(
2
), pp.
385
389
.10.1007/s00339-010-5857-z
11.
Zhu
,
J.
,
Kollosche
,
M.
,
Lu
,
T.
,
Kofod
,
G.
, and
Suo
,
Z.
,
2012
, “
Two Types of Transitions to Wrinkles in Dielectric Elastomers
,”
Soft Matter
,
8
(
34
), pp.
8840
8846
.10.1039/c2sm26034d
12.
Huang
,
J.
,
Li
,
T.
,
Chiang Foo
,
C.
,
Zhu
,
J.
,
Clarke
,
D. R.
, and
Suo
,
Z.
,
2012
, “
Giant, Voltage-Actuated Deformation of a Dielectric Elastomer Under Dead Load
,”
Appl. Phys. Lett.
,
100
(
4
), p.
041911
.10.1063/1.3680591
13.
Wang
,
H.
,
Cai
,
S.
,
Carpi
,
F.
, and
Suo
,
Z.
,
2012
, “
Computational Model of Hydrostatically Coupled Dielectric Elastomer Actuators
,”
J. Appl. Mech.
,
79
, p.
031008
.10.1115/1.4005885
14.
Li
,
T.
,
Keplinger
,
C.
,
Baumgartner
,
R.
,
Bauer
,
S.
,
Yang
,
W.
, and
Suo
,
Z.
,
2012
, “
Giant Voltage-Induced Deformation in Dielectric Elastomers Near the Verge of Snap-Through Instability
,”
J. Mech. Phys. Solids
,
61
, pp.
611
-
628
.10.1016/j.jmps.2012.09.006
15.
Hawkes
,
E.
,
An
,
B.
,
Benbernou
,
N.
,
Tanaka
,
H.
,
Kim
,
S.
,
Demaine
,
E.
,
Rus
,
D.
, and
Wood
,
R.
,
2010
, “
Programmable Matter by Folding
,”
Proc. Natl. Acad. Sci.
,
107
(
28
), pp.
12441
12445
.10.1073/pnas.0914069107
16.
Mckay
,
T.
,
O'Brien
,
B.
,
Calius
,
E.
, and
Anderson
, I
.
,
2010
, “
An Integrated, Self-Priming Dielectric Elastomer Generator
,”
Appl. Phys. Lett.
,
97
(
6
), p.
062911
.10.1063/1.3478468
17.
Kofod
,
G.
,
Wirges
,
W.
,
Paajanen
,
M.
, and
Bauer
,
S.
,
2007
, “
Energy Minimization for Self-Organized Structure Formation and Actuation
,”
Appl. Phys. Lett.
,
90
(
8
), p.
081916
.10.1063/1.2695785
18.
Pei
,
Q.
,
Rosenthal
,
M.
,
Stanford
,
S.
,
Prahlad
,
H.
, and
Pelrine
,
R.
,
2004
, “
Multiple-Degrees-of-Freedom Electroelastomer Roll Actuators
,”
Smart Mater. Struct.
,
13
(
5
), pp.
N86
N92
.10.1088/0964-1726/13/5/N03
19.
Mckay
,
T.
,
O'Brien
,
B.
,
Calius
,
E.
, and
Anderson
, I
.
,
2010
, “
Self-Priming Dielectric Elastomer Generators
,”
Smart Mater. Struct.
,
19
(
5
), p.
055025
.10.1088/0964-1726/19/5/055025
20.
Kofod
,
G.
,
Paajanen
,
M.
, and
Bauer
,
S.
,
2006
, “
Self-Organized Minimum-Energy Structures for Dielectric Elastomer Actuators
,”
Appl. Phys. A
,
85
(
2
), pp.
141
143
.10.1007/s00339-006-3680-3
21.
Wissler
,
M.
, and
Mazza
,
E.
,
2007
, “
Electromechanical Coupling in Dielectric Elastomer Actuators
,”
Sens. Actuators A
,
138
(
2
), pp.
384
393
.10.1016/j.sna.2007.05.029
22.
Fox
,
J.
, and
Goulbourne
,
N.
,
2009
, “
Electric Field-Induced Surface Transformations and Experimental Dynamic Characteristics of Dielectric Elastomer Membranes
,”
J. Mech. Phys. Solids
,
57
(
8
), pp.
1417
1435
.10.1016/j.jmps.2009.03.008
23.
Keplinger
,
C.
,
Li
,
T.
,
Baumgartner
,
R.
,
Suo
,
Z.
, and
Bauer
,
S.
,
2012
, “
Harnessing Snap-Through Instability in Soft Dielectrics to Achieve Giant Voltage-Triggered Deformation
,”
Soft Matter
,
8
(
2
), pp.
285
288
.10.1039/c1sm06736b
24.
Suo
,
Z.
,
2010
, “
Theory of Dielectric Elastomers
,”
Acta Mech. Solida Sinica
,
23
(
6
), pp.
549
578
.10.1016/S0894-9166(11)60004-9
25.
Lu
,
T.-Q.
, and
Suo
,
Z.-G.
,
2012
, “
Large Conversion of Energy in Dielectric Elastomers by Electromechanical Phase Transition
,”
Acta Mech. Sinica
,
28
(
4
), pp.
1106
1114
.10.1007/s10409-012-0091-x
26.
Suo
,
Z.
,
Zhao
,
X.
, and
Greene
,
W. H.
,
2008
, “
A Nonlinear Field Theory of Deformable Dielectrics
,”
J. Mech. Phys. Solids
,
56
(
2
), pp.
467
486
.10.1016/j.jmps.2007.05.021
27.
Zhao
,
X.
, and
Suo
,
Z.
,
2008
, “
Method to Analyze Programmable Deformation of Dielectric Elastomer Layers
,”
Appl. Phys. Lett.
,
93
(
25
), p.
251902
.10.1063/1.3054159
28.
Qu
,
S.
, and
Suo
,
Z.
,
2012
, “
A Finite Element Method for Dielectric Elastomer Transducers
,”
Acta Mech. Solida Sinica
,
25
(
5
), pp.
459
466
.10.1016/S0894-9166(12)60040-8
29.
Huang
,
Z.-P.
,
2013
, “
A Novel Constitutive Formulation for Rubberlike Materials in Thermoelasticity
,”
ASME J. Appl. Mech.
(accepted).
30.
Li
,
T.
,
Qu
,
S.
, and
Yang
,
W.
,
2012
, “
Electromechanical and Dynamic Analyses of Tunable Dielectric Elastomer Resonator
,”
Int. J. Solids Struct.
,
49
, pp.
3754
3761
.10.1016/j.ijsolstr.2012.08.006
31.
Li
,
T.
,
Qu
,
S.
, and
Yang
,
W.
,
2012
, “
Energy Harvesting of Dielectric Elastomer Generators Concerning Inhomogeneous Fields and Viscoelastic Deformation
,”
J. Appl. Phys.
,
112
(
3
), p.
034119
.10.1063/1.4745049
32.
Qu
,
S.
,
Li
,
K.
,
Li
,
T.
,
Jiang
,
H.
,
Wang
,
M.
, and
Li
,
Z.
,
2012
, “
Rate Dependent Stress-Stretch Relation of Dielectric Elastomers Subjected to Pure Shear Like Loading and Electric Field
,”
Acta Mech. Solida Sinica
,
25
(
5
), pp.
542
549
.10.1016/S0894-9166(12)60048-2
You do not currently have access to this content.