Elements of the homogenization theory are utilized to develop a new micromechanics approach for unit cells of periodic heterogeneous materials based on locally exact elasticity solutions. The interior inclusion problem is exactly solved by using Fourier series representation of the local displacement field. The exterior unit cell periodic boundary-value problem is tackled by using a new variational principle for this class of nonseparable elasticity problems, which leads to exceptionally fast and well-behaved convergence of the Fourier series coefficients. Closed-form expressions for the homogenized moduli of unidirectionally reinforced heterogeneous materials are obtained in terms of Hill’s strain concentration matrices valid under arbitrary combined loading, which yield homogenized Hooke’s law. Homogenized engineering moduli and local displacement and stress fields of unit cells with offset fibers, which require the use of periodic boundary conditions, are compared to corresponding finite-element results demonstrating excellent correlation.

1.
Drago
,
A. S.
, and
Pindera
,
M.-J.
, 2007, “
Micro-Macromechanical Analysis of Heterogeneous Materials: Macroscopically Homogeneous vs Periodic Microstructures
,”
Compos. Sci. Technol.
0266-3538
67
(
6
), pp.
1243
1263
.
2.
Hill
,
R.
, 1963, “
Elastic Properties of Reinforced Solids: Some Theoretical Principles
,”
J. Mech. Phys. Solids
0022-5096,
11
, pp.
357
372
.
3.
Sanchez-Palencia
,
E.
, 1980,
Non-Inhomogeneous Media and Vibration Theory
Lecture Notes in Physics
Vol.
127
,
Springer-Verlag
Berlin
.
4.
Suquet
,
P. M.
, 1987,
Elements of Homogenization for Inelastic Solid Mechanics
Lecture Notes in Physics
Vol.
272
,
Springer-Verlag
,
Berlin
, pp.
193
278
.
5.
Bansal
,
Y.
, and
Pindera
,
M.-J.
, 2005, “
A Second Look at the Higher-Order Theory for Periodic Multiphase Materials
,”
ASME J. Appl. Mech.
0021-8936,
72
, pp.
177
195
. see also NASA CR2004-213043.
6.
Bansal
,
Y.
, and
Pindera
,
M.-J.
, 2006, “
Finite-Volume Direct Averaging Micromechanics of Heterogeneous Materials With Elastic-Plastic Phases
,”
Int. J. Plast.
0749-6419,
22
(
5
), pp.
775
825
.
7.
Chen
,
C. H.
, and
Cheng
,
S.
, 1967, “
Mechanical Properties of Fiber Reinforced Composites
,”
J. Compos. Mater.
0021-9983,
1
, pp.
30
41
.
8.
Pickett
,
G.
, 1968, “
Elastic Moduli of Fiber Reinforced Plastic Composites
,”
Fundamental Aspect of Fiber Reinforced Plastic Composites
,
R. T.
Schwartz
and
H. S.
Schwartz
, eds.,
Wiley
,
New York
, pp.
13
27
.
9.
Leissa
,
A. W.
, and
Clausen
,
W. E.
, 1968, “
Application of Point Matching to Problems in Micromechanics
,”
Fundamental Aspects of Fiber Reinforced Plastic Composites
,
R. T.
Schwartz
and
H. S.
Schwartz
, eds.,
Wiley
New York
, pp.
29
44
.
10.
Heaton
,
M. D.
, 1968, “
A Calculation of the Elastic Constants of a Unidirectional Fibre-Reinforced Composite
,”
Br. J. Appl. Phys., J. Phys. D
,
2
(
1
), pp.
1039
1048
.
11.
Koiter
,
W. T.
, 1960, “
Stress Distribution in an Infinite Elastic Sheet With a Doubly-Periodic Set of Equal Holes
,”
Boundary Value Problems in Differential Equations
,
R. E.
Langer
, ed.,
The University of Wisconsin Press
,
Madison
, pp.
191
213
.
12.
Fil’shtinskii
,
L. A.
, 1964, “
Stresses and Displacements in an Elastic Plane Weakened by a Doubly Periodic System of Identical Circular Holes
,”
Prikl. Mat. Mekh.
0032-8235,
28
(
3
), pp.
430
441
.
13.
Wilson
,
H. B.
, and
Hill
,
J. L.
, 1965, “
Plane Elastostatic Analysis of an Infinite Plate with a Doubly Periodic Array of Holes or Rigid Inclusions
,” Mathematical Studies of Composite Materials II, Report No. S-50, Rohm and Hass Company Redstone Arsenal Research Division, Huntsville, AL, pp.
39
66
.
14.
Grigolyuk
,
E. I.
, and
Fil’shtinskii
,
L. A.
, 1966, “
Elastic Equilibrium of an Isotropic Plane With Doubly Periodic System of Inclusions
,”
Sov. Appl. Mech.
0038-5298,
2
(
9
), pp.
1
7
.
15.
Wang
,
J.
,
Mogilevskaya
,
S. G.
, and
Crouch
,
S. L.
, 2005, “
An Embedding Method for Modeling Micromechanical Behavior and Macroscopic Properties of Composite Materials
,”
Int. J. Solids Struct.
0020-7683,
42
, pp.
4588
4612
.
16.
Crouch
,
S. L.
, and
Mogilevskaya
,
S. G.
, 2006, “
Loosening of Elastic Inclusions
,”
Int. J. Solids Struct.
0020-7683,
43
, pp.
1638
1668
.
17.
Lipton
,
R. P.
, 2003, “
Assessment of the Local Stress State Through Macroscopic Variables
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
361
, pp.
921
946
.
18.
Davison
,
T.
,
Pindera
,
M.-J.
, and
Wadley
,
H. N. G.
, 1994, “
Elastic Behavior of a Layered Cylinder Subjected to Diametral Loading
,”
Composites Eng.
0961-9526,
4
(
10
), pp.
995
1009
.
19.
Jirousek
,
J.
, 1978, “
Basis for Development of Large Finite Elements Locally Satisfying all Fields Equations
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
14
, pp.
65
92
.
20.
Eshelby
,
J. D.
, 1957, “
The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problems
,”
Proc. R. Soc. London, Ser. A
1364-5021,
241
, pp.
376
396
.
21.
Drago
,
A. S.
, and
Pindera
,
M.-J.
, 2008, “
A Locally-Exact Homogenization Approach for Periodic Heterogeneous Materials
,”
Multiscale and Functionally Graded Materials, 2006
,
G. H.
Paulino
,
M.-J.
Pindera
,
R. H.
Dodds
, Jr.
,
F. A.
Rochinha
,
E. V.
Dave
, and
L.
Chen
, eds.,
AIP Conf. Proc.
No.
973
,
American Institute of Physics
,
Melville, NY
, pp.
203
208
.
22.
Zielinski
,
A. P.
, and
Herrera
,
I.
, 1987, “
Trefftz Method: Fitting Boundary Conditions
,”
Int. J. Numer. Methods Eng.
0029-5981,
24
, pp.
871
891
.
You do not currently have access to this content.