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A Finite-Deformation Constitutive
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We present a constitutive model for particle-binder composites that accounts for finite-
deformation kinematics, nonlinear elastoplasticity without apparent yield, cyclic hysteresis,
and progressive stress-softening before the attainment of stable cyclic response. The model
is based on deformation mechanisms experimentally observed during quasi-static mono-
tonic and cyclic compression of mock plastic-bonded explosives (PBX) at large strain.
An additive decomposition of strain energy into elastic and inelastic parts is assumed,
where the elastic response is modeled using Ogden hyperelasticity while the inelastic
response is described using yield-surface-free endochronic plasticity based on the concepts
of internal variables and of evolution or rate equations. Stress-softening is modeled using
two approaches; a discontinuous isotropic damage model to appropriately describe the
softening in the overall loading–unloading response, and a material scale function to
describe the progressive cyclic softening until cyclic stabilization. A nonlinear multivariate
optimization procedure is developed to estimate the elastoplastic model parameters from
nominal stress–strain experimental compression data. Finally, a correlation between
model parameters and the unique stress–strain response of mock PBX specimens with dif-
fering concentrations of aluminum is identified, thus establishing a relationship between
model parameters and material composition. [DOI: 10.1115/1.4052654]
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1 Introduction
Particle-binder composite materials consist of a large concentra-

tion of hard particles, called fillers, randomly dispersed in the matrix
of a soft material. Generally, fillers are used to enhance the mechan-
ical properties of the soft material. For example, filled elastomers
such as carbon-black and silica filled rubbers [1,2] have been
shown to possess superior stiffness, strength, and damping proper-
ties over natural rubber, making them suitable for application in
automotive parts such as tires and bearing seals and in structures
providing vibration and shock isolation to mechanical systems.
Another class of particle-binder composites, called energetic

composite materials or plastic-bonded explosives (PBX), consists
of explosive crystals and, in some formulations, metal fuel
powder, embedded in a binder composed mainly of a soft
polymer and a plasticizer. Since their initial development at Los
Alamos National Laboratory in 1947, PBXs have been commonly
used as ammunition in defense applications. Examples of explo-
sives used include cyclotrimethylenetrinitramine (RDX) and
cyclotetra-minetetranitramine (HMX), while the binder composi-
tion includes polymers like hydroxyl-terminated polybutadiene
(HTPB) and Estane, and plasticizers like dioctyl adipate (DOA)
and isodecyl pelargonate (IDP), along with smaller concentrations
of various additives [3]. In a PBX binder, the polymer, apart from
providing structural integrity to the explosive, reduces their
impact and vibrational sensitivity [4–6], while the plasticizer

improves their mechanical properties and processability [7]. The
metal fuel, usually aluminum, is used to enhance the blast effects.
Therefore, aluminized PBXs are typically used in naval weapons
and missile warheads [8].
Energetic composites are commonly used in applications requir-

ing high mechanical confinement or compression [9,10]. Addition-
ally, these materials may be subjected to diverse loading conditions,
ranging from low to high strain-rate cyclic, vibrational and impact
loading during transport, storage and handling over their opera-
tional life. Since PBXs are designed to detonate under specific
external energy stimulus, such loading conditions may alter their
mechanical response, rendering them unpredictable and unsafe
[11]. Therefore, understanding and predicting the mechanical
response of PBX under different loading conditions is of particular
interest to the defense and propulsion communities.
Earlier experimental studies on the mechanical behavior of PBX

under uniaxial load have shown a dependence on strain rate and
temperature [12–14]. Several constitutive models in the context of
small and large deformation mechanics have been developed to
model their rate and temperature-dependent behavior. For instance,
Bardenhagen et al. [15] proposed a large deformation viscoelastic
model for PBX binder materials using a Blatz-Ko hyperelasticity
formulation and a Maxwell element. Clements and Mas [16] pro-
posed a viscoelastic constitutive theory for filled polymers using
the Boltzmann superposition principle, where the filler particles
were modeled as randomly positioned elastic ellipsoidal particles.
Composite stress relaxation functions were developed with their
prony series coefficients dependent on filler concentration, ellipsoi-
dal aspect ratio, and polymer moduli. The viscoelastic cracking con-
stitutive model developed by Bennet et al. [17] combined a linear
viscoelastic Maxwell’s model with the isotropic damage model
by Addessio and Johnson [18]. It was based on the mechanism of
microcracking and derived from the statistical crack mechanics
approach proposed by Dienes [19] for brittle materials. The
model was developed to predict the nonlinear stress–strain response
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of the material, as well as the strain-softening and nonlinearity
observed due to extensive cracking at larger deformations. The
model has since been extensively implemented in finite element
analyses and used to predict the thermo-mechanical behavior of
PBX and study hotspot generation [6,20]. In the context of PBX
undergoing low-frequency vibrational loading, nonlinear viscoelas-
tic models for a mass-material system undergoing base excitation
were proposed by Paripovic and Davies [21,22].
While the majority of constitutive formulations proposed for the

PBX model the material as viscoelastic due to the rubbery nature of
the polymer binder, it has been shown that these materials may
exhibit considerable plastic deformation with increasing confine-
ment. Uniaxial confined compression tests carried out on inert
mock sugar-based specimens for PBX9501 [9,10] under different
confining pressures revealed increasing plastic deformation and
strain hardening with increasing pressure. Recently, Agarwal and
Gonzalez [23] conducted unconfined compression tests at room
temperature and low strain rate (10−3/s) on cylindrical specimens
of three mock explosive formulations (Fig. 1) based on
PBXN-109 [24], with sugar as a substitute for the explosive
HMX crystals. The three formulations contained 85% w/w of
solids (sugar and aluminum) but differed from each other by the
amount of aluminum content in the solids composition, namely,
85–00 (0% Al in solids, 0% in total), 85–15 (15% Al in solids,
12.75% in total) and 85–30 (30% additive in solids, 25.5% in
total). The monotonic nominal stress–strain response of the 85–00
specimen (Fig. 2(a)) exhibited a quasi-brittle behavior [25], with
an initial nonlinear increase in stress until a peak stress level at
around 10–11% strain, followed by strain-softening due to the evo-
lution of microcracks into larger transgranular fracture leading to a
loss of strength. Such behavior has been recorded and studied
extensively for many non-aluminized PBX formulations
[6,12,26]. However, the aluminized specimens, i.e., 85–15
(Fig. 2(b)) and 85–30 (Fig. 2(c)) exhibited a more ductile plastic
flow behavior with strain hardening, indicating that the presence
of aluminum could cause the material to deform plastically even
in the absence of confinement.
Additionally, plastic deformation and damage in PBX have been

shown to be associated with hotspot mechanisms [27,28], thus
directly impacting their ignition characteristics. Therefore, the
development of a constitutive model capable of characterizing the
plastic behavior of explosives is extremely important for proper
modeling and prediction of their mechanical behavior. Constitutive
models for PBX incorporating plasticity have been proposed for
cyclic deformation [29] and mild impact [30]. However, the
models have been developed using small deformation theory and,
therefore, are inapplicable to the large deformation mechanical
behavior of explosives.
Lastly, Agarwal and Gonzalez [23] also conducted cyclic com-

pression tests of the mock PBX specimens at room temperature
and low strain rate (10−3/s). Figure 3 shows the nominal cyclic
stress–strain response of the specimens. The strain-controlled tests
were carried out by initially loading the specimen to a maximum
strain level, and thereafter partially unloading–reloading between

the maximum and a minimum strain. The optimal minimum-
maximum strain levels were identified for each mock PBX compo-
sition through a systematic procedure detailed in Ref. [23] that was
developed to ensure sufficiently large elastoplastic deformation
while preventing the material to reach its ultimate strength as well
as keep the specimen in compression throughout the loading
process. Through this procedure, the cyclic strain levels were iden-
tified as 5–9% for 85–00, 8–16% for 85–15, and 6–9% for 85–30.
Observable response attributes (indicated in the figures) include the
following: (1) a nonlinear, continuous elastoplastic response
without apparent yield, (2) hysteresis, and (3) cyclic stress-
softening with eventual stabilization. It is also worth noting that
the curvature of the initial loading path is different from those of
subsequent reloading paths. The former is convex and the latter
are concave, indicating irreversible changes in the material behavior
during the initial loading itself. This behavior has also been previ-
ously observed for cyclic compression of aluminized RDX-based
PBX in HTPB binder [31].
It is apparent that the observed mechanical response of mock

PBX specimens exhibits similar characteristics to filled elastomers
at large deformations. Constitutive models of filled elastomers
have been proposed by adopting both phenomenological [32–37]
and micromechanical [38–40] frameworks. For instance, Ayoub
et al. [33] proposed a Zener-type visco-hyperelastic constitutive
model of rubber-like materials that accounts for the Mullins effect
[41,42], continuous stress-softening, and permanent residual
strains by utilizing the network alteration theory [43,44]. Raghunath
et al. [39] extended the micromechanical dynamic flocculation
model developed by Klüppel [45] to include time-dependent
effects typical of filled elastomers. It is worth mentioning that the
majority of these models attribute the observed hysteresis and
other inelastic phenomena to time-dependent viscous overstress in
the rubber matrix. In contrast, only a limited number of models con-
sider these phenomena as time-independent plastic deformation
mechanisms. A case in point is the phenomenological elastoplastic
constitutive model proposed by Kaliske and Rothert [46] that cap-
tures the rate-independent process of internal material friction due
to irreversible polymer slippage on the filler surface and plastic
deformation of the filler particles. This multi-yield-surface rheologi-
cal model is comprised of a finite number of elastoplastic Prandtl
elements arranged in parallel with an elastic member. More
recently, yield-surface-free endochronic plasticity [47] was utilized
by Netzker et al. [48] to model the smooth and hysteretic cyclic
stress–strain response of carbon-black filled rubbers, with higher
computational efficiency and fewer parameters.
In this paper, we present an elastoplastic constitutive formulation

with isotropic damage capable of modeling the cyclic response of
mock energetic composite materials. Specifically, a Lagrangian
finite-deformation formulation based on the additive decomposition
of strain energy [49–53] into elastic and plastic parts is adopted. The
formulation uses Ogden’s hyperelastic model [54,55] to predict the
rubber-like nonlinear elastic response of the polymeric binder and a
hereditary (path-dependent) yield-surface-free endochronic plastic-
ity theory [47], based on the concept of internal state variables [56],

Fig. 1 Mock PBX specimens
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to account for irreversible deformations. A discontinuous isotropic
damage model [57,58] is utilized to model the stress-softening that
occurs during unloading, and an endochronic material scale func-
tion is utilized to model progressive cyclic stress-softening and
attainment of stable cyclic response. It is worth mentioning that
while the material scale function has been utilized in previous
works to describe the cyclic hardening or softening behavior of
metals and alloys [47,59–61], its application to filled polymeric
materials with complex microstructure like particle-binder compos-
ites has not been demonstrated in the open literature, and thus, it is
one of the primary contributions of this paper. The number of model
parameters is a function of the number of active Ogden terms and
endochronic branches; therefore, a significant number of parameters
may need to be identified. Accordingly, we develop a parameter
identification method based on a nonlinear multivariate least-
squares problem, which is expected to be non-convex and affected
by multiple local optima. The range of behavior predicted by the
proposed model is demonstrated by calibrating the model parame-
ters for the three mock PBX material compositions [23] under
both monotonic and cyclic compressive loading. Finally, the versa-
tility and the capability of the model to represent the material, spe-
cifically, the material composition, is demonstrated by identifying a
correlation between the calibrated model parameters and the unique
stress–strain response of each mock PBX specimen.
The paper is organized as follows. The constitutive model is pre-

sented in Sec. 2, followed by Sec. 3 which provides a discrete

numerical procedure to solve for stresses along a loading path.
Section 4 presents the model parameter identification procedure
and the calibrated material properties of the three mock PBX formu-
lations. Section 5 shows a detailed comparative analysis of the three
specimen formulations and presents the correlation identified
between the estimated mechanical properties and the mechanical
behavior, as well as the composition of the specimens. Finally, a
summary and concluding remarks are presented in Sec. 6.

2 Constitutive Model
2.1 General Framework. The finite-deformation constitutive

law is based on an additive decomposition of the Helmholtz free
energy density function [49–53] into elastic and plastic parts, and
it employs a local multiplicative decomposition of the deformation
gradient into isochoric and volumetric contributions. This approach
is in contrast to the constitutive formulations based on the multipli-
cative elastic–plastic decomposition of the deformation gradient
[62–65] or additive decomposition of the rate of deformation
tensor [66–68]. For an isothermal elastoplastic deformation
process, the free energy density function Ψ is given by

Ψ(C, ζ1, . . . , ζN) = Ψe
vol(J) +Ψe

iso(�C) +
∑N
j=1

Γi
j(C, ζj) (1)

Fig. 3 (a) Nominal stress–strain response under strain-controlled unconfined uniaxial compressive cyclic loading of
(a) 85–00, (b) 85–15, and (c) 85–30 mock PBX specimens. The response until the attainment of a stable cyclic loop is shown
in gray, while the stable cyclic loop is shown in black. Observable response attributes (labeled in the figures) include the fol-
lowing: (1) highly nonlinear stress–strain response without a distinctive yield point, (2) hysteresis, and (3) cyclic stress-
softening with eventual stabilization.

Fig. 2 (a) Uniaxial monotonic compressive stress–strain response of (a) 85–00, (b) 85–15, and (c) 85–30 mock PBX specimens
recorded for a maximum applied strain of 30%
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where Ψe
vol(J) and Ψe

iso(�C) are the volumetric and isochoric elastic
strain energy density functions, dependent respectively, on the Jaco-
bian of the deformation J = det(F) and on the isochoric right
Cauchy-Green deformation tensor �C = �FT �F (where �F = J−1/3F).
The inelastic strain energy

∑N
j=1 Γ

i
j(C, ζj) is a set of configurational

free energy functionsΓi
j (j = 1, . . . , N) that characterizes the inelastic

deformation behavior, namely, irreversible slip at particle–particle
and particle–binder contacts, plastic deformation, and fracture of
particles, among other dissipative mechanisms typical of particle-
binder composites. This path-dependent dissipative potential
depends on the right Cauchy-Green deformation tensor C and a
set of inelastic strain-like second-order tensorial internal variables
ζj (j = 1, . . . , N) that represent the inelastic deformation history of
the material.
Additionally, filled rubber or soft polymeric materials in general

exhibit a stress-softening behavior when unloaded from a maximum
previous deformation. This phenomenon, widely known as the
Mullins effect [41,42], has been discussed extensively in the litera-
ture. The micromechanics behind the occurrence of this phenome-
non is highly debated, and numerous theories have been
suggested, such as rupture of filler-polymer bonds [69,70], molecu-
lar slipping on the filler surface [71,72], and breakage of filler clus-
ters [73,74]. However, most phenomenological descriptions of this
effect employ the thermodynamic framework of continuum damage
mechanics (CDM) [57,58], where the loss of the material’s ability to
sustain load due to damage is described by applying a scalar reduc-
tion factor, also known as a damage variable, to the stress in a hypo-
thetical, undamaged material. Various models based on this
principle have been proposed, generally classified according to
the evolution of damage being discontinuous [49,75–77] or contin-
uous [78–81] (for more information on the physical interpretation
and classification of phenomenological models for Mullins effect
[82]). While discontinuous damage models predict the same reload-
ing response as the unloading response during cyclic loading
(referred to as idealized Mullins effect), continuous models have
the capability to model diverging unloading–reloading responses.
Since the different unloading–reloading responses as seen in ener-
getic composites can be effectively modeled by the proposed path-
dependent constitutive formulation, the damage evolution can be
defined as discontinuous and occurring only during unloading for
simplicity and computational efficiency.
Discontinuous damage models, specifically, the pseudoelastic

material models [75,77,83], are based on the application of suitable
damage or softening function φ to the strain energy in a hypothet-
ical, undamaged material. The evolution of this damage function
is discontinuous and depends on the deformation history of the
material. For a given deformation measure ϕ and its maximum
value ϕmax = max

τ∈[−∞,t]
ϕ(τ) throughout the material’s deformation

history until the current time t, the damage function φ is given by

φ
=1, ϕ = ϕmax

∈ (0, 1), ϕ < ϕmax

{
(2)

Therefore, during the initial loading of the virgin material when
the current value of the deformation remains equal to its
maximum value throughout the material’s history, the damage func-
tion does not evolve, and the material’s strain energy remains
unchanged. However, during unloading–reloading from a previous
maximum deformation, the current deformation measure is lower
than the maximum value, and the damage function evolves mono-
tonically between 0 and 1. This in turn reduces the effective strain
energy in the material and produces the softening effect.
With the application of the damage function, the effective strain

energy density function Ψ is given by

Ψ (C, ζ1, . . . , ζN , φ) = φ(ϕ, ϕmax)Ψ(C, ζ1, . . . , ζN) (3)

To explore the thermodynamic consistency of the constitutive
model by means of fulfillment of the second law of

thermodynamics, we utilize the Clausius–Duhem inequality for an
isothermal process, given by

D:=
1
2
S:Ċ − Ψ̇ ≥ 0 (4)

where D is the dissipation and S is the second Piola-Kirchhoff
stress tensor. By applying the definition of effective strain energy
density function Ψ according to Eqs. (3) and (1), the inequality
becomes

S − 2φ
∂Ψ
∂C

[ ]
:
Ċ
2
− Ψφ̇ −

∑N
j=1

∂Γi
j

∂ζj
:ζ̇j ≥ 0 (5)

From standard arguments [84,85], the first term yields the defini-
tion of the second Piola-Kirchhoff stress, that is

S = 2φ
∂Ψ(C, ζ1, . . . , ζN)

∂C
= φ Sevol + Seiso +

∑N
j=1

Sij

[ ]
(6)

while the second and third terms yield the dissipation

D = −Ψφ̇ −
∑N
j=1

∂Γi
j

∂ζj
:ζ̇j ≥ 0 (7)

where the volumetric elastic stress Sevol, the isochoric elastic stress
Seiso, the inelastic stress

∑N
j=1 S

i
j, the thermodynamic force q (conju-

gate to damage function φ), and the stress-like internal variables S̃
i
j

(thermodynamically conjugate to ζj) are given by

Sevol = J
dΨe

vol(J)
dJ

C−1 (8)

Seiso = J−2/3DEV 2
∂Ψe

iso(�C)
∂�C

{ }
(9)

∑N
j=1

Sij = 2
∑N
j=1

∂Γi
j(C, ζj)

∂C
(10)

q =
∂Ψ
∂φ

= Ψ (11)

S̃
i
j = −

∂Ψ
∂ζj

= −
∂Γi

j(C, ζj)

∂ζj
( j = 1, . . . , N) (12)

In Eq. (9), DEV{·} = {·} − (1/3)[{·}:C]C−1 provides the devia-
tor of a tensor in the reference configuration. It is worth noting that
the second term of the dissipation D from Eq. (7) (now given by∑N

j=1 S̃
i
j:ζ̇j using Eq. (12)) becomes positive by defining a flow

rule of the following form

ζ̇j = Bj(C, ζj):S̃
i
j (13)

where Bj is a positive definite fourth-order tensor [52].

2.2 Elastic Strain Energy. The nonlinear elastic constitutive
behavior of rubber-like materials, such as the binder in the applica-
tion studied here, is commonly described through hyperelastic
material models (see, e.g., the finite-deformation formulations pre-
sented in Refs. [54,55,86–88]). Ogden’s hyperelastic model [54,55]
is one of the most extensively used models for describing complex
nonlinear responses, mainly due to its flexible series representation
with the capability to introduce several model parameters.
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Specifically, the isochoric elastic strain energy density Ψe
iso is

given by

Ψe
iso(�C) =

∑M
k=1

μk
αk

(�λ
αk
1 + �λ

αk
2 + �λ

αk
3 − 3) (14)

where the isochoric principal stretches are given by �λa =
J−1/3λa (a = 1, 2, 3) for principal stretches λa (a= 1, 2, 3). Con-
stants μk and αk (k= 1, …, M ) are material parameters that satisfy
the following inequality to enforce stability in the material response

μkαk > 0 ∀ k ∈ [1, M] (15)

From consistency conditions with respect to linear elasticity at
small strain [89], the reference (ground-state) shear modulus of
the material is given by

μ =
∑M
k=1

μkαk
2

(16)

2.3 Discontinuous Isotropic Damage. As seen in Sec. 2.1, a
discontinuous isotropic damage model is utilized to model the
stress-softening that occurs during unloading, i.e., the Mullins
effect [41,42] for polymeric materials, with damage function
φ(ϕ, ϕmax). In the spirit of the damage function proposed by
Zúñiga and Beatty [77] and pseudoelastic damage functions pro-
posed by Ogden and Roxburgh [75] and Dorfmann and Ogden
[76], we specifically define the scalar damage variable as follows:

φ(ϕ, ϕmax) = tanhp
ϕmax − ϕ

m

( )
(17)

where the deformation measure ϕ is taken as the one proposed by
Beatty and coworkers [77,90], given by

ϕ = |C| =
�����
C:C

√
(18)

and where ϕmax is the maximum deformation level given by

ϕmax(t) = max
τ∈[−∞,t]

ϕ(|C(τ)|) (19)

The damage function is then a monotonic function of the defor-
mation measure in the interval ϕ ∈

��
3

√
, ϕmax

[ ]
, with positive

damage parameters m and p.

2.4 Yield-Surface-Free Endochronic Plasticity and
Evolution Equation. As explained previously, particle-binder
composites, specifically plastic-bonded explosives (PBX), exhibit
a nonlinear elastoplastic response without apparent yield. Classical
plasticity theories require a yield surface, and thus, their applicabil-
ity is limited for modeling these composites. In this study, we
follow the work of Holzapfel and Simo [51] and assume a quadratic
relationship between free energy functions Γi

j(C, ζj) and the internal
variables ζj, i.e.,

∂Γi
j

∂ζjζk
= 2μjδ jkI ( j not summed) (20)

where μj are the reference (ground-state) shear moduli related to j
inelastic processes, δmn is the Kronecker delta and I is the fourth-
order identity tensor. Therefore, by integrating Eq. (13) twice, the
following inelastic strain energy functions are obtained

Γi
j(C, ζj) = μj|ζj|2 + S∗j (C):ζj + Ψ∗

j (C) ( j = 1, . . . , N) (21)

where S∗(C) andΨ∗(C) are unknown tensor and scalar-valued func-
tions, respectively. Similarly, an evolution or rate equation for the
stress-like internal variables is obtained from Eqs. (12), (13), and
(21), and it is given by

˙̃S
i

j + 2μjBj(C, ζj):S̃
i
j = −Ṡ∗(C) ( j = 1, . . . , N) (22)

The inelastic strain energy without apparent yield is realized by
adopting the endochronic plasticity theory developed by Valanis
[47]. This theory is strain path-dependent in nature, and it does
not require the definition of a yield surface. It has been applied suc-
cessfully to develop both infinitesimal-strain and finite-deformation
plastic formulations to describe many metals and alloys [59,91,92],
concrete [93], powder compaction [94–96] and, more recently,
filled elastomers [37,48]. In accordance with this theory, we speci-
fically assume the fourth-order tensor Bj to be given by

Bj(C, ζj) =
ż(|Ċ|)
2μjγj

I ( j = 1, . . . , N) (23)

where the intrinsic time scale z is a monotonically increasing
measure of the deformation history, and the memory kernel is
given by a set of positive dimensionless material parameters γj
( j = 1, …, N ) [95,97] that defines the path-dependent behavior of
the formulation. It is worth noting that μjγj≥ 0 forBj to be a positive
definite tensor. In addition, we assume

S∗j (C) = −Seiso,j(C)

= −J−2/3DEV 2
∂Ψe

iso,j(�C)

∂�C

{ }
( j = 1, . . . , N) (24)

where Ψe
iso,j are a set of isochoric elastic strain energy functions

defined according to Ogden’s model as

Ψe
iso,j =

∑P
i=1

μij
αij

(�λ
αij
1 + �λ

αij
2 + �λ

αij
3 − 3) ( j = 1, . . . , N) (25)

with constants μij and αij such that μijαij > 0 (Eq. (15)). It is worth
noting that after substituting Bj and S∗j according to Eqs. (23) and
(24), respectively, the evolution or rate Eq. (22) simplifies to

˙̃S
i

j +
ż Ċ
∣∣∣ ∣∣∣( )
γj

S̃
i
j = Ṡ

e
iso,j ( j = 1, . . . , N) (26)

which can be regarded as the nonlinear extension of the one-
dimensional isothermal evolution equation for a standard linear
solid proposed by Valanis [98] (see Sec. 6 of the reference). Fur-
thermore, by eliminating time dependence on both sides of the dif-
ferential Eq. (26) and integrating with respect to the intrinsic time
scale z, the classical hereditary or convolution form is recovered,
that is

S̃
i
j = S̃

i
j,0 +

∫z
0
Ṡ
e
iso,je

− z−z′
γj dz′ ( j = 1, . . . , N) (27)

with S̃
i
j(z = 0) = S̃

i
j,0. Finally, for completeness, we set Ψ∗

j (C) =
Ψe

iso,j(�C) and, therefore, the reference shear moduli μj in Eq. (21)
are given by

μj =
∑P
i=1

μijαij
2

> 0 ( j = 1, . . . , N) (28)

2.5 Intrinsic Time Scale and Material Scale Function. The
intrinsic time scale z, used in the evolution or rate Eq. (26) for inter-

nal variables S̃
i
j, is defined as

ż(|Ċ|) = |Ċ|
f (z)

(29)

where f (z) is a material scale function that represents the transient
cyclic behavior of the material until attainment of a stable response.
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In its simplest form, f (z) is a monotonically increasing function for
cyclic hardening materials, and a monotonically decreasing func-
tion for cyclic softening materials, that is asymptotic to a saturation
value at steady-state. A simple scale function proposed by Wu and
Yip [59] is given by

f (z) = c − (c − 1)e−βcz (30)

where βc controls the rate of evolution, and the value at steady-state
is c> 1, for hardening materials, and c< 1, for softening materials.
Yeh [60] and Lin et al. [61] proposed the following improvements
to the scale function

f (z) =
c

s − (s − 1)e−βszref

−
c

s − (s − 1)e−βszref
− 1

( )
e−βc(z−zref )

(31)

In the above improved scale function, the additional parameter
zref, defined as the value of z at which the last reversal of the
strain path occurred, adds the capability to model “fading
memory” effects exhibited by materials with memory [99]. In
turn, the saturation value at steady-state depends on the reference
time scale zref. It is equal to c for zref= 0, i.e., before the first rever-
sal, and approaches c/s for zref→∞, i.e., at cyclic stabilization. It is
worth noting that for c> s> 1, the initial saturation value c is greater
than the saturation value c/s at cyclic stabilization, i.e., the scale
function describes the progressive cyclic softening typically
observed in particle-binder composites. Figure 4 shows a schematic
representation of the scale function proposed by Lin et al. [61]. It is
evident from the figure that the rate of evolution of the material
scale function is controlled by βc, whereas the rate of evolution of
the saturation value is controlled by βs.

2.6 Inelastic Stress. The inelastic stress contributions
Sij ( j = 1, . . . , N) are determined by using Eq. (10) with the inelastic
strain energy function defined by Eq. (21) and by expressing the

internal variables ζj in terms of their conjugates S̃
i
j, i.e., using

Eq. (12). The result of this mathematical manipulation is given by

Sij = Seiso,j −
1
μj

∂Seiso,j
∂C

: Seiso,j − S̃
i
j

( )
(32)

where the internal variables S̃
i
j are determined using the evolution or

rate Eq. (26).

3 Incremental Solution Procedure
The constitutive model presented in the previous section is inte-

grated by using an incremental solution procedure with time or
loading intervals [n, n+ 1]. We assume that the state of the material,

Cn, S̃
i
j,n, zn, zref,n, ϕ

max
n , is known at loading step n and that Cn+1 at

loading step n+ 1 is given. The problem is then to determine S̃
i
j,n+1,

zn+1, zref,n+1, and ϕmax
n+1 at loading step n+ 1, and the value of the

second Piola-Kirchhoff stress Sn+1, which is given by

Sn+1 = φn+1

[
Sevol,n+1 + Seiso,n+1 +

∑N
j=1

Seiso,j,n+1

−
∑N
j=1

1
2μj

�C j,n+1:
(
Seiso,j,n+1 − S̃

i
j,n+1

)]
(33)

where

�C j,n+1 = 2
∂Seiso,j
∂C

[ ]
n+1

(34)

and

S̃
i
j,n+1 =

(1 − Δz/2γj)S̃
i
j,n + (Seiso,j,n+1 − Seiso,j,n)

(1 + Δz/2γj)
(35)

In the previous equations, all quantities other than φn+1 and Δz
are either known or depend on the right Cauchy-Green deformation
tensor through Eqs. (8), (9), and (24). The scalar damage function
φn+1 is computed after updating ϕmax

n+1 using Eq. (19). The stress-like

internal variables S̃
i
j,n+1 defined by Eq. (35) above are obtained by

using a midpoint rule to discretize the evolution or rate Eq. (26), i.e.,
from

S̃
i
j,n+1 − S̃

i
j,n +

Δz
γj

( )
S̃
i
j,n +

S̃
i
j,n+1 − S̃

i
j,n

2

( )
= Seiso,j,n+1 − Seiso,j,n

(36)

The value of intrinsic time scale increment, Δz, is obtained by
using a midpoint rule to discretize Eq. (29) together with
Eq. (31), i.e., from

Fig. 4 Schematic representation of the evolution of material scale function f (z)
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Δz
c

s− (s−1)e−βszref,n+1
−

c

s− (s−1)e−βszref,n+1
−1

( )
e−βc zn+Δz

2 −zref,n+1( )
[ ]

− |�Cn+1− �Cn|=0 (37)

with zn+1= zn+Δz, and

zref,n+1 =
zn if (ϕn+1 − ϕn) · (ϕn − ϕn−1) < 0
zref,n otherwise

{
(38)

The previous nonlinear equation is solved numerically using a
Newton-Raphson method.

4 Model Parameter Identification of Mock
Plastic-Bonded Explosives
The range of behavior predicted by the proposed constitutive

model is demonstrated by calibrating the model parameters for
the three mock PBX formulations (85–00, 85–15, and 85–30)
under monotonic and cyclic compression [23]. Therefore, Sec. 4.1
presents the incremental procedure for uniaxial loading under
unconfined lateral conditions and incompressible material assump-
tions. Section 4.2 presents a parameter identification procedure
based on a nonlinear multivariate minimization problem and the
least-squares principle. Finally, Sec. 4.3 shows the results of the
parameter identification.

4.1 Incremental Procedure for Uniaxial Cyclic Loading.
The material is assumed to be incompressible, i.e., Jn= 1, and
thus �Cn = Cn, due to the rubber-like behavior of the particle-binder
composite. The cylindrical mock PBX specimen is loaded along its
axial direction which is coincidental with the e3 of a Cartesian coor-
dinate system eI , with I= 1, 2, 3. Therefore, the right Cauchy-Green
deformation tensor has principal stretches λI are related by

λ1,n = λ2,n =
1����
λ3,n

√ (39)

and principal directions aligned with the Cartesian axes, i.e.,

Cn =
∑3
I=1

λ2I,neI ⊗ eI . The specimen is laterally unconfined and the

platens that apply the load are frictionless. Therefore, the only com-
ponent of the second Piola-Kirchhoff stress that is different from
zero is S33,n.
The elastic strain energy functions involved in the formulation

reduce to

Ψe(λ1, λ2, λ3) =
∑M
k=1

μk
αk

(λαk1 + λαk2 + λαk3 − 3)

Ψe
j (λ1, λ2, λ3) =

∑P
i=1

μij
αij

(λαij1 + λ
αij
2 + λ

αij
3 − 3)

( j = 1, . . . , N)

Ψe
vol(J) = −po(J − 1)

(40)

where the last term is used to augment the energy density and
enforce the material internal or kinematic constraint imposed by
incompressibility, i.e., J= 1, with po being the hydrostatic pressure.
Following the incremental procedure presented in Sec. 3, we

assume that the state of the material, Cn, S̃
i
j,n, zn, zref,n, and ϕmax

n ,
is known at loading step n, and that Cn+1 at loading step n+ 1 is
given. The maximum deformation level ϕmax

n+1 is determined from
Eqs. (18) and (19) using

ϕn+1 =

���������������
λ43,n+1 +

2

λ23,n+1

√
(41)

The intrinsic time scale increment Δz is obtained using Eq. (37)
with

|�Cn+1 − �Cn| =
������������������������������������
2(λ−13,n+1 − λ−13,n)

2
+ (λ23,n+1 − λ23,n)

2
√

(42)

and zref,n+1 is updated using Eq. (38) and zn+1= zn+Δz. The stress
components in Eq. (33) simplify to

Se11,iso,n+1 = Se22,iso,n+1 =
∑M
k=1

μkλ
1−αk/2
3,n+1

Se11,vol,n+1 = S�e22,vol,n+1 = −po,n+1λ3,n+1

Se11,iso,j,n+1 = Se22,iso,j,n+1 =
∑P
i=1

μijλ
1−αij/2
3,n+1

�C1111,j,n+1 = �C2222,j,n+1 =
∑P
i=1

μij(αij − 2)λ2−αij/23,n+1

Se33,iso,n+1 =
∑M
k=1

μkλ
αk−2
3,n+1

Se33,vol,n+1 = −po,n+1λ−23,n+1

Se33,iso,j,n+1 =
∑P
i=1

μijλ
αij−2
3,n+1

�C3333,j,n+1 =
∑P
i=1

μij(αij − 2)λαij−43,n+1

(43)

where the hydrostatic pressure po,n+1 is obtained from the traction
free boundary condition, i.e., from S11,n+1= S22,n+1= 0, and it is
given by

po,n+1=
1

λ3,n+1
Se11,iso,n+1 +

∑N
j=1

Se11,iso,j,n+1

[

−
∑N
j=1

1
2μj

�C1111,j,n+1: Se11,iso,j,n+1 − S̃
i
11,j,n+1

( )]
(44)

and the stress-like internal variables S̃
i
j,n+1 are readily computed

using Eq. (35).

4.2 Parameter Identification Method. We have developed a
parameter identification method based on a nonlinear multi-
variate minimization problem. The proposed constitutive model
has 2M+ 2P ×N+N+ 6 material parameters, namely

(1) 2M parameters in the elastic branch: μk and αk (k= 1,…,M ).
(2) 2P ×N elastic parameters in the yield-surface-free endochro-

nic branches: μij and αij (i= 1, …, P; j= 1, …, N ).
(3) N kernel parameters in the yield-surface-free endochronic

branches: γj( j= 1, …, N).
(4) Four material scale function parameters: c, s, βc, and βs.
(5) Two isotropic damage parameters: m and p.

The method is based on the least-squares principle, for experi-
mental monotonic and cyclic nominal stress values
Texp
k (k = 1, . . . , K) and Texp

l (l = 1, . . . , L), respectively, and
corresponding model first Piola-Kirchhoff stress values λ3,kS33,k
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and λ3,lS33,l. It is given by

min
v∈R2M+2P×N+N+6,εo

1
K wmono

∑K
k=1

(Texp
k − λ3,kS33,k)

2

[ ]

+
1
L wcyclic

∑L
l=1

(Texp
l − λ3,lS33,l)

2

[ ]

subject to −μkαk ≤ 0 for k = 1, . . . , M

−μijαij ≤ 0 for i = 1, . . . , P; j = 1, . . . , N

s − c≤ 0

v∈ [vmin, vmax] (45)

where wmono and wcyclic are appropriate weights applied to the
monotonic and cyclic least-squares functions, respectively, to
balance the accuracy of model predictions for these tests. The
inequality constraints come from Ogden’s stability conditions
(e.g., from Eq. (19) for the elastic branch) and from the requirement
of progressive cyclic softening. Since the nonlinear optimization
problem is expected to be non-convex and affected by multiple
local optima, appropriate bounds are applied to the set of material
parameters v. Lastly, the experimental stress–strain response of
the mock PBX specimens suggests that the initial loading response
is affected by machine/specimen mismatch (Figs. 2 and 3). There-
fore, the initial part of the response is omitted from the parameter

estimation by applying a strain offset ɛo to the experimental data
and setting stresses for the initial mismatch to be zero.
An iterative procedure is followed to determine the number of

terms M and P in the Ogden strain energy series functions for the
elastic branch and the endochronic branches, respectively, as well
as to determine the number of endochronic branches N. The proce-
dure starts from an initial value of M=P=N= 1 and calculates the
least-squares error given by Eq. (45). During each iteration, three
error values are computed by independently incrementing the
values of M, P, and N by 1. The increment corresponding to the
minimum of the three errors is adopted, only if the minimum
error is reduced by a specified percentage tolerance (taken as 5%
in this study) as compared to the minimum error computed in the
previous iteration. Otherwise, the values of M, P, and N obtained
during the previous iteration are adopted and the procedure is con-
cluded. This procedure aims to improve the estimation of the model
without overly increasing its complexity.

4.3 Parameter Identification of Mock Plastic-Bonded
Explosives. The constitutive model and parameter identification
method presented earlier were used to calibrate the experimental
monotonic (Fig. 2) and cyclic (Fig. 3) compressive response of
85–00, 85–15, and 85–30 mock PBX cylindrical specimens. The
nonlinear multivariate minimization problem was solved in
MATLAB

® [100] using the constrained optimization function
fmincon with the default interior-point algorithm. The model-
calibrated nominal stress–strain curves are presented in Figs. 5

Fig. 5 (a) Model-estimated uniaxial monotonic compressive stress–strain response of (a) 85–00, (b) 85–15, and (c) 85–30mock
PBX specimens. The dashed line indicates the applied strain offset ɛo.

Fig. 6 (a) Model-estimated stress–strain response under strain-controlled unconfined uniaxial compressive cyclic loading of
(a) 85–00, (b) 85–15, and (c) 85–30 mock PBX specimens. The dashed line indicates the applied strain offset ɛo.
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(monotonic) and 6 (cyclic), and the estimated material parameters
for each specimen formulation are listed in Table 1. Comparison
of experimental and model curves suggests an excellent agreement
between the two for all three formulations. The strain offset was cal-
culated as 2.25% for 85–00, 1.03% for 85–15, and 2.51% for 85–
30, and it is denoted in the figures by a dashed line.
For detailed comparative analysis, experimental and

model-estimated values of the cumulative energy dissipation
(Fig. 7), peak stress (Fig. 8), and apparent modulus (Fig. 9) are com-
pared for cyclic compression of the specimens. The apparent
modulus [23,37] is calculated as the slope of the line connecting
peak and valley stresses in each cycle, while the cyclic energy dis-
sipation [23] is calculated as the difference between the energy sup-
plied to the material (i.e., the area under the loading path) and the
energy recovered after a cycle (i.e., the area under the unloading
path). Again, an excellent agreement between the experimental
and model values is obtained for the three specimens, demonstrating
the capability of the proposed model to describe the strength, stiff-
ness, and softening characteristics of particle-binder composites.

5 Comparative Analysis of Mock Plastic-Bonded
Explosives Formulations and the Relationship Between
Model Parameters and Material Composition
From the observation of calibrated properties of mock PBX spe-

cimens in Table 1, it is possible to identify the correlation between
the property values and the unique mechanical behavior of each
specimen and, therefore, establish the relationship between mate-
rial properties and material composition. For instance, the 85–00
specimen is accurately modeled by two endochronic branches,
while 85–15 and 85–30 specimens require three endochronic
branches to fully represent their mechanical response, which sig-
nifies the higher material nonlinearity and more extensive inelastic
behavior of the aluminized specimens. Specific trends in individ-
ual property values are also observed, which are discussed in
detail below.

5.1 Elastic and Endochronic Branches. In the context
of representing the deformation mechanics of particle-binder

Fig. 7 (a) Comparison of experimental andmodel-estimated cumulative energy dissipation versus number of cycles for cyclic
compressive stress–strain response of (a) 85–00, (b) 85–15, and (c) 85–30 mock PBX specimens

Table 1 Model parameters of 85–00, 85–15, and 85–30 mock energetic formulations estimated from their monotonic and cyclic
compressive response

Material parameters 85–00 85–15 85–30

Elastic branch (M= 1)
μ1 (MPa) 1.1252 0.7483 0.0808
α1 9.2293 10.8969 17.4232
Initial shear modulus μe =

∑M
k=1

μkαk/2 (MPa) 5.1922 4.0768 0.7037

Yield-surface-free endochronic branch 1 (P= 1)
μ11 (MPa) 0.0432 5.6465 12.1770
α11 0.0519 0.8418 1.1832
Initial shear modulus μi1 =

∑P
i=1

μi1αi1/2 (MPa) 0.0011 2.3766 7.2038
γ1 0.0017 0.0010 0.0018

Yield-surface-free endochronic branch 2 (P= 1)
μ12 (MPa) 0.0068 2.8725 0.0039
α12 0.0661 1.5255 0.0543
Initial shear modulus μi2 =

∑P
i=1

μi2αi2/2 (MPa) 0.0002 2.1910 0.0001
γ2 0.1723 0.0358 0.0622

Yield-surface-free endochronic branch 3 (P= 1)
μ13 (MPa) − 4.3973 0.6204
α13 − 1.6687 1.2223
Initial shear modulus μi3 =

∑P
i=1

μi3αi3/2 (MPa) − 3.6688 0.3792
γ3 − 0.3413 0.2388

Material scale function
c 14.9879 29.5182 591.1894
s 1.2592 2.0384 5.9671
βc 125.3399 944.2924 2.0906
βs 212.6798 16.7109 5.7283

Isotropic damage
m 0.0247 0.0863 0.0195
p 0.7619 0.5769 0.3208

Journal of Applied Mechanics FEBRUARY 2022, Vol. 89 / 021002-9

D
ow

nloaded from
 http://asm

edc.silverchair.com
/appliedm

echanics/article-pdf/89/2/021002/6777427/jam
_89_2_021002.pdf by guest on 19 April 2024



composites by a linear rheological model (Fig. 10) with respect to
the constitutive formulation presented in Sec. 2, the elastic branch
can be seen as a spring of stiffness 2μe acting in parallel with N
endochronic branches, each of which consists of a spring of stiff-
ness 2μij and a friction element with threshold strain γj, where j=
1, …, N. The total stiffness μ of the material is represented by a
sum of the elastic and endochronic moduli, i.e., μ = μe +

∑N
j=1 μ

i
j,

while the threshold strains represent the macroscopic strains at the
activation of inelastic processes, such as irreversible slipping of

binder molecular chains on the filler (solid) surface and plastic
deformation of the solid particles [46,48].
From the calibrated parameter values listed in Table 1, the total

stiffness of 85–00, 85–15, and 85–30 specimens is found to be
5.1941 MPa, 12.3132 MPa, and 8.2868 MPa, respectively. This
suggests that the addition of aluminum in the PBX composition
increases material stiffness; however, the stiffness starts to reduce
with an increase in the amount of aluminum in the composition.
This postulation is also supported by the evolution of the apparent
modulus during the cyclic loading of the three compositions
(Fig. 9). The figures show that the apparent modulus of the cyclic
loops ranges between 5 MPa and 7 MPa for 85–00, 6 MPa
and 11 MPa for 85–15, and 4 MPa and 11 MPa for 85–30. There-
fore, the experimentally determined average modulus follows
the same order with respect to the material composition as the
model-estimated modulus. Another interesting observation lies in
the contribution to the total modulus by the endochronic branches,
which from Table 1 is 0.0013 MPa (0.025%) for 85–00,
8.2364 MPa (66.89%) for 85–15 and 7.5831 MPa (91.51%)
for 85–30. Therefore, it is evident that with the activation of
inelastic deformation mechanisms, the elastic material stiffness
decreases with increasing aluminum content, which is also con-
sistent with the observation of predominantly nonlinear mechan-
ical response and ductile plastic flow to larger strain levels
during monotonic compression in 85–15 and 85–30 as compared
to 85–00 (Fig. 2).
With regard to the threshold strains γj, the value of strain γ1 in the

first endochronic branch is very small and comparable in magnitude
for all PBX compositions (0.0017 for 85–00, 0.001 for 85–15, and
0.0018 for 85–30). This suggests that mock PBX material starts

Fig. 8 (a) Comparison of experimental and model-estimated peak stress versus number of cycles for cyclic compressive
stress–strain response of (a) 85–00, (b) 85–15, and (c) 85–30 mock PBX specimens

Fig. 9 (a) Comparison of experimental and model-estimated apparent modulus versus number of cycles for cyclic compres-
sive stress–strain response of (a) 85–00, (b) 85–15, and (c) 85–30 mock PBX specimens

Fig. 10 Linear rheological interpretation of the proposed consti-
tutive model
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exhibiting inelastic behavior from almost the beginning of the
loading process regardless of aluminum content, which rationalizes
the selection of a yield surface-free plasticity theory to model these
materials. However, the value of threshold strain in the second
endochronic branch (γ2) is much larger for 85–00 (0.1723) as com-
pared to those of 85–15 (0.0358) and 85–30 (0.0622), indicating
that more extensive inelastic processes start occurring at smaller
macroscopic strains in the aluminized specimens. When comparing
85–15 and 85–30 specimens, we observe that although the second
threshold strain is smaller for 85–15, the threshold strain in the
third branch (γ3) is smaller for 85–30 (0.2388) as compared to
85–15 (0.3413). Therefore, it can be concluded that higher alumi-
num content leads to the material exhibiting predominant inelastic
deformations at a smaller strain. This conclusion is also supported
by observations of higher residual strain in 85–30 (∼2%) as
compared to 85–15 (∼1.57%) after the recovery period following
the virgin cyclic loading tests as observed by Agarwal and
Gonzalez [23].

5.2 Material Scale Function. As explained in Sec. 2.5, the
material scale function f (z), which is a function of the intrinsic
time scale z, is used in the constitutive model to represent the pro-
gressive cyclic stress-softening behavior observed during cyclic
compression of particle-binder composites. The function is given
by Eq. (31) and consists of four material parameters, namely, c, s,
βc, and βs. The parameter c is the saturation value of the function
during initial loading from zero deformation when the reference
intrinsic time scale, zref, is equal to zero. If the loading remains
monotonic, the simpler scale function proposed by Wu and Yip
[59] and given by Eq. (30) is recovered. According to this
simpler function, the value of f (z) evolves from 1 as z increases
and approaches c at z→∞, with the rate of evolution governed
by βc. If c> 1, then f (z)≥ 1. Therefore, during a loading step, the
increment in the intrinsic time scale z is greater than the increment
in deformation measure |C| according to Eq. (29), which produces a
strain-hardening behavior. Conversely, if c< 1, a strain-softening
response is obtained. This is also true during cyclic loading–unload-
ing; however, the saturation value changes as zref increases, and
approaches c/s at zref→∞ which signifies cyclic stabilization. If
c/s < c, then a progressive stress-softening response is obtained,
which, as already stated, is one of the primary deformation mecha-
nisms observed in mock PBX.
The value of parameter c for the studied mock PBX specimens is

seen to increase with increasing aluminum content in the composi-
tion. Specifically, it is much higher for 85–30 as compared to 85–00
and 85–15 specimens. The reason for this difference lies in the
monotonic compression response of the specimens. Figure 11
shows the influence of variation in c from its estimated value on

the monotonic compression response of 85–00 specimen. It is
evident that c controls the occurrence of maximum or ultimate
stress in the response, as well as the magnitude of the ultimate
stress, which stems from its representative role as the magnitude
of strain hardening in the material. The ultimate stress is observed
in the monotonic response of 85–00 and 85–15 specimens, with
the value of the stress and the strain at which it occurs is higher
for 85–15 as compared to that for 85–00. Therefore, the estimated
value of parameter c for 85–15 is comparatively higher than for
85–00. However, the 85–30 specimen does not show an ultimate
stress and continues to harden until the maximum applied deforma-
tion of 30%; hence, in accordance with Fig. 11, the estimated value
of c for 85–30 is much higher than both 85–00 and 85–15. With
regard to parameter βc, a correlation between the estimated values
and PBX aluminum content is not observed; rather, the values are
closely related to the evolution of the scale function during mono-
tonic loading and the estimated values of c. Figure 12 shows the
influence of variation in βc on the monotonic compression response
as well as the evolution of scale function f (z) with intrinsic time z for
the three specimens. It is evident that for 85–00 and 85–15 speci-
mens, the scale function f (z) reaches its saturation value c during
the monotonic loading process, while the same does not occur
for the 85–30 specimen as the material continues to harden
beyond the maximum applied strain. For 85–15 (Figs. 12(c) and
12(d )), the saturation value is reached much before the attainment
of ultimate stress, and therefore, any variation in βc has only a
slight influence on the loading response at small strains (∼1%–
5%). For 85–00 (Figs. 12(a) and 12(b)), the saturation value is
reached near the end of the loading process, and therefore, the influ-
ence of variation in βc on the stress–strain response is comparatively
larger than 85–15. For 85–30 (Figs. 12(e) and 12( f )), however, any
variation in βc has a significant impact on the stress–strain response.
It is specifically observed that βc controls only the evolution of
stress, with the stress at any strain increasing with increasing βc
and vice versa. With regard to the magnitude of βc, a higher
value of βc increases the rate of evolution of f (z) and therefore the
rate of attainment of the saturation value. Hence, 85–15 has the
highest value of βc (944.2924), followed by 85–00 (125.3399),
while 85–30 assumes a much lower value (2.0906).
As discussed before, the role of parameters s and βs in the context

of PBX material is to reduce the saturation value of the scale func-
tion f (z) from c to c/s during the cyclic loading process in order to
achieve progressive stress-softening until cyclic stabilization. While
s primarily controls the magnitude of the softening, βs controls the
softening rate or the rate of attainment of cyclic stabilization. From
the estimated values of s for the three specimens, the value of c/s is
obtained as 11.9027, 14.4811, and 99.0748 for 85–00, 85–15, and
85–30 respectively, resulting in a reduction of 20.58%, 50.94%, and
83.24% in their respective saturation values at cyclic stabilization as
compared to c. This implies that the magnitude of softening is the
highest for 85–30, followed by 85–15, and the least for 85–00. Con-
currently, the estimated values of βs for the three specimens indicate
the highest rate of stabilization for 85–00 (212.6798), followed by
85–15 (16.7109), and the lowest for 85–30 (5.7283). These findings
with reference to the model parameters are in agreement with the
experimental data, as shown in Fig. 13, where the ratio of cyclic
peak stresses with respect to the first peak stress (Fig. 13(a))
drops the highest for 85–30, followed by 85–15 and then 85–00,
while the change in peak stress with each cycle (Fig. 13(b))
approaches zero (i.e., cyclic stabilization) fastest for 85–00, fol-
lowed by 85–15 and then 85–30.

5.3 Isotropic Damage. As shown in Secs. 2.1 and 2.3, the
primary function of the isotropic damage model is to represent
the overall softening between loading and unloading responses
during cyclic loading of particle-binder composites. The model con-
sists of two positive parameters m and p, each of which, according
to Eq. (17), increase (decrease) the softening effect as their values
decrease (increase). Figure 14 shows the influence of variation in

Fig. 11 Influence of variation in the value of material scale func-
tion parameter c on the predicted monotonic compressive
response of 85–00 formulation
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m and p from their estimated values on a simulated load–unload
response from 16% strain for the 85–15 formulation. It is observed
that p predominantly affects the softening rate at higher strains,
more specifically, near the beginning of unloading. On the contrary,
m exerts a predominant control at lower strain levels. A closer
observation of Fig. 14 indicates that the effects of p are dominant

during the initial rapid softening (∼15–16% strain in the figure),
while the influence of m predominates thereafter when the softening
rate decreases. Figure 15 shows the evolution of the slope of the first
cyclic unloading curve for the experimental cyclic compressive
response of the three mock PBX specimens. The slope is plotted
for the first 2% strain after the start of unloading since it is seen

Fig. 12 (a) Influence of variation in the value of material scale function parameter βc on the monotonic compressive
response and the corresponding evolution of the material scale function f(z) with intrinsic time z, for (a) and (b) 85–
00; (c) and (d ) 85–15; and (e) and ( f ) 85–30 mock formulations. The occurrence of ultimate stress in 85–00 and 85–15
is designated in their respective f(z) evolution plots by a dotted line
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that within this range the unloading curves of all three specimens
begin to curve and the softening rate declines. Therefore, the
effects of both m and p can be studied within this range for the
three specimen compositions. From the figure, it is evident that
the 85–30 specimen begins unloading with the highest slope and,
therefore, exhibits the highest rate of initial softening, followed
by 85–15 and then by 85–00. This is in agreement with the decreas-
ing trend of the estimated p values in Table 1 with increasing alu-
minum content. With further unloading, the slope of the stress–
strain curve drops rapidly for all specimens and then approaches a
stable value, indicating more linear stress–strain response beyond

∼0.5% unloaded strain. In this region, the influence of parameter
m is predominant and a lower slope indicates a higher softening
effect (Figure 14(a)). Therefore, 85–30 again experiences the
highest softening in this strain range since it has the lowest slope.
However, the slope of 85–00 is lower than 85–15 in this range
and, therefore, exhibits a higher softening. This is again in agree-
ment with the estimated values of m in Table 1, which is the
highest for 85–15, followed by 85–00 and lowest for 85–30.

6 Summary and Discussion
We have presented a constitutive model for particle-binder com-

posites that accounts for finite-deformation kinematics, nonlinear
elastoplasticity without apparent yield, cyclic hysteresis, and pro-
gressive stress-softening before the attainment of stable cyclic
response. The model is based on an additive decomposition of
strain energy into elastic and inelastic parts, where the elastic
response is modeled using Ogden hyperelasticity while the inelas-
tic response is described using yield-surface-free endochronic plas-
ticity based on the concepts of internal variables and of evolution
or rate equations. Stress-softening is modeled using two
approaches; a discontinuous isotropic damage model to appropri-
ately describe the overall softening between loading and unloading
responses, and a material scale function to describe the progressive
cyclic softening until the attainment of stable response. The con-
stitutive model is then based on the deformation mechanisms

Fig. 13 (a) Plots depicting evolution of (a) the ratio of peak stress for each cycle with respect
to peak stress for the first cycle, and (b) fractional change in peak stress for a cycle with
respect to peak stress for the previous cycle, for cyclic compressive experimental data of
85–00, 85–15, and 85–30 specimens

Fig. 14 (a) Influence of variation in the value of damage function
parameters (a) m and (b) p on the simulated compressive load–
unload response of the 85–15 formulation

Fig. 15 Plot depicting the slope or tangent stiffness of the
experimental unloading stress–strain curve during the first
cycle with respect to the unloaded strain for the three mock
PBX compositions
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experimentally observed during cyclic compression of PBX at
large strain.
Furthermore, we have proposed a discrete numerical procedure to

solve for stresses along a loading path, and we have developed a
parameter identification method, based on a nonlinear multivariate
minimization problem, to determine material properties from exper-
imental nominal stress–strain data. Specifically, we have used
monotonic and cyclic compression data for three mock PBX formu-
lations based on PBXN-109 with varying aluminum content [23] to
demonstrate the range of behavior predicted by the proposed consti-
tutive model and the effectiveness of the parameter identification
method. This is evident from the remarkable model calibration
results that yielded an excellent agreement between experimental
data and model response. Finally, we have identified the correlation
between the mechanical properties and the unique stress–strain
response of each specimen, which contributes toward establishing
and validating specific trends observed in the property values
with respect to the specimen composition, specifically, the
amount of aluminum in the mock PBX. We, therefore, conclude
that each of the estimated material parameters is more than a
mere number and has a significant contribution toward the
establishment of the highly complex and nonlinear mechanical
behavior of particle-binder composites under finite strain. Based
on these conclusions, the constitutive model presented in this
paper serves as a reliable tool to characterize different compositions
of particle-binder composites, and it especially serves the defense
and propulsion communities in their efforts to characterize the
mechanical properties of both existing and new energetic material
formulations.
We close by pointing out some limitations of our approach and

possible directions for the future extension of our analysis. First,
we have restricted our attention to quasi-static, i.e., low strain-rate
behavior of particle-binder composites, and thereby neglected any
strain-rate-dependent effects in the constitutive model. However,
it is well known that viscous effects become dominant in these
materials at moderate to high strain rates. Second, the proposed con-
stitutive model carries an assumption of elastoplastic incompressi-
bility, which limits the analysis to particle-binder composites with
moderate levels of compressibility. Therefore, the extension of
the model to rate-dependent viscous effects and compressible beha-
vior is a worthwhile direction for future research.
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