Bone is similar to fiber-reinforced composite materials made up of distinct phases such as osteons (fiber), interstitial bone (matrix), and cement lines (matrix-fiber interface). Microstructural features including osteons and cement lines are considered to play an important role in determining the crack growth behavior in cortical bone. The aim of this study is to elucidate possible mechanisms that affect crack penetration into osteons or deflection into cement lines using fracture mechanics-based finite element modeling. Cohesive finite element simulations were performed on two-dimensional models of a single osteon surrounded by a cement line interface and interstitial bone to determine whether the crack propagated into osteons or deflected into cement lines. The simulations investigated the effect of (i) crack orientation with respect to the loading, (ii) fracture toughness and strength of the cement line, (iii) crack length, and (iv) elastic modulus and fracture properties of the osteon with respect to the interstitial bone. The results of the finite element simulations showed that low cement line strength facilitated crack deflection irrespective of the fracture toughness of the cement line. However, low cement line fracture toughness did not guarantee crack deflection if the cement line had high strength. Long cracks required lower cement line strength and fracture toughness to be deflected into cement lines compared with short cracks. The orientation of the crack affected the crack growth trajectory. Changing the fracture properties of the osteon influenced the crack propagation path whereas varying the elastic modulus of the osteon had almost no effect on crack trajectory. The findings of this study present a computational mechanics approach for evaluating microscale fracture mechanisms in bone and provide additional insight into the role of bone microstructure in controlling the microcrack growth trajectory.

1.
Boyce
,
T. M.
,
Fyhrie
,
D. P.
,
Glotkowski
,
M. C.
,
Radin
,
E. L.
, and
Schaffler
,
M. B.
, 1998, “
Damage Type and Strain Mode Associations in Human Compact Bone Bending Fatigue
,”
J. Orthop. Res.
JOREDR 0736-0266,
16
(
3
), pp. 322–329.
2.
Burr
,
D. B.
,
Schaffler
,
M. B.
, and
Frederickson
,
R. G.
, 1988, “
Composition of the Cement Line and Its Possible Mechanical Role as a Local Interface in Human Compact Bone
,”
J. Biomech.
JBMCB5 0021-9290,
21
(
11
), pp. 939–945.
3.
Carter
,
D. R.
, and
Hayes
,
W. C.
, 1977, “
Compact Bone Fatigue Damage: A Microscopic Examination
,”
Clin. Orthop. Relat. Res.
CORTBR 0009-921X,
127
, pp. 265–274.
4.
Hiller
,
L. P.
,
Stover
,
S. M.
,
Gibson
,
V. A.
,
Gibeling
,
J. C.
,
Prater
,
C. S.
,
Hazelwood
,
S. J.
,
Yeh
,
O. C.
, and
Martin
,
R. B.
, 2003, “
Osteon Pullout in the Equine Third Metacarpal Bone: Effects of Ex Vivo Fatigue
,”
J. Orthop. Res.
JOREDR 0736-0266,
21
(
3
), pp. 481–488.
5.
Kennedy
,
O. D.
,
Brennan
,
O.
,
Mauer
,
P.
,
Rackard
,
S. M.
,
O’Brien
,
F. J.
,
Taylor
,
D.
, and
Lee
,
T. C.
, 2008, “
The Effects of Increased Intracortical Remodeling on Microcrack Behaviour in Compact Bone
,”
Bone
,
43
(
5
), pp. 889–893.
6.
Nalla
,
R. K.
,
Kinney
,
J. H.
, and
Ritchie
,
R. O.
, 2003, “
Mechanistic Fracture Criteria for the Failure of Human Cortical Bone
,”
Nature Mater.
NMAACR 1476-1122,
2
(
3
), pp. 164–168.
7.
O’Brien
,
F. J.
,
Taylor
,
D.
, and
Lee
,
T. C.
, 2005, “
The Effect of Bone Microstructure on the Initiation and Growth of Microcracks
,”
J. Orthop. Res.
JOREDR 0736-0266,
23
(
2
), pp. 475–480.
8.
Schaffler
,
M. B.
,
Choi
,
K.
, and
Milgrom
,
C.
, 1995, “
Aging and Matrix Microdamage Accumulation in Human Compact Bone
,”
Bone
,
17
(
6
), pp. 521–525.
9.
Zioupos
,
P.
, and
Currey
,
J. D.
, 1998, “
Changes in the Stiffness, Strength, and Toughness of Human Cortical Bone with Age
,”
Bone
,
22
(
1
), pp. 57–66.
10.
Koester
,
K. J.
,
Ager
,
J. W.
, III
, and
Ritchie
,
R. O.
, 2008, “
The True Toughness of Human Cortical Bone Measured With Realistically Short Cracks
,”
Nature Mater.
NMAACR 1476-1122,
7
(
8
), pp. 672–677.
11.
Cook
,
J.
, and
Gordon
,
J. E.
, 1964, “
A Mechanism for the Control of Crack Propagation in All-Brittle Systems
,”
Proc. R. Soc. London, Ser. A
PRLAAZ 0950-1207,
282
(
1391
), pp. 508–520.
12.
Cook
,
T. S.
, and
Erdogan
,
F.
, 1972, “
Stresses in Bonded Materials With a Crack Perpendicular to the Interface
,”
Int. J. Eng. Sci.
IJESAN 0020-7225,
10
(
8
), pp. 677–697.
13.
Erdogan
,
F.
, and
Biricikoglu
,
V.
, 1973, “
Two Bonded Half Planes With a Crack Going Through the Interface
,”
Int. J. Eng. Sci.
IJESAN 0020-7225,
11
(
7
), pp. 745–766.
14.
Goree
,
J. G.
, and
Venezia
,
W. A.
, 1977, “
Bonded Elastic Half-Planes With an Interface Crack and a Perpendicular Intersecting Crack That Extends Into the Adjacent Material—I
,”
Int. J. Eng. Sci.
IJESAN 0020-7225,
15
(
1
), pp. 1–17.
15.
Lu
,
M -C.
, and
Erdogan
,
F.
, 1983, “
Stress Intensity Factors in Two Bonded Elastic Layers Containing Cracks Perpendicular to and on the Interface—II. Solution and Results
,”
Eng. Fract. Mech.
EFMEAH 0013-7944,
18
(
3
), pp. 507–528.
16.
Swenson
,
D.
, and
Rau
,
C.
, 1970, “
The Stress Distribution Around a Crack Perpendicular to an Interface Between Materials
,”
Int. J. Fract.
IJFRAP 0376-9429,
6
(
4
), pp. 357–365.
17.
Zak
,
A.
, and
Williams
,
M.
, 1963, “
Crack Point Stress Singularities at a Bi-Material Interface
,”
ASME J. Appl. Mech.
JAMCAV 0021-8936,
30
(
1
), pp. 142–143.
18.
Ting
,
T.
, and
Hoang
,
P.
, 1984, “
Singularities at the Tip of a Crack Normal to the Interface of an Anisotropic Layered Composite
,”
Int. J. Solids Struct.
IJSOAD 0020-7683,
20
(
5
), pp. 439–454.
19.
Evans
,
A.
,
He
,
M.
, and
Hutchinson
,
J.
, 1989, “
Interface Debonding and Fiber Cracking in Brittle Matrix Composites
,”
J. Am. Ceram. Soc.
JACTAW 0002-7820,
72
(
12
), pp. 2300–2303.
20.
He
,
M -Y.
, and
Hutchinson
,
J.
, 1989, “
Crack Deflection at an Interface Between Dissimilar Elastic Materials
,”
Int. J. Solids Struct.
IJSOAD 0020-7683,
25
(
9
), pp. 1053–1067.
21.
Martínez
,
D.
, and
Gupta
,
V.
, 1994, “
Energy Criterion for Crack Deflection at an Interface Between Two Orthotropic Media
,”
J. Mech. Phys. Solids
JMPSA8 0022-5096,
42
(
8
), pp. 1247–1271.
22.
Gupta
,
V.
,
Argon
,
A.
, and
Suo
,
Z.
, 1992, “
Crack Deflection at an Interface between Two Orthotropic Media
,”
ASME J. Appl. Mech.
JAMCAV 0021-8936,
59
, pp. 79–86.
23.
Foulk
,
I. J. W.
,
Johnson
,
G. C.
,
Klein
,
P. A.
, and
Ritchie
,
R. O.
, 2008, “
On the Toughening of Brittle Materials by Grain Bridging: Promoting Intergranular Fracture Through Grain Angle, Strength, and Toughness
,”
J. Mech. Phys. Solids
JMPSA8 0022-5096,
56
(
6
), pp. 2381–2400.
24.
Parmigiani
,
J. P.
, and
Thouless
,
M. D.
, 2006, “
The Roles of Toughness and Cohesive Strength on Crack Deflection at Interfaces
,”
J. Mech. Phys. Solids
JMPSA8 0022-5096,
54
(
2
), pp. 266–287.
25.
Foulk
,
I. J. W.
,
Cannon
,
R. M.
,
Johnson
,
G. C.
,
Klein
,
P. A.
, and
Ritchie
,
R. O.
, 2007, “
A Micromechanical Basis for Partitioning the Evolution of Grain Bridging in Brittle Materials
,”
J. Mech. Phys. Solids
JMPSA8 0022-5096,
55
(
4
), pp. 719–743.
26.
Parmigiani
,
J.
, and
Thouless
,
M.
, 2007, “
The Effects of Cohesive Strength and Toughness on Mixed-Mode Delamination of Beam-Like Geometries
,”
Eng. Fract. Mech.
EFMEAH 0013-7944,
74
(
17
), pp. 2675–2699.
27.
O’Brien
,
F. J.
,
Taylor
,
D.
, and
Lee
,
T. C.
, 2003, “
Microcrack Accumulation at Different Intervals During Fatigue Testing of Compact Bone
,”
J. Biomech.
JBMCB5 0021-9290,
36
(
7
), pp. 973–980.
28.
Fan
,
Z.
,
Swadener
,
J. G.
,
Rho
,
J. Y.
,
Roy
,
M. E.
, and
Pharr
,
G. M.
, 2002, “
Anisotropic Properties of Human Tibial Cortical Bone as Measured by Nanoindentation
,”
J. Orthop. Res.
JOREDR 0736-0266,
20
(
4
), pp. 806–810.
29.
Hoffler
,
C. E.
,
Guo
,
X. E.
,
Zysset
,
P. K.
, and
Goldstein
,
S. A.
, 2005, “
An Application of Nanoindentation Technique to Measure Bone Tissue Lamellae Properties
,”
ASME J. Biomech. Eng.
JBENDY 0148-0731,
127
(
7
), pp. 1046–1053.
30.
Rho
,
J. Y.
,
Roy
,
M. E.
, II
,
Tsui
,
T. Y.
, and
Pharr
,
G. M.
, 1999, “
Elastic Properties of Microstructural Components of Human Bone Tissue as Measured by Nanoindentation
,”
J. Biomed. Mater. Res.
JBMRBG 0021-9304,
45
(
1
), pp. 48–54.
31.
Rho
,
J. Y.
,
Zioupos
,
P.
,
Currey
,
J. D.
, and
Pharr
,
G. M.
, 1999, “
Variations in the Individual Thick Lamellar Properties Within Osteons by Nanoindentation
,”
Bone
,
25
(
3
), pp. 295–300.
32.
Rho
,
J. Y.
,
Zioupos
,
P.
,
Currey
,
J. D.
, and
Pharr
,
G. M.
, 2002, “
Microstructural Elasticity and Regional Heterogeneity in Human Femoral Bone of Various Ages Examined by Nano-Indentation
,”
J. Biomech.
JBMCB5 0021-9290,
35
(
2
), pp. 189–198.
33.
Bigley
,
R. F.
,
Griffin
,
L. V.
,
Christensen
,
L.
, and
Vandenbosch
,
R.
, 2006, “
Osteon Interfacial Strength and Histomorphometry of Equine Cortical Bone
,”
J. Biomech.
JBMCB5 0021-9290,
39
(
9
), pp. 1629–1640.
34.
Dong
,
X. N.
,
Zhang
,
X.
, and
Guo
,
X. E.
, 2005, “
Interfacial Strength of Cement Lines in Human Cortical Bone
,”
Mech. Chem. Biosyst.
ZZZZZZ 1546-2048,
2
(
2
), pp. 63–68.
35.
Ascenzi
,
M. G.
, and
Bonucci
,
E.
, 1972, “
The Shearing Properties of Single Osteons
,”
Anat. Rec.
ANREAK 0003-276X,
172
, pp. 499–510.
36.
Skedros
,
J. G.
,
Holmes
,
J. L.
,
Vajda
,
E. G.
, and
Bloebaum
,
R. D.
, 2005, “
Cement Lines of Secondary Osteons in Human Bone Are Not Mineral-Deficient: New Data in a Historical Perspective
,”
Anat. Rec. Part A
ARPACS 1552-4892,
286
(
1
), pp. 781–803.
37.
Advani
,
S. H.
,
Lee
,
T. S.
, and
Martin
,
R. B.
, 1987, “
Analysis of Crack Arrest by Cement Lines in Osteonal Bone
,”
Advances in Bioengineering
, ASME-BED-3, pp. 57–58.
38.
Najafi
,
A. R.
,
Arshi
,
A. R.
,
Eslami
,
M. R.
,
Fariborz
,
S.
, and
Moeinzadeh
,
M. H.
, 2007, “
Micromechanics Fracture in Osteonal Cortical Bone: A Study of the Interactions Between Microcrack Propagation, Microstructure and the Material Properties
,”
J. Biomech.
JBMCB5 0021-9290,
40
(
12
), pp. 2788–2795.
39.
Budyn
,
E.
,
Hoc
,
T.
, and
Jonvaux
,
J.
, 2008, “
Fracture Strength Assessment and Aging Signs Detection in Human Cortical Bone Using an X-FEM Multiple Scale Approach
,”
Comput. Mech.
CMMEEE 0178-7675,
42
(
4
), pp. 579–591.
40.
Budyn
,
É.
, and
Hoc
,
T.
, 2010, “
Analysis of Micro Fracture in Human Haversian Cortical Bone Under Transverse Tension Using Extended Physical Imaging
,”
Int. J. Numer. Methods Eng.
IJNMBH 0029-5981,
82
(
8
), pp. 940–965.
41.
Mullins
,
L. P.
,
Mcgarry
,
J. P.
,
Bruzzi
,
M. S.
, and
Mchugh
,
P. E.
, 2007, “
Micromechanical Modelling of Cortical Bone
,”
Comput. Methods Biomech. Biomed. Eng.
CMBEFS 1025-5842,
10
(
3
), pp. 159–169.
42.
Hogan
,
H. A.
, 1992, “
Micromechanics Modeling of Haversian Cortical Bone Properties
,”
J. Biomech.
JBMCB5 0021-9290,
25
(
5
), pp. 549–556.
43.
Prendergast
,
P. J.
, and
Huiskes
,
R.
, 1996, “
Microdamage and Osteocyte-Lacuna Strain in Bone: A Microstructural Finite Element Analysis
,”
ASME J. Biomech. Eng.
JBENDY 0148-0731,
118
(
2
), pp. 240–246.
44.
Yeni
,
Y. N.
, and
Norman
,
T. L.
, 2000, “
Calculation of Porosity and Osteonal Cement Line Effects on the Effective Fracture Toughness of Cortical Bone in Longitudinal Crack Growth
,”
J. Biomed. Mater. Res.
JBMRBG 0021-9304,
51
(
3
), pp. 504–509.
45.
Najafi
,
A. R.
,
Arshi
,
A. R.
,
Eslami
,
M. R.
,
Fariborz
,
S.
, and
Moeinzadeh
,
M.
, 2007, “
Haversian Cortical Bone Model With Many Radial Microcracks: An Elastic Analytic Solution
,”
Med. Eng. Phys.
MEPHEO 1350-4533,
29
(
6
), pp. 708–717.
46.
Guo
,
X. E.
,
He
,
M. -Y.
, and
Goldstein
,
S. A.
, 1995, “
Understanding Cement Line Interface in Bone Tissue: A Linear Fracture Mechanics Approach
,”
Adv. Bioeng.
ADBIDL 0360-9960,
29
, pp. 303–304.
47.
Guo
,
X. E.
,
Liang
,
L. C.
, and
Goldstein
,
S. A.
, 1998, “
Micromechanics of Osteonal Cortical Bone Fracture
,”
ASME J. Biomech. Eng.
JBENDY 0148-0731,
120
(
1
), pp. 112–117.
48.
Barenblatt
,
G. I.
, 1962, “
The Mathematical Theory of Equilibrium of Cracks in Brittle Fracture
,”
Adv. Appl. Mech.
AAMCAY 0065-2156,
7
, pp. 55–129.
49.
Camacho
,
G. T.
, and
Ortiz
,
M.
, 1996, “
Computational Modeling of Impact Damage in Brittle Materials
,”
Int. J. Solids Struct.
IJSOAD 0020-7683,
33
(
20–22
), pp. 2899–2938.
50.
Dugdale
,
D. S.
, 1960, “
Yielding of Steel Sheets Containing Slits
,”
J. Mech. Phys. Solids
JMPSA8 0022-5096,
8
(
2
), pp. 100–104.
51.
Hillerborg
,
A.
,
Modeer
,
M.
, and
Petersson
,
P. E.
, 1976, “
Analysis of Crack Formation and Crack Growth in Concrete by Means of Fracture Mechanics and Finite Elements
,”
Cem. Concr. Res.
CCNRAI 0008-8846,
6
(
6
), pp. 773–781.
52.
Camanho
,
P. P.
,
Davila
,
C. G.
, and
De Moura
,
M. F.
, 2003, “
Numerical Simulation of Mixed-Mode Progressive Delamination in Composite Materials
,”
J. Compos. Mater.
JCOMBI 0021-9983,
37
(
16
), pp. 1415–1438.
53.
de-Andrés
,
A.
,
Pérez
,
J. L.
, and
Ortiz
,
M.
, 1999, “
Elastoplastic Finite Element Analysis of Three-Dimensional Fatigue Crack Growth in Aluminum Shafts Subjected to Axial Loading
,”
Int. J. Solids Struct.
IJSOAD 0020-7683,
36
(
15
), pp. 2231–2258.
54.
Ortiz
,
M.
, and
Pandolfi
,
A.
, 1999, “
Finite-Deformation Irreversible Cohesive Elements for Three-Dimensional Crack Propagation Analysis
,”
Int. J. Numer. Methods Eng.
IJNMBH 0029-5981,
44
(
9
), pp. 1267–1282.
55.
Ural
,
A.
, and
Vashishth
,
D.
, 2006, “
Cohesive Finite Element Modeling of Age-Related Toughness Loss in Human Cortical Bone
,”
J. Biomech.
JBMCB5 0021-9290,
39
(
16
), pp. 2974–2982.
56.
Ural
,
A.
, and
Vashishth
,
D.
, 2007, “
Anisotropy of Age-Related Toughness Loss in Human Cortical Bone: A Finite Element Study
,”
J. Biomech.
JBMCB5 0021-9290,
40
(
7
), pp. 1606–1614.
57.
Ural
,
A.
, and
Vashishth
,
D.
, 2007, “
Effects of Intracortical Porosity on Fracture Toughness in Aging Human Bone: A Microct-Based Cohesive Finite Element Study
,”
ASME J. Biomech. Eng.
JBENDY 0148-0731,
129
(
5
), pp. 625–631.
58.
Yang
,
Q. D.
,
Cox
,
B. N.
,
Nalla
,
R. K.
, and
Ritchie
,
R. O.
, 2006, “
Fracture Length Scales in Human Cortical Bone: The Necessity of Nonlinear Fracture Models
,”
Biomaterials
BIMADU 0142-9612,
27
(
9
), pp. 2095–2113.
59.
Cox
,
B. N.
, and
Yang
,
Q.
, 2007, “
Cohesive Zone Models of Localization and Fracture in Bone
,”
Eng. Fract. Mech.
EFMEAH 0013-7944,
74
(
7
), pp. 1079–1092.
60.
Yang
,
Q. D.
,
Cox
,
B. N.
,
Nalla
,
R. K.
, and
Ritchie
,
R. O.
, 2006, “
Re-Evaluating the Toughness of Human Cortical Bone
,”
Bone
,
38
(
6
), pp. 878–887.
61.
Ural
,
A.
, 2009, “
Prediction of Colles’ Fracture Load in Human Radius Using Cohesive Finite Element Modeling
,”
J. Biomech.
JBMCB5 0021-9290,
42
(
1
), pp. 22–28.
62.
Buchanan
,
D.
, and
Ural
,
A.
, 2010, “
Finite Element Modeling of the Influence of Hand Position and Bone Properties on the Colles’ Fracture Load During a Fall
,”
ASME J. Biomech. Eng.
JBENDY 0148-0731,
132
, p. 081007.
63.
Pietruszczak
,
S.
, and
Gdela
,
K.
, 2010, “
Inelastic Analysis of Fracture Propagation in Distal Radius
,”
ASME J. Appl. Mech.
JAMCAV 0021-8936,
77
(
1
), pp. 011009–011010.
64.
Pietruszczak
,
S.
,
Gdela
,
K.
,
Webber
,
C. E.
, and
Inglis
,
D.
, 2007, “
On the Assessment of Brittle-Elastic Cortical Bone Fracture in the Distal Radius
,”
Eng. Fract. Mech.
EFMEAH 0013-7944,
74
(
12
), pp. 1917–1927.
65.
Carol
,
I.
,
López
,
C.
, and
Roa
,
O.
, 2001, “
Micromechanical Analysis of Quasi Brittle Materials Using Fracture Based Interface Elements
,”
Int. J. Numer. Methods Eng.
IJNMBH 0029-5981,
52
(
1–2
), pp. 193–215.
66.
Tomar
,
V.
, 2008, “
Modeling of Dynamic Fracture and Damage in Two-Dimensional Trabecular Bone Microstructures Using the Cohesive Finite Element Method
,”
ASME J. Biomech. Eng.
JBENDY 0148-0731,
130
(
2
), p. 021021.
67.
Tomar
,
V.
, 2009, “
Insights into the Effects of Tensile and Compressive Loadings on Microstructure Dependent Fracture of Trabecular Bone
,”
Eng. Fract. Mech.
EFMEAH 0013-7944,
76
(
7
), pp. 884–897.
68.
Siegmund
,
T.
,
Allen
,
M.
, and
Burr
,
D.
, 2008, “
Failure of Mineralized Collagen Fibrils: Modeling the Role of Collagen Cross-Linking
,”
J. Biomech.
JBMCB5 0021-9290,
41
(
7
), pp. 1427–1435.
69.
Morais
,
J. J. L.
,
De Moura
,
M. F. S. F.
,
Pereira
,
F. A. M.
,
Xavier
,
J.
,
Dourado
,
N.
,
Dias
,
M. I. R.
, and
Azevedo
,
J. M. T.
, 2010, “
The Double Cantilever Beam Test Applied to Mode I Fracture Characterization of Cortical Bone Tissue
,”
J. Mech. Behav. Biomed. Mater.
ZZZZZZ 1751-6161,
3
(
6
), pp. 446–453.
70.
Martin
,
R. B.
,
Burr
,
D. B.
, and
Sharkey
,
N. A.
, 1998,
Skeletal Tissue Mechanics
,
Springer-Verlag
,
New York
.
71.
Yoon
,
Y.
, and
Cowin
,
S.
, 2008, “
An Estimate of Anisotropic Poroelastic Constants of an Osteon
,”
Biomech. Model. Mechanobiol.
BMMICD 1617-7959,
7
(
1
), pp. 13–26.
72.
Needleman
,
A.
, 1987, “
A Continuum Model for Void Nucleation by Inclusion Debonding
,”
ASME J. Appl. Mech.
JAMCAV 0021-8936,
54
(
3
), pp. 525–531.
73.
Tvergaard
,
V.
, and
Hutchinson
,
J. W.
, 1992, “
The Relation Between Crack Growth Resistance and Fracture Process Parameters in Elastic-Plastic Solids
,”
J. Mech. Phys. Solids
JMPSA8 0022-5096,
40
(
6
), pp. 1377–1397.
74.
Brown
,
C. U.
,
Yeni
,
Y. N.
, and
Norman
,
T. L.
, 2000, “
Fracture Toughness Is Dependent on Bone Location—A Study of the Femoral Neck, Femoral Shaft, and the Tibial Shaft
,”
J. Biomed. Mater. Res.
JBMRBG 0021-9304,
49
(
3
), pp. 380–389.
75.
Reilly
,
D. T.
, and
Burstein
,
A. H.
, 1975, “
The Elastic and Ultimate Properties of Compact Bone Tissue
,”
J. Biomech.
JBMCB5 0021-9290,
8
(
6
), pp. 393–405.
76.
Huja
,
S.
,
Beck
,
F.
, and
Thurman
,
D.
, 2006, “
Indentation Properties of Young and Old Osteons
,”
Calcif. Tissue Int.
CTINDZ 0171-967X,
78
(
6
), pp. 392–397.
77.
Chan
,
K.
,
Chan
,
C.
, and
Nicolella
,
D.
, 2009, “
Relating Crack-Tip Deformation to Mineralization and Fracture Resistance in Human Femur Cortical Bone
,”
Bone
,
45
(
3
), pp. 427–434.
78.
Nalla
,
R. K.
,
Kruzic
,
J. J.
,
Kinney
,
J. H.
, and
Ritchie
,
R. O.
, 2004, “
Effect of Aging on the Toughness of Human Cortical Bone: Evaluation by R-Curves
,”
Bone
,
35
(
6
), pp. 1240–1246.
79.
Vashishth
,
D.
,
Behiri
,
J. C.
, and
Bonfield
,
W.
, 1997, “
Crack Growth Resistance in Cortical Bone: Concept of Microcrack Toughening
,”
J. Biomech.
JBMCB5 0021-9290,
30
(
8
), pp. 763–769.
80.
Vashishth
,
D.
,
Wu
,
P.
, and
Gibson
,
G. J.
, 2004, “Age-Related Loss in Bone: Toughness Is Explained by Non-Enzymatic Glycation in Collagen,” Transactions of the 50th Annual Meeting of Orthopaedic Research Society, San Francisco, CA, p. 497.
81.
Vashishth
,
D.
,
Gibson
,
G.
,
Khoury
,
J.
,
Schaffler
,
M.
,
Kimura
,
J.
, and
Fyhrie
,
D.
, 2001, “
Influence of Nonenzymatic Glycation on Biomechanical Properties of Cortical Bone
,”
Bone
,
28
(
2
), pp. 195–201.
82.
Wang
,
X.
,
Bank
,
R. A.
,
Tekoppele
,
J. M.
, and
Agrawal
,
C. M.
, 2001, “
The Role of Collagen in Determining Bone Mechanical Properties
,”
J. Orthop. Res.
JOREDR 0736-0266,
19
(
6
), pp. 1021–1026.
83.
Wang
,
X.
,
Shen
,
X.
,
Li
,
X.
, and
Mauli Agrawal
,
C.
, 2002, “
Age-Related Changes in the Collagen Network and Toughness of Bone
,”
Bone
,
31
(
1
), pp. 1–7.
84.
Currey
,
J.
,
Brear
,
K.
, and
Zioupos
,
P.
, 1996, “
The Effects of Ageing and Changes in Mineral Content in Degrading the Toughness of Human Femora
,”
J. Biomech.
JBMCB5 0021-9290,
29
(
2
), pp. 257–260.
85.
Burr
,
D. B.
, 2002, “
Targeted and Nontargeted Remodeling
,”
Bone
,
30
(
1
), pp. 2–4.
86.
Taylor
,
D.
,
Hazenberg
,
J.
, and
Lee
,
T.
, 2007, “
Living With Cracks: Damage and Repair in Human Bone
,”
Nature Mater.
NMAACR 1476-1122,
6
(
4
), pp. 263–268.
87.
Weiner
,
S.
,
Traub
,
W.
, and
Wagner
,
H. D.
, 1999, “
Lamellar Bone: Structure-Function Relations
,”
J. Struct. Biol.
JSBIEM 1047-8477,
126
(
3
), pp. 241–255.
You do not currently have access to this content.