The present paper describes an investigation that implements and assesses a dynamic continuum constitutive law for all-metallic sandwich panels. It also demonstrates its application to multilayer panels subject to water blast. Finite element calculations of unit cells are used to calibrate the model, especially the hardening curves at different strain rates. Once calibrated, the law is assessed by comparison with two sets of experiments. The dynamic response of panels impacted by Al foam projectiles at impulses comparable to those expected in water blast. The response of a multilayer core to an impulse caused by an explosion occurring in a cylindrical water column. The comparisons reveal that the overall deformation, average core strain, peak transmitted pressure, and velocities of the front and back faces are adequately predicted, inclusive of fluid/structure interactions. The inherent limitations of the approach are the underprediction of the plastic strains in the faces and incomplete assessment of stress oscillations beyond the peak. The former deficiency would pertain for any continuum representation for the core and would lead to problems in the prediction of face tearing. The latter may adversely affect the predictions of the impulse.

1.
Liang
,
Y.
,
Spuskanyuk
,
A. V.
,
Flores
,
S. E.
,
Hayhurst
,
D. R.
,
Hutchinson
,
J. W.
,
McMeeking
,
R. M.
, and
Evans
,
A. G.
, 2006, “
The Response of Metallic Sandwich Panels to Water Blast
,”
J. Appl. Meteorol.
0021-8952, in press.
2.
Tilbrook
,
M. T.
,
Deshpande
,
V. S.
, and
Fleck
,
N. A.
, 2006, “
The Impulsive Response of Sandwich Beams: Analytical and Numerical Investigation of Regimes of Behaviour
,”
J. Mech. Phys. Solids
0022-5096,
54
, pp.
2242
2280
.
3.
McMeeking
,
R. M.
,
Spuskanyuk
,
A. V.
,
He
,
H. Y.
,
Deshande
,
V. S.
,
Fleck
,
N. A.
, and
Evans
,
A. G.
, 2006, “
An Analytic Model for the Response to Water Blast of Unsupported Metallic Sandwich Panels
,” unpublished.
4.
Wadley
,
H. N. G.
,
Dharmasena
,
K. P.
,
Chen
,
Y.
,
Dudt
,
P.
,
Knight
,
D.
,
Charette
,
R.
, and
Kiddy
,
K.
, 2007, “
Compressive Response of Multilayered Pyramidal Lattices During Underwater Shock Loading
,”
Int. J. Impact Eng.
0734-743X, in press.
5.
Hibbitt, Karlsson & Sorensen, Inc.
, 2005,
ABAQUS Analysis User’s Manual
, Version 6.5, Pawtucket, RI.
6.
Rathbun
,
H. J.
,
Radford
,
D. D.
,
Xue
,
Z.
,
He
,
M. Y.
,
Yang
,
J.
,
Deshpande
,
V.
,
Fleck
,
N. A.
,
Hutchinson
,
J. W.
,
Zok
,
F. W.
, and
Evans
,
A. G.
, 2006, “
Performance of Metallic Honeycomb-Core Sandwich Beams Under Shock Loading
,”
Int. J. Solids Struct.
0020-7683,
43
, pp.
1746
1763
.
7.
Desphande
,
V. S.
,
Fleck
,
N. A.
, and
Ashby
,
M. F.
, 2000, “
Isotropic Constitutive Models for Metallic Foams
,”
J. Mech. Phys. Solids
0022-5096,
48
, pp.
1253
1283
.
8.
Mohr
,
D.
, and
Doyoyo
,
M.
, 2004, “
Large Plastic Deformation of Metallic Honeycomb: Orthotropic Rate-Independent Constitutive Model
,”
Int. J. Solids Struct.
0020-7683,
41
, pp.
4435
4456
.
9.
Rabczuk
,
T.
,
Kim
,
J. K.
,
Samaniego
,
E.
, and
Belytschko
,
T.
, 2004, “
Homogenization of Sandwich Structures
,”
Int. J. Numer. Methods Eng.
0029-5981,
61
, pp.
1009
1027
.
10.
Xue
,
Z.
, and
Hutchinson
,
J. W.
, 2006, “
Crush Dynamics of Square Honeycomb Sandwich Cores
,”
Int. J. Numer. Methods Eng.
0029-5981,
65
, pp.
2221
2245
.
11.
Xue
,
Z.
,
Vaziri
,
A.
, and
Hutchinson
,
J. W.
, 2005, “
Non-Uniform Hardening Constitutive Model for Compressible Orthotropic Materials With Application to Sandwich Plate Cores
,”
Comput. Model. Eng. Sci.
1526-1492,
10
, pp.
79
95
.
12.
Xue
,
Z.
, and
Hutchinson
,
J. W.
, 2004, “
Constitutive Model for Quasi-Static Deformation of Metallic Sandwich Cores
,”
Int. J. Numer. Methods Eng.
0029-5981,
61
, pp.
2205
2238
.
13.
Hill
,
R.
, 1947, “
A Theory of the Yielding and Plastic Flow of Anisotropic Materials
,”
Proc. R. Soc. London, Ser. A
1364-5021,
193
, pp.
281
297
.
14.
Zok
,
F. W.
,
Waltner
,
S. A.
,
Wei
,
Z.
,
Rathbun
,
H. J.
,
McMeeking
,
R. M.
, and
Evans
,
A. G.
, 2004, “
A Protocol for Characterizing the Structural Performance of Metallic Sandwich Panels, Application to Pyramidal Truss Cores
,”
Int. J. Solids Struct.
0020-7683,
41
(
22–23
), pp.
6249
6271
.
15.
Zok
,
F. W.
,
Rathbun
,
H. J.
,
He
,
M. H.
,
Ferri
,
E.
,
Mercer
,
C.
,
McMeeking
,
R. M.
, and
Evans
,
A. G.
, 2005, “
Structural Performance of Metallic Sandwich Panels With Square Honeycomb Cores
,”
Philos. Mag.
1478-6435,
85
, pp.
3207
3234
.
16.
Xue
,
Z.
, 2005, private communication.
17.
Radford
,
D. D.
,
Deshpande
,
V. S.
, and
Fleck
,
N. A.
, 2005, “
The Use of Metal Foam Projectiles to Simulate Shock Loading on a Structure
,”
Int. J. Impact Eng.
0734-743X,
31
, pp.
1152
1171
.
18.
Wei
,
Z.
,
Dharmasena
,
K. P.
,
Wadley
,
H. N. G.
, and
Evans
,
A. G.
, 2006, “
Analysis and Interpretation of a Test for Characterizing the Response of Metallic Sandwich Panels to Water Blast
,”
Int. J. Impact Eng.
0734-743X, submitted.
You do not currently have access to this content.