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Nonlinear Visco-Poroelasticity
of Gels With Different
Rheological Parts
A polymeric gel contains a crosslinked polymer network and solvent. Gels can swell or
shrink in response to external stimuli. Two typical kinetic processes are involved during
the deformation of gels: the viscoelastic and poroelastic responses. Viscoelasticity of gels
is generated from local rearrangement of the polymers, while poroelasticity is generated
from solvent migration. The coupled time-dependent behaviors of gels can be formulated
by coupling a spring-dashpot model with a diffusion–deformation model. Different combi-
nations of spring and dashpot and different ways of dealing with the coupling between
solvent migration and rheological models—either through the spring or dashpot—induce
significantly different constitutive behaviors and characteristic time-dependent responses
of gels. In this work, we quantitatively study how different rheological models coupled
with solvent migration affect the transient behavior of gels. We formulate the visco-poroe-
lastic gel theory for the Maxwell model, the Kelvin–Voigt model, and the generalized stan-
dard viscoelastic model. In addition, for generalized standard viscoelastic model, we also
discuss the different coupling through the secondary spring or the dashpot. The models are
implemented into finite element codes, and the transient-state simulations are performed to
investigate the time-dependent deformation and frequency-dependent energy dissipation of
different rheologically implemented gel models. The result shows that different combina-
tions of spring and dashpot give the gel solid-like properties and liquid-like properties
under different time scales; in addition, the coupling of solvent migration with the
dashpot in the rheological model results in restrictions of solvent migration under
certain length scales. [DOI: 10.1115/1.4046966]

Keywords: computational mechanics, constitutive modeling of materials, elasticity,
mechanical properties of materials, stress analysis, thermodynamics

1 Introduction
Gels are aggregates of crosslinked polymer networks and solvent

molecules (Fig. 1). They have good biocompatibility and have been
widely used in a variety of biomedical research fields such as drug
delivery [1–3], cell culture scaffold [4–6], personalized medicine
[7], artificial organs [8,9], and transmission media for ultrasound
imaging [10]. Gels have also been used as tissue phantoms for
various simulation tests [11–13]. The discovery of “volume phase
transition” phenomena in gels inspired research on utilizing gels
as responsive materials [14]. They have been made responsive to
diverse environmental cues such as temperature [14], pH [15],
light [16], and electric and magnetic fields [17]. Their ability to
swell and deswell depending on external environments and
stimuli makes them ideal for intelligent devices. Gels have also
demonstrated great potential in uses as actuators [18,19], sensors
[20,21], soft robotics [22,23], and wearable electronics [24]. A
mathematical model that can describe the complex time-dependent
behavior of gels is important.
The time-dependent behavior of gels can be originated from two

mechanisms: the rearrangement of polymer chains and the migra-
tion of solvent through the network, which give rise to the macro-
scopic viscoelasticity and poroelasticity, respectively (Fig. 1). For
most of the covalently crosslinked hydrogels in their highly
swollen states, their time-dependent behaviors are primarily domi-
nated by the poroelastic effect [25]. However, for many other gels
such as gelatin, collagen, agarose, and other physically and ioni-
cally crosslinked gels, their time-dependent behavior is in general

coupled visco-poroelastic response. Although the viscoelastic and
poroelastic behaviors are intertwined in general, they have distinct
macroscopic characteristics. Viscoelastic time is related to intrinsic
molecular characters of the polymer chains of the gel and is inde-
pendent of any macroscopic length, while poroelastic time is
related to the diffusion of solvent and thus scales with the square
of a macroscopic length that defines the length of diffusion.
Poroelasticity was originally developed by Biot to describe the

coupled diffusion and deformation of porous solids filled with
fluid [26–28]. The theory has been widely applied to study the

Fig. 1 A gel is composed of a crosslinked polymer network and
the solvent molecules. During the evolution of the gel, the
polymer network changes the conformation over a short range
and the solvent molecules migrate through the network over a
long range. These two processes result in the macroscopic
behavior of viscoelasticity and poroelasticity, respectively.
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phenomena of geomaterials [29–32]. Later, a fundamentally similar
but conceptually different biphasic theory was developed by Mow
and coworkers for studying phenomena of biological materials
such as cartilage, bones, and soft tissues [33,34]. In recent years,
a general framework based on nonequilibrium thermodynamics
was developed to formulate the coupled large deformation and dif-
fusion for various gels [35–46]. To describe the concurrent recon-
figuration of polymer chains and solvent migration of gels, there
have been several noticeable attempts to further incorporate the rhe-
ological models into the general framework [47–50]. A raising
question is how the different rheological models and different
coupling methods result in different overall time-dependent
responses of gels. A systematic study within single general frame-
work is in need.
Following the general framework of the previous gel theory, in

this study, we formulate the coupled visco-poroelastic theory
for different rheological models, including the Maxwell (MW)
model, Kelvin–Voigt (KV) model, and generalized standard visco-
elastic (GSV) model. We propose a new phenomenological element
that we call as osmotic container and use it to discuss the different
coupling of solvent migration with the different parts of the rheolog-
ical models. The models are implemented into finite element codes
to simulate inhomogeneous transient behaviors of gels. The simula-
tion aims to explore how the different coupled visco-poroelastic
models give rise to the different time-dependent deformation and
frequency-dependent energy dissipation of gels. This work provides
a general guideline for future works in choosing different visco-
poroelastic models for the different gel systems.
This paper is organized as follows. Section 2 formulates a general

framework for the visco-poroelasticity theory based on nonequilib-
rium thermodynamics; Sec. 3 derives the specific constitutive rela-
tions for several different rheological models; Sec. 4 illustrates the
nondimensionalization schemes and finite element implementa-
tions; finally, Secs. 5 and 6 discuss the different time-dependent
characteristics and frequency-dependent energy dissipation of dif-
ferent models through several boundary value problems.

2 Nonlinear Visco-Poroelasticity
We take the dry state of the network as the reference state and

mark every material element in this state with a spatial coordinate
X. At an arbitrary time t, the material element moves to a new
spatial location x(X, t). The deformation of the gel with respect to
its reference state is described by the deformation gradient:

F =
∂x(X, t)
∂X

(1)

The amount of solvent in the material element can also change
over time. It is described by the nominal concentration C(X, t),
the number of solvent molecules in the current state per unit refer-
ence volume.
During deformation, the polymer chains in the gel undergo local

configurational changes, which are characterized by viscoelasticity.
For each viscoelastic process, an internal variable needs to be intro-
duced. For simplicity but without losing generality, here, we formu-
late the theory by considering only one viscoelastic dissipation,
i.e., only one dashpot in the rheological model. We define the
corresponding internal variable as the deformation gradient of the
dashpot ξ = ξ(X, t).
In Secs. 2.1 and 2.2, we first consider the homogeneous deforma-

tion of a representative volume of the material and formulate the
general constitutive relations for the material with coupled visco-
poroelastic behaviors. We then take a body of the material and
discuss the field equations that govern the evolution of the inhomo-
geneous field variables and the mechanical and chemical boundary
conditions of the body.

2.1 Homogeneous States. Take a material element and con-
sider it as an open thermodynamic system (Fig. 2). There are two

ways of doing work on the system: through the mechanical and
chemical load. Let Ψ be the Helmholtz free energy of the material
element per unit reference volume. Thermodynamics requires that

δΨ − siKδFiK − μδC ≤ 0 (2)

where s is the nominal stress and μ is the chemical potential of the
solvent. The equality of the equation holds if and only if the thermo-
dynamic system experiences reversible processes.
The Helmholtz free energy of the material element is taken to be a

function of the independent valuables, Ψ = Ψ(F, C, ξ). The varia-
tion of the Helmholtz free energy can be expressed as follows:

δΨ =
∂Ψ
∂FiK

δFiK +
∂Ψ
∂C

δC +
∂Ψ
∂ξij

δξij (3)

where δ represents the change of the value during a small-time
interval.
Combining Eqs. (2) and (3), the inequality equation becomes

∂Ψ
∂FiK

− siK

( )
δFiK +

∂Ψ
∂C

− μ

( )
δC +

∂Ψ
∂ξij

δξij ≤ 0 (4)

Equation (4) holds for any arbitrary δFiK, δC, and δξij. We
assume that the thermodynamic system undergoes a reversible
process if the internal variable is fixed. Consequently, we obtain
the following constitutive relations of the material element:

siK =
∂Ψ
∂FiK

(5)

μ =
∂Ψ
∂C

(6)

If the variation of the internal variable is not zero, the free energy
of the system is dissipated by viscoelastic deformation. Therefore,
Eq. (4) becomes

∂Ψ
∂ξij

δξij ≤ 0 (7)

The inequality in Eq. (7) holds for any arbitrary δξij. Therefore,
we assume that the evolution of the internal variable is governed by

∂Ψ
∂ξik

= −Rikjlξ̇ jl (8)

where Rikjl is the viscosity tensor, which is symmetric and positive
definite to guarantee the inequality of Eq. (7). A commonly used

Fig. 2 The material element composed of the polymer network
and the solvent molecules is considered as a thermodynamic
system. The material element evolves through a series of homo-
geneous states. (a) In the reference state, the material element is
dry and stress free. (b) In the current state, the material element
deforms denoted by a deformation gradient FiK and contains C
number of solvent molecules per unit reference volume of the
element. In addition, the viscoelastic progression of the material
element is characterized by the internal variableξij. The work is
done by the external stress siK and the solvent environment
where the chemical potential is μ.
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specific form for the evolution of the internal variable is given by
Pioletti et al. [51]:

Rikjl =
η

2
(ξilξ jk + ξimξ jmδkl) (9)

where η is the viscosity and δkl is the Kronecker delta.

2.2 Inhomogeneous Fields. Take a body of the material that
consists of many material elements (Fig. 3). Each material
element evolves in time through homogeneous states as governed
by Eqs. (5), (6), and (8). Altogether, they develop the inhomoge-
neous fields of deformation, solvent concentration, stress, and
chemical potential in the body. The evolutions of the fields are coor-
dinated through kinematic constraint, force balance, mass conserva-
tion, and transport kinetics. Again, there are two ways of doing
work to the body: one is through mechanical load and the other is
through pumping molecules into the body. Considering the body
as an open system, thermodynamic laws require

∫
δΨ
δt

dV −
∫
Ti
δxi
δt

dA −
∫
�μQdA ≤ 0 (10)

where Ti(X, t) is the nominal traction on the boundary of the gel, Q
is the number of solvent molecules that are injected into the gel per
unit area of the surface in unit time, and �μ is the chemical potential
of the solvent in the environment. The integration represents the
combination of all material elements in the domain.
Substituting Eq. (3) into Eq. (10), the inequality equation

becomes

∫
∂Ψ
∂FiK

δFiK

δt
dV +

∫
∂Ψ
∂C

δC

δt
dV +

∫
∂Ψ
∂ξij

δξij
δt

dV −
∫
Ti
δxi
δt

dA

−
∫
μQdA ≤ 0 (11)

Let J(X, t) be the nominal flux of the solvent molecule and NK

be the unit normal of the boundary of the body in the reference
configuration. We add a term of

�
μJKNKdA and meanwhile

deduct this term in Eq. (11), so the inequality equation does not
change. We then apply divergence theorem to Eq. (11) and

meanwhile use the relations of Eqs. (5) and (6), so we get the fol-
lowing mathematical relation:

−
∫
∂siK
∂XK

δxi
δt

dV +
∫
(siKNK − Ti)

δxi
δt

dA +
∫
∂Ψ
∂ξij

δξij
δt

dV

+
∫
μ

δC

δt
+
∂JK
∂XK

( )
dV −

∫
μ(Q + JKNK )dA +

∫
JK

∂μ
∂XK

dV ≤ 0

(12)

This inequality relation (12) holds for any arbitrary δxi/δt, δξij/δt,
μ, and JK, and the equal sign is valid when the process is reversible.
When the polymer chains rearrange themselves, they slide against
each other, and when the solvent molecules transport through the
network, they slide against the polymer chains and themselves.
These processes dissipate energy. When these processes do not
happen, or mathematically when δξij= 0 and JK= 0, the thermody-
namic system undergoes the reversible process, and we have

−
∫
∂siK
∂XK

δxi
δt

dV +
∫
(siKNK − Ti)

δxi
δt

dA +
∫
μ

δC

δt
+
∂JK
∂XK

( )
dV

−
∫
μ(Q + JKNK)dA = 0 (13)

The mathematical outcome of Eq. (13), in fact, gives the two
well-known conservation laws. The first one is the conservation
of linear momentum, i.e., the force balance:

∂siK (X, t)
∂XK

= 0, in the body (14)

siKNK = Ti, on the surface (15)

The second one is the conservation of mass (the number of solvent
molecules here):

∂C(X, t)
∂t

+
∂JK(X, t)

∂XK
= 0, in the body (16)

−JKNK = Q, on the surface (17)

When the polymers undergo local rearrangement, the sliding
between polymer chains dissipates energy, which gives rise to the
viscoelastic behavior described by the evolution of the internal var-
iable shown in Eqs. (8) and (9). When the solvent flow through the
polymer network, the friction between the polymers and the solvent
molecules and among the solvent molecules dissipates energy,
which is associated with the poroelastic behavior of the material.
According to Eq. (12), the following inequality should be satisfied
for arbitrary flux JK:

JK
∂μ
∂XK

≤ 0 (18)

To ensure this inequality relation, the simplest mathematical form
is to assume:

JK = −MKL
∂μ
∂XL

(19)

where MKL is the mobility tensor, which is symmetric and positive
definite, so the inequality in Eq. (18) is automatically satisfied.
In this work, the mobility tensor is given based on the Einstein
relation [52]:

MKL =
CD

kT
HKiHLi (20)

where D is the diffusivity, k is the Boltzmann constant, T is the tem-
perature, and H is the inverse of the deformation gradient tensor,
H = F−1.

Fig. 3 A body of the gel consists of many homogeneous mate-
rial elements and evolves through a series of inhomogeneous
states. The inhomogeneous body is subjected to external trac-
tion Ti and submerged in the solvent environment where the
chemical potential is �μ. The evolution of the gel is described by
the time-dependent fields: the deformation gradient FiK(X, t),
the nominal concentration C(X, t), and the internal variable
ξij(X, t).
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3 Different Rheological Models and Different Ways of
Coupling With Poroelasticity
Rheological models consist of springs and dashpots. They are

connected in different ways to describe the different viscoelastic
characteristics of different materials. To model the coupling with
the solvent, we use an osmotic container that is represented
by the shaded box in Fig. 4. In general, there are two ways to
couple the osmotic container to the rheological models: coupling
through the spring or coupling through the dashpot. They corre-
spond to different physical processes. For coupling through
spring, it considers that as the solvent migrates, it causes an imme-
diate stretch or contract to the spring. Then, the force on the spring
is held by the presence of the osmotic container and the dashpot
does not deform at all. Physically, it corresponds to the case that
the volumetric deformation caused by solvent migration is purely
elastic, and it does not induce viscous creep of the polymer
chains. In this case, the network viscoelasticity is only related to
shear deformation and the volumetric change of the pure polymer
components due to the mechanical load rather than the chemical
load. For coupling through dashpot, it considers that for the
solvent to migrate, dashpot must rearrange. Therefore, the solvent
can only migrate little by little together with the evolution of the
dashpot. This case considers that for the solvent to migrate into or
out of the network, the polymers must rearrange viscoelastically
to accommodate it, and the network viscoelasticity is fully
coupled with the solvent migration.
In this section, we study three widely used rheological models,

the Maxwell model, the Kelvin–Voigt model, and the generalized
standard viscoelastic model, and discuss how the poroelasticity is
coupled with each model. For the generalized standard viscoelastic
model, we consider two ways of dealing with the coupling: through
dashpot and through spring individually. The total free energy
density is specified for each rheological model. In the following,
we use “∼” to denote all the variables and parameters of the
springs that are connected to the dashpot in series to distinguish
them from those that are connected to the dashpot in parallel.

3.1 Maxwell Gel. The MW model consists of a spring and
dashpot connected in series (Fig. 4(a)). The deformation gradient
of the spring is F̃, and the internal variable ξ is the deformation

gradient of the dashpot. The total deformation gradient is given
as follows:

F = ξF̃ (21)

Here, we consider that the coupling of the solvent is through the
spring. It means that as the solvent migrates into or out of the
network, the spring is stretched and the stress on the spring is
held by the osmotic pressure from the osmotic container. In this
model, the volumetric deformation due to solvent migration does
not invoke viscoelasticity, and the viscoelastic effects are only
related to the shear deformation and the volumetric deformation
of the polymer components themselves. The deformation of the
spring can be decomposed into the volumetric deformation due to
solvent migration and the deformation of the polymer components,
that is,

F̃ = F̃eFs

Fs = (1 + ΩC)1/3I
(22)

where Ω is the volume occupied by a solvent molecule and I is the
identity tensor. Here, the solvent migration is only considered to be
associated with the spring but not the dashpot. If the solvent migra-
tion is coupled to the deformation of the dashpot, there will be no
deterministic amount of solvent in the equilibrium state. This situa-
tion might be relevant to simulate dissolving of polymer in solvent
but is out of the interest of this work.
The total free energy of the gel is the summation of the elastic

energy of the spring and the mixing energy between the polymers
and the solvent [53]. For the stretching energy, we adopt the com-
pressible Neo–Hookean model [54]. For the mixing energy, we
follow the Flory–Huggins theory [55,56]. Therefore, the total free
energy can be expressed as follows:

Ψ(F, ξ, C) =
G̃

2
(Ĩ1 − 3 + 2 ln J̃) +

κ̃

4
Js(J̃

2
e − 1 − 2 ln J̃e)

+ kTC ln
ΩC

1 + ΩC

( )
+

χ

1 +ΩC

[ ]
(23)

where Ĩ1 = F̃iK F̃iK ; J̃ = det F̃; Js = detFs = 1 +ΩC; J̃e = J̃/Js; G̃
and κ̃ are the shear modulus and Lamé constant of the spring,
respectively; and χ is the Flory–Huggins parameter that character-
izes the mixing enthalpy. A smaller χ represents a higher affinity
between the polymer and the solvent.
Substituting Eq. (23) into Eqs. (5), (6), and (8), the nominal

stress, chemical potential, and the evolution equation of the MW
gel are obtained as follows:

siK = G̃(F̃ jKζ ji − HKi) +
κ̃

2
Js(J̃

2
e − 1)HKi (24)

μ = −
κ̃Ω
4

(J̃
2
e − 1 + 2 ln J̃e) + kT ln

ΩC
1 +ΩC

( )
+
χ + 1 + ΩC
(1 + ΩC)2

[ ]

(25)

η(ξilξ jk + ξimξ jmδkl)ξ̇ jl = 2G̃(F̃ jN F̃iNζ jk − ζki) + κ̃Js(J̃
2
e − 1)ζki

(26)

where ζ = ξ−1. The force balance relation (14), mass conservation
relation (16), the solvent migration kinetics (19), the constitutive
relations (24) and (25), and the evolution of the dashpot (26)
form the complete set of governing equations for the MW gel.

3.2 Kelvin–Voigt Gel. The KV model consists of a spring and
a dashpot connected in parallel (Fig. 4(b)). In this case, the deforma-
tion of the dashpot is identical to the deformation gradient of the
spring:

F = ξ (27)

It means that for the solvent to migrate into the network, the

Fig. 4 Visco-poroelastic models of gels: (a) the maxwell model
with the osmotic container coupled with the spring (MW),
(b) the Kelvin–Voigt model with the osmotic container coupled
with the dashpot (KV), (c) generalized standard viscoelastic
models with the osmotic container coupled with the dashpot
(GSV-dashpot), and (d ) the generalized standard viscoelastic
models with the osmotic container coupled with the secondary
spring (GSV-spring).
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network deforms viscoelastically to make room for the solvent.
With the kinematic relation (27), the free energy of the gel is a

function of only two variables: the total deformation gradient F
and the solvent concentration C, that is, Ψ = Ψ(F, C). The inequal-
ity Eq. (4) for the KV gel becomes

∂Ψ
∂FiK

− siK

( )
δFiK +

∂Ψ
∂C

− μ

( )
δC ≤ 0 (28)

When δFiK= 0, the dashpot is undeformed, and the material
element undergoes a reversible thermodynamic process, so μ=
∂Ψ/∂C (Eq. (6)) still applies for the KV model. Thus, the inequality
relation (28) becomes

∂Ψ
∂FiK

− siK

( )
δFiK ≤ 0 (29)

Similar to the strategy used in deriving Eqs. (8) and (9), to ensure
the inequality in Eq. (29), the nominal stress is taken to be

siK =
∂Ψ
∂FiK

+ R∗
iKjLḞ jL (30)

where the viscosity tensor for the KV gel is taken to be

R∗
iKjL=

η

2
(FiLF jK + FiMF jMδKL) (31)

The total free energy of the KV gel is the summation of the elastic
energy of the spring and the mixing energy of the polymers with the
solvent:

Ψ(F, C) =
G

2
(I1 − 3 + 2 ln J) +

κ

4
Js(J

2
e − 1 − 2 ln Je)

+ kTC ln
ΩC

1 + ΩC

( )
+

χ

1 + ΩC

[ ]
(32)

where I1=FiKFiK; J = detF; Je= J/Js; G and κ are the shear
modulus and Lamé constant of the spring, respectively; and χ
is the Flory–Huggins parameter.
Substituting the free energy function (32) into Eqs. (30) and (6),

we can obtain the nominal stress and chemical potential of the KV
gel as follows:

siK = G(FiK − HKi) +
κ

2
Js(J

2
e − 1)HKi +

η

2
(FiLF jK + FiMF jMδKL)Ḟ jL

(33)

μ = −
κΩ
4

(J2e − 1 + 2 ln Je) + kT ln
ΩC

1 +ΩC

( )
+
χ + 1 + ΩC
(1 +ΩC)2

[ ]

(34)

The force balance relation (14), the mass conservation relation
(16), the kinetics of solvent migration (19), and the constitutive rela-
tions (33) and (34) form the complete set of governing equations for
the KV gel. The evolution equation for ξ disappears as the evolution
of the dashpot is the same as the spring and the evolution of the
spring is expressed in Eq. (31). The deformation of the spring is
constrained by the dashpot. For the solvent to migrate into or out
of the network, it has to push the dashpot, so the solvent can only
get into or out of the network little by little, and it is always
accompanied by the viscous dissipation, which is different from
the MW gel.

3.3 Generalized Standard Viscoelastic Model. The GSV
model consists of a primary spring and a Maxwell segment that
are connected in parallel (Figs. 4(c) and 4(d )). The internal variable
ξ is defined as the deformation gradient of the dashpot. Both springs
contribute to the elastic energy of the gel. As the solvent migrates
into or out of the network, the primary spring must deform to
accommodate the volume change due to the change of solvent
content. However, there are two ways of dealing with the coupling

in the Maxwell segment: coupling the osmotic container either to
the secondary spring or to the dashpot.

3.3.1 Generalized Standard Viscoelastic Model With the
Osmotic Container Coupled to the Dashpot. In the GSV viscoelas-
tic model with the osmotic container coupled to the dashpot
(GSV-dashpot) model, we deal with the coupling of the volumetric
change due to the change of solvent content through the dashpot
of the Maxwell segment in the GSV model (Fig. 4(c)). This way
of coupling considers that as the solvent migrates into or out of
the network, initially both springs deform to accommodate the
volume change, but over time, the deformation on the secondary
spring is released and the deformation related to solvent transport
is carried only by the dashpot deformation in the Maxwell
segment. In this case, the solvent migration is coupled with the
dashpot movement or physically the viscous rearrangement of
the polymers (Fig. 4(c)). The visco-poroelastic behavior of the
GSV-dashpot model is similar to the KV gel model, but different
from the KV gel model that cannot generate deformation in the
initial state, the GSV-dashpot model can generate initial deforma-
tion due to the presence of the secondary spring. The deformation
gradients of each component in the model are related in the follow-
ing way:

F = ξF̃
F = FeFs

Fs = (1 + ΩC)1/3I

(35)

where F, F̃, and ξ are the deformation gradient of the primary
spring, the secondary spring, and the dashpot respectively, and Fs

is the deformation of the primary spring associated with the
change of solvent content.
The free energy of the GSV gels is the summation of the elastic

energy of both springs and the mixing energy between polymers
and solvent. In the GSV-dashpot gel, the volume change of the
secondary spring equals the volume change of the polymeric com-
ponents of the secondary spring. The free energy function of the
GSV-dashpot gel can be expressed as follows:

ΨGM-dashpot(F, ξ, C) =
G

2
(I1 − 3 + 2 ln J) +

κ

4
Js(J

2
e − 1 − 2 ln Je)

+
G̃

2
(Ĩ1 − 3 + 2 ln J̃) +

κ̃

4
(J̃

2 − 1 − 2 ln J̃)

+ kTC ln
ΩC

1 + ΩC

( )
+

χ

1 +ΩC

[ ]
(36)

where I1=FiKFiK; J = detF; Ĩ1 = F̃iKF̃iK ; J̃ = det F̃;
Js = detFs = 1 + ΩC; Je= J/Js; G and κ are the shear modulus
and Lamé constant of the primary spring, respectively; and G̃ and
κ̃ are the shear modulus and Lamé constant of the secondary
spring, respectively; and χ is the Flory–Huggins parameter.
Substituting the free energy function (36) into Eqs. (5), (6), and

(8), we obtain the constitutive relations and evolution equation
for the GSV-dashpot gel as follows:

siK = G(FiK − HKi) +
κ

2
Js(J

2
e − 1)HKi + G̃(F̃ jKζ ji − HKi)

+
κ̃

2
(J̃

2 − 1)HKi (37)

μ = −
κΩ
4

(J2e − 1 + 2 ln Je) + kT ln
ΩC

1 +ΩC

( )
+
χ + 1 + ΩC
(1 +ΩC)2

[ ]

(38)

η(ξilξ jk + ξimξ jmδkl)ξ̇ jl = 2G̃(F̃ jN F̃iNζ jk − ζki) + κ̃(J̃
2 − 1)ζki (39)

The force balance relation (14), mass conservation relation (16),
the solvent migration kinetics (19), the constitutive relations
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(37) and (38), and the evolution equation (39) form the complete set
of governing equations for the GSV-dashpot gel model.

3.3.2 Generalized Standard Viscoelastic Model With the
Osmotic Container Coupled to the Secondary Spring. In the GSV
model with the osmotic container coupled to the secondary spring
(GSV-spring) model, we deal with the coupling of the volumetric
change due to the change of solvent content through the secondary
spring of the Maxwell segment in the GSV model (Fig. 4(d )). This
way of coupling considers that as the solvent migrates into or out
of the network, it immediately causes the deformation of both
springs and the force on the secondary spring is balanced by the
osmotic pressure of the osmotic container. Therefore, the volume
change due to the change of the solvent content only induce elastic
deformation but not viscoelastic deformation. The viscoelasticity is
only associated with shear deformation or the volumetric deforma-
tion of the pure polymer components. This model corresponds to
the case that solvent migration does not induce viscoelastic creep
of the polymer chains. The visco-poroelastic behavior of the
GSV-spring model is similar to the MW model, but different from
the MW model that cannot carry loads in the equilibrium state, the
GSV-spring model can carry loads in the equilibrium state due to
the presence of the primary spring. The deformation gradients of
each component in the model are related in the following way:

F = ξF̃

F = FeFs, F̃ = F̃eFs

Fs = (1 + ΩC)1/3I

(40)

where F, F̃, and ξ are the deformation gradient of the primary spring,
the secondary spring, and the dashpot respectively, and Fs is the
deformation of both springs associated with the change of solvent
content.
The free energy of the GSV gels is the summation of the elastic

energy of both springs and the mixing energy between polymers
and solvent. In the GSV-spring gel, the volumetric strain of the sec-
ondary spring consists of both the volume change due to the change
of solvent content and the volume change of the polymeric compo-
nents themselves due to the mechanical load. The free energy func-
tion of GSV-spring gel can be expressed as follows:

ΨGM-spring(F, ξ, C) =
G

2
(I1 − 3 + 2 ln J) +

κ

4
Js(J

2
e − 1 − 2 ln Je)

+
G̃

2
(Ĩ1 − 3 + 2 ln J̃) +

κ̃

4
Js(J̃

2
e − 1 − 2 ln J̃e)

+ kTC ln
ΩC

1 + ΩC

( )
+

χ

1 +ΩC

[ ]
(41)

where I1=FiKFiK; J = detF; Ĩ1 = F̃iKF̃iK ; J̃ = det F̃;
Js = detFs = 1 + ΩC; Je= J/Js; J̃e = det F̃e; G and κ are the shear
modulus and Lamé constant of the primary spring, respectively;
and G̃ and κ̃ are the shear modulus and Lamé constant of the second-
ary spring, respectively; and χ is the Flory–Huggins parameter.
Substituting the free energy function (41) into Eqs. (5), (6), and

(8), we obtain the constitutive relations and evolution equation
for the GSV-spring gel as follows:

siK = G(FiK − HKi) +
κ

2
Js(J

2
e − 1)HKi + G̃(F̃ jKζ ji − HKi)

+
κ̃

2
Js(J̃

2
e − 1)HKi (42)

μ = −
κΩ
4

(J2e − 1 + 2 ln Je) −
κ̃Ω
4

(J̃
2
e − 1 + 2 ln J̃e)

+ kT ln
ΩC

1 +ΩC

( )
+
χ + 1 + ΩC
(1 +ΩC)2

[ ]
(43)

η(ξilξ jk + ξimξ jmδkl)ξ̇ jl = 2G̃(F̃ jN F̃iNζ jk − ζki) + κ̃Js(J̃
2
e − 1)ζki

(44)

The force balance relation (14), mass conservation relation (16),
the solvent migration kinetics (19), the constitutive relations (42)
and (43), and the evolution equation (44) form the complete set
of governing equations for the GSV-spring gel model.

4 Normalized Governing Equations and Finite Element
Implementation
The governing equations are normalized based on the constants

and the intrinsic parameters of the initial boundary value problem,
as presented in Table 1. The normalized variables and parameters
are noted by “^.” The time variables and parameters are normalized
by an intrinsic time scale τ= ηΩ/kT, and the length variables
and parameters are normalized by an intrinsic length scale
L0 =

����
Dτ

√
.

By using the normalized variables and parameters, the dimen-
sionless governing equations are formulated for the four rheological
models. For all the models, the force balance relation and mass
conservation relation are the same.

∂ŝiK
∂X̂K

= 0 (45)

∂Ĉ
∂t̂

+
∂ĴK
∂X̂K

= 0 (46)

For different models, the constitutive relations and kinetic rela-
tions are different, which are listed for each model:

(1) MW gel:
Kinetics of solvent transportation:

ĴK = −ĈHKiHLi
∂μ̂

∂X̂L
(47)

Constitutive law for nominal stress:

ŝiK = ˆ̃G(F̃ jKζ ji − HKi) +
ˆ̃κ

2
Ĵs(

ˆ̃J
2
e − 1)HKi (48)

Constitutive law for chemical potential:

μ̂ = −
ˆ̃κ

4
( ˆ̃J

2
e − 1 + 2 ln ˆ̃Je) + ln

Ĉ

1 + Ĉ

( )
+
χ + 1 + Ĉ

(1 + Ĉ)
2 (49)

Evolution equation of the internal variable:

(ξilξ jk + ξimξ jmδkl)
∂ξ jl
∂t̂

= 2 ˆ̃G(F̃ jNF̃iNζ jk − ζki)+ ˆ̃κĴs(
ˆ̃J
2
e − 1)ζki

(50)

(2) KV gel:
Kinetics of solvent transportation:

ĴK = −ĈHKiHLi
∂μ̂

∂X̂L
(51)

Table 1 Normalization of the parameters and variables

Parameter/variable Notation
SI base
unit Normalization

Coordinate X, x m x̂, X̂ = x, X/L0
Time t s t̂ = t/τ
Nominal stress s N/m2 ŝ = s/(kT/Ω)
Moduli G, κ, G̃, κ̃ N/m2 Ĝ, κ̂, ˆ̃G, ˆ̃κ = G, κ, G̃, κ̃/(kT/Ω)
Concentration C 1/m2 Ĉ =ΩC
Chemical potential μ N m μ̂ = μ/kT
Flux J 1/(s m2) Ĵ = J/(L0/Ωτ)
Frequency ω rad/s ω̂ = ωτ
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Constitutive law for nominal stress:

ŝiK = Ĝ(FiK − HKi) +
κ̂

2
Ĵs(Ĵ

2
e − 1)HKi

+
1
2
(FiLF jK + FiMF jMδKL)

∂F jL

∂t̂
(52)

Constitutive law for chemical potential:

μ̂ = −
κ̂

4
(Ĵ2e − 1 + 2 ln Ĵe) + ln

Ĉ

1 + Ĉ

( )
+
χ + 1 + Ĉ

(1 + Ĉ)
2 (53)

(3) GSV-dashpot gel:
Kinetics of solvent transportation:

ĴK = −ĈHKiHLi
∂μ̂

∂X̂L
(54)

Constitutive law for nominal stress:

ŝiK = Ĝ(FiK − HKi) +
κ̂

2
Ĵs(Ĵ

2
e − 1)HKi +

ˆ̃G(F̃ jKζ ji − HKi)

+
ˆ̃κ

2
(J̃

2 − 1)HKi (55)

Constitutive law for chemical potential:

μ̂ = −
κ̂

4
(Ĵ2e − 1 + 2 ln Ĵe) + ln

Ĉ

1 + Ĉ

( )
+
χ + 1 + Ĉ

(1 + Ĉ)
2 (56)

Evolution equation of the internal variable:

(ξilξ jk + ξimξ jmδkl)
∂ξ jl

∂t̂
= 2 ˆ̃G(F̃ jN F̃iNζ jk − ζki) + ˆ̃κ(J̃

2 − 1)ζki

(57)

(4) GSV-spring gel:
Kinetics of solvent transportation:

ĴK = −ĈHKiHLi
∂μ̂

∂X̂L
(58)

Constitutive law for nominal stress:

ŝiK = Ĝ(FiK − HKi) +
κ̂

2
Ĵs(Ĵ

2
e − 1)HKi +

ˆ̃G(F̃ jKζ ji − HKi)

+
ˆ̃κ

2
Ĵs(

ˆ̃J
2
e − 1)HKi (59)

Constitutive law for chemical potential:

μ̂ = −
κ̂

4
(Ĵ2e − 1 + 2 ln Ĵe) −

ˆ̃κ

4
( ˆ̃J

2
e − 1 + 2 ln ˆ̃Je)

+ ln
Ĉ

1 + Ĉ

( )
+
χ + 1 + Ĉ

(1 + Ĉ)
2 (60)

Evolution equation of the internal valuable:

(ξilξ jk + ξimξ jmδkl)
∂ξ jl
∂t̂

= 2 ˆ̃G(F̃ jN F̃iNζ jk − ζki)+ ˆ̃κĴs(
ˆ̃J
2
e − 1)ζki

(61)

The dimensionless Eqs. (45)−(61) are implemented in the
commercial finite element software COMSOL MULTIPHYSICS v. 5.4
through the General Form PDE physics. The direct linear solver
MUMPS was used to solve element stiffness equations.

5 Numerical Examples
In this section, we discuss how different visco-poroelastic models

give rise to different macroscopic characteristic behaviors under
different loading conditions. To characterize the time-dependent
behavior of a material, the typical testing methods are creep test,
relaxation test, and dynamic oscillation test. Since the creep beha-
vior of a material is reciprocal to its relaxation response, here, in
this section, we will only discuss the creep and dynamic oscillatory
loading conditions.
As shown in Fig. 5, we formulate a plane strain problem. The

in-plane dimension of the gel in its dry state is denoted by the non-
dimensionalized length L̂ × L̂. As discussed in Sec. 4, all the length
scales in the formula are normalized by an intrinsic length scale of
the material L0 =

����
Dτ

√
. Bigger L̂ represents a physically bigger gel

block. The gel is first fully swollen in water. Subsequently, the
swollen gel is loaded along the X2 direction through either a cons-
tant load or a cyclic load. During the process, the gel is kept under-
water, and all surfaces are assumed to be permeable. The right half
of the configuration is meshed and computed, and the symmetric
boundary conditions are applied on the S1 boundary. In addition,
the S3 boundary is set to be stress free and the zero vertical displa-
cement constraint is applied on the S4 boundary.
The material parameters for different models are summarized in

Table 2. In the computations, all the material parameters are nondi-
mensionalized, so the absolute values of the shear modulus and
Lamé constant are not relevant. Since the solid phase is nearly
incompressible, we choose the normalized Lamé constant to be
three orders of magnitude of the normalized shear modulus.
Another nondimensional material parameter is Flory–Huggins
interaction parameter χ. Following literature, a representative
value of χ= 0.1 is chosen in the following calculation [35].
Another consideration in choosing the material parameters is that
for comparison, we choose the parameters for different rheological
models to have the same initial swelling ratio and initial solvent
concentration.

Fig. 5 The configuration of the gel and the meshing of the
domain. Symmetric boundary conditions are applied on S1.

Table 2 Material parameters for different rheological models

Rheological
model Ĝ, κ̂ ˆ̃G, ˆ̃κ χ λ0 C0

MW – ˆ̃G = 0.01, ˆ̃κ = 10 0.1 2.222 9.977
KV Ĝ = 0.01, κ̂ = 10 – 0.1 2.222 9.977
GSV-dashpot Ĝ = 0.01, κ̂ = 10 ˆ̃G = 0.1, ˆ̃κ = 100 0.1 2.222 9.977
GSV-spring Ĝ = 0.005, κ̂ = 5 ˆ̃G = 0.005, ˆ̃κ = 5 0.1 2.222 9.977
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5.1 Uniaxial Stretching and Creep. At the time t̂ = 0+,
nominal stress ŝ = 0.005 is applied to the S2 surface of the
swollen gel and then kept constant. Meanwhile, the displacement
of the gel changes over time. We calculate the normalized length
of the gel block in the X2 direction at the X1= 0 position as a func-
tion of time for the different rheological models. The calculations
are repeated for gels of different initial size L̂ to illustrate the
coupled or deconvoluted viscoelastic and poroelastic behaviors.
Detailed discussions are as follows:

(1) MW gel
Before the normal stress is applied, the MW gel has been

swollen to the equilibrium state. Thus, the deformation gra-
dient of the spring is F̃ = λ0I, while the dashpot is unde-
formed. Under the uniaxial normal stress, the spring will
be stretched immediately at t̂ = 0+. The initial stretching
ratio of the gel is homogeneous everywhere. The values
can be calculated from Eqs. (48) and (49) by setting ŝ22 = ŝ
and ŝ11 = 0, that gives λ1= 2.096 and λ2= 2.359. Because
of the initial stretching, the chemical potential of the gel
inside decreases and becomes smaller than the outside, so
the solvent starts to migrate into the gel. The outer part of
the gel swells first, and the inner part swells last. Therefore,
a field of inhomogeneous stress and strain is developed, and
the dashpot evolves. The evolution of the dashpot is induced
by the mechanical load that causes the volumetric change of
the solid polymer components and the shear stress due to the
inhomogeneous fields associated with the transient swelling.
We used the finite element method through COMSOL to solve
the problem. For the quantitative analysis, we plot the
normalized value of the vertical height of the gel block at
X1= 0 position l̂2(X1 = 0)/L̂ as a function of the normalized
time. In Fig. 6(a), the time is normalized as t̂ = t/τ, and in
Fig. 6(b), the time is normalized as t̂/L̂2. The different
curves represent the calculation results for the gels of differ-
ent dimensionless size L̂. Two distinct deformation processes
can be observed: the size-dependent poroelastic deformation
and the size-independent viscoelastic deformation. As shown
in Fig. 6(a), for smaller gels (e.g., the L̂ = 0.001 and L̂ = 0.01
curves in Fig. 6), the curves first reach a plateau and then
increases to infinity. The time scale for the plateau is different
for different sizes of gels. If we further normalize the time by
L̂2, the plateau regions of the L̂ = 0.001 and L̂ = 0.01 curves
collapse when t̂/L̂2 is close to 1 (Fig. 6(b)), which confirms
that the time scale for the plateau region is dominated by the
poroelastic effect. For bigger gels (e.g., the L̂ = 0.1 curve in

Fig. 6), the poroelastic time scale becomes closer to the vis-
coelastic time scale. In this case, the plateau region disap-
pears and shows only one time scale relevant to the steep
increasing region. As shown in Fig. 6(a), the L̂ = 0.001,
L̂ = 0.01, and L̂ = 0.1 curves all collapse when the nondi-
mensional time t̂ is close to 1, corresponding to the viscoelas-
tic dominant region (Fig. 6(a)). If the size of the gel is even
bigger (e.g., the L̂ = 1 and L̂ = 10 curves in Fig. 6), the vis-
coelastic and poroelastic time scales are completely inter-
twined, and the curves show no plateau but only the steep
increasing region. But different from the L̂ = 0.001,
L̂ = 0.01, and L̂ = 0.1 curves, the time scale for the steep
region, in these cases, is not solely determined by the visco-
elastic time scale, but also influenced by the poroelastic time
scale. Therefore, the time scale for the steep increasing
region appears to be bigger than in other cases. Finally, we
would like to clarify, the MW gel model should be strictly
speaking a visco-poroplastic model. Under constant stress,
the dashpot in the MW model can continuously deform to
infinity. This model is more suitable for gels with fluid-like
behaviors in the long time scale [57].

(2) KV gel
In the KV model, the overall deformation gradient is iden-

tical to the deformation gradient of the dashpot. As the
external stress is applied, the gel cannot deform immediately.
Therefore, the initial stretching ratio of the gel remains
unchanged from λ0 everywhere. Over time, the dashpot
deforms and the solvent migrates. The same as before, we
plot the normalized height of the gel block l̂2(X1 = 0)/L̂ as
a function of normalized time t̂ and t̂/L̂2 in Figs. 7(a) and
7(b), respectively. For smaller gels (e.g., the L̂ = 0.1 and
L̂ = 1 curves in Fig. 7), the curves only show one plateau
and thus one time scale. This is because for smaller gels,
the solvent migrates much faster than the creep of the
dashpot, and the time confining factor of the KV model is
the viscoelastic time scale related to the dashpot. The magni-
tude of the deformation is contributed by both solvent migra-
tion and the viscoelastic creep, which is 2.429 as shown in
Fig. 7. For larger gels (e.g., the L̂ = 10 and L̂ = 100 curves
in Fig. 7), the poroelastic time scale becomes much larger
than the viscoelastic time scale, and the curves show two dis-
tinct plateaus, corresponding to the viscoelastic and poroelas-
tic time scales, respectively. The first plateau at around 2.360
corresponds to the viscoelastic deformation because the time
to reach this plateau is independent of the size of the gel
(Fig. 4(a)). The second plateau from 2.360 to 2.429

Fig. 6 Creep of the MW gel: the normalized value of the vertical height of the gel block at X1=0 position l̂2(X1 = 0)/L̂ as a func-
tion of the (a) dimensionless time t̂ = t/τ and (b) normalized dimensionless time t̂/L̂2

071010-8 / Vol. 87, JULY 2020 Transactions of the ASME

D
ow

nloaded from
 http://asm

edc.silverchair.com
/appliedm

echanics/article-pdf/87/7/071010/6534920/jam
_87_7_071010.pdf by guest on 23 April 2024



corresponds to the poroelastic deformation because the time
to reach the second plateau scales with the square of the gel
size L̂2 (Fig. 7(b)). Different from the MW gel that exhibits
long-term fluid-like behavior, the KV gel exhibits short-term
fluid-like behavior.

(3) GSV-dashpot gel
Similar to the KV gel, the solvent migration in the

GSV-dashpot gel is coupled with the movement of the
dashpot. However, as the dashpot is connected to a spring
in series, the GSV-dashpot gel can deform at t̂ = 0+. From
Eqs. (55) and (56), the initial deformation of the gel is
calculated: λ1= 2.180 and λ2= 2.265. The same as before,
we plot the normalized height of the gel block l̂2(X1 = 0)/L̂
as a function of normalized time t̂ and t̂/L̂2 in Figs. 8(a)
and 8(b), respectively. As shown, the time-dependent
creep behavior of the GSV-dashpot gel is similar to that of
the KV gel. The solvent migration of the gel is restricted
by the movement of the dashpot. Therefore, the separated
poroelastic and viscoelastic regions occur for larger
gels. In addition, as time goes to infinity, the secondary
spring in the dashpot does not carry any mechanical
load. Thus, as the initial swelling ratio of the free swollen
gel for both GSV-dashpot gel and the KV gel is iden-
tical, the deformation of the GSV-dashpot gel in

the equilibrium state is also similar to that of the KV
gel l̂2(X1 = 0, t̂ =∞)/L̂ = 2.429. The major difference
between the GSV-dashpot gel and the KV gel is that at
t̂ = 0+, the KV gel is entirely fluid like, while the
GSV-dashpot gel can deform as an elastic solid. Therefore,
the initial height of the gel in the KV gel model is 2.222,
while it is 2.265 in the GSV-dashpot gel model.

(4) GSV-spring gel
In the GSV-spring gel, the solvent migration is coupled to

the motion of the secondary spring. Therefore, the viscoelas-
tic deformation does not constrain the poroelastic deforma-
tion in the GSV-spring gel. As the stress is applied, the
two springs deform instantaneously. The initial stretching
value is given by λ1= 2.096 and λ2= 2.359. The same as
before, we plot the normalized height of the gel block
l̂2(X1 = 0)/L̂ as a function of normalized time t̂ and t̂/L̂2 in
Figs. 9(a) and 9(b), respectively. Different from all other
models, the GSV-spring gel model predicts two distinct
time scales for both small gels (the L̂ = 0.01 and
L̂ = 0.1 curves in Fig. 9) and big gels (the L̂ = 10 and
L̂ = 100 curves in Fig. 9). The difference between small
and large gel behaviors is that for small gels, the solvent
migration time is much shorter than the viscoelastic time,
and the curves show two plateaus with the first plateau

Fig. 7 Creep of the KV gel: the normalized value of the vertical height of the gel block at X1=0 position l̂2(X1 = 0)/L̂ as a func-
tion of the (a) dimensionless time t̂ = t/τ and (b) normalized dimensionless time t̂/L̂2

Fig. 8 Creep of the GSV-dashpot gel: the normalized value of the vertical height of the gel block at X1=0 position l̂2(X1 = 0)/L̂
as a function of the (a) dimensionless time t̂ = t/τ and (b) normalized dimensionless time t̂/L̂2
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corresponding to the poroelastic creep and the second plateau
corresponding to the viscoelastic creep. It is also confirmed
by the scaling relation as the second part of the curves col-
lapse in Fig. 9(a), but the first part of the curves collapse
in Fig. 9(b) when the time is normalized by L̂2. As the gel
reaches the equilibrium state, both springs in the GSV-spring
gel are saturated and stretched. Only for the gel size of L̂ = 1,
the viscoelastic time is the same as the poroelastic time scale,
and the blue curve in Fig. 9 only shows one plateau and one
time scale. Comparing with the GSV-dashpot gel where the
dashpot is saturated with solvent, the GSV-spring gel gener-
ates bigger deformation in the equilibrium state, which is
2.590 compared with 2.429 in the GSV-spring model.

5.2 Dynamic Oscillatory Loading. As a gel deforms, the
elastic energy is stored in the material, but meanwhile, energy is
also dissipated because of the viscoelastic and poroelastic processes.
When the gel is under cyclic loading, the energy dissipated through
one cycle depends on the frequency of deformation. The frequency-
dependent energy dissipation is related to the intrinsic viscoelastic
and poroelastic properties of the gel. In this section,we quantitatively
study the dynamic response of the gelwhen it is subjected to dynamic
cyclic loading for several proposed visco-poroelastic models. The
geometry of the gel is shown in Fig. 5. A cyclic load in the formof ŝ =

ŝ0sinω̂t̂ is applied to the S2 boundary, where ŝ0 is a small value. The
displacement of the gel in response to the load is also cyclic butwith a
phase lag δ due to the viscoelastic and poroelastic dissipation, i.e.,
û = û0sin(ω̂t̂ − δ). The phase lag amount is positively related to the
amount of energy dissipated within one loading cycle in thematerial.
Therefore, to study the dependence of the energy dissipation on the
actuation frequency, we quantify the phase lag δ as a function of
the normalized frequency ω̂ for the different visco-poroelastic
models proposed in this work.

(1) MW gel
The phase lag of MW gel in response to different loading

frequencies is shown in Fig. 10. In the low-frequency region,
which corresponds to the long-time response of the material,
the phase lag of the MW gel is π/2 (Fig. 10(a)). It means that
for the MW gel, the work done by the external force is
entirely dissipated under one cycle of loading and unloading
at extremely low frequencies. Under these frequencies, the
MW gel behaves as a fluid that does not store elastic
energy. At higher frequencies, local peaks appear in the
phase lag curves for the small-size gels. For smaller gels,
the solvent migration takes a much shorter time and is
separated from the viscoelastic time scale. As these local
peaks collapse when the angular frequency is normalized
as ω̂L̂2 (Fig. 10(b)), it means that the energy dissipation

Fig. 9 Creep of the GSV-spring gel: the normalized value of the vertical height of the gel block at X1=0 position l̂2(X1 = 0)/L̂ as
a function of the (a) dimensionless time t̂= t/τ and (b) normalized dimensionless time t̂/L̂2

Fig. 10 Phase lag of the MW gel with respect to the (a) dimensionless frequency ω̂=ωτ and (b) normalized dimensionless
frequency ω̂L̂2
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corresponding to these local peaks is due to the poroelastic
effect of the gels. At extremely high-frequency regions,
eventually, the phase lag becomes zero for all the gels of
any sizes. It means that the loading is so fast that neither
the migration of the solvent nor the movement of the
dashpot (i.e., the reconfiguration of the polymers) has
enough time to happen during each loading cycle, so the
MW gel behaves as an elastic body, and no energy is dissi-
pated during the loading process in the extremely high-
frequency region.

(2) KV gel
The phase lag of the KV gel in response to different

loading frequencies is shown in Fig. 10. Different from
MW gel in which the dashpot is connected with the spring
in series, the spring does not support load in the long time
region and the gel’s long-time response is fluid like, in the
KV model, the dashpot is connected to the spring in parallel,
so the dashpot has to deform to generate any deformation, the
time-dependent behavior of the KV gel in a time region that
is shorter or close to the viscoelastic time scale is entirely
determined by the viscoelastic time scale and the gel is
fluid like in the short-time response. As shown in
Fig. 11(a), the phase lag in the high-frequency region for

different sizes of gels is π/2, which shows that the work
done by the external force is entirely dissipated. In the
lower frequency region, local peaks appear in the phase lag
curves for the larger gels. For larger gels, the solvent migra-
tion takes a much longer time and is separated from the
viscoelastic time scale. As these local peaks collapse when
the angular frequency is normalized as ω̂L̂2 (Fig. 11(b)), it
means that the energy dissipation corresponding to these
local peaks is due to the poroelastic effect of the gels. At
extremely low-frequency region, eventually, the phase lag
becomes zero for all the gels of any sizes. In this long-time
limit, the load in the KV gel is entirely supported by the
spring and the material behaves as an elastic solid, and no
energy is dissipated during the loading and the unloading
processes.

(3) GSV-dashpot gel
The phase lag of the GSV-dashpot gel in response to dif-

ferent loading frequencies is shown in Fig. 12. As discussed
previously, the solvent migration in the GSV-dashpot gel is
coupled with the deformation of the dashpot. Therefore,
solvent transport in a short-time scale is dominated by the
viscoelastic time. As shown in Fig. 12(a), for smaller gels,
the poroelastic dissipation of the gel is fully coupled with

Fig. 11 Phase lag of the KV gel with respect to the (a) dimensionless frequency ω̂=ωτ and (b) normalized dimensionless
frequency ω̂L̂2

Fig. 12 Phase lag of the GSV-dashpot gel with respect to the (a) dimensionless frequency ω̂= ωτ and (b) normalized dimen-
sionless frequency ω̂L̂2
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the viscoelastic dissipation and it only shows one peak in the
phase lag plot. For larger gels, the poroelastic time scale is
much longer than the viscoelastic time scale, and it shows
two distinct peaks in the phase lag plot corresponding to
the poroelastic and viscoelastic responses. Those peaks that
collapse in the δ ∼ ω̂ plot are the viscoelastic peaks, while
those that collapse in the δ ∼ ω̂L̂2 are the poroelastic peaks
(Fig. 12(b)). The GSV-dashpot gel can be regarded as a gen-
eralized KV gel model, as the solvent migration is con-
strained by the movement of the dashpot, and the
poroelastic energy dissipation is restricted by the viscoelastic
dissipation rate in both models. However, the GSV-dashpot
model does not exhibit a complete fluid-like behavior at
any frequency region because of the presence of two
springs in parallel that guarantees the pure elastic behavior
of the gel in any time scales. For the same reason, instead
of a phase lag of π/2 at high-frequency limit as in the KV
gel, the phase lag of the GSV-dashpot gel is zero at the high-
frequency limit.

(4) GSV-spring gel
The phase lag of the GSV-spring gel in response to dif-

ferent loading frequencies is shown in Fig. 13. In the
GSV-spring gel, the solvent migration is coupled with
the deformation of the springs, rather than the dashpot, so
the time scale for viscoelasticity and poroelasticity is decou-
pled. As shown in Fig. 13(a), for both large gels and small
gels, there appear two peaks in the phase lag plot, and only
for the gel of size L̂ = 1 where the viscoelastic time exactly
equals the poroelastic time, there appears one peak in the
phase lag plot. Those peaks that collapse in the δ ∼ ω̂
plot are the viscoelastic peaks, while those that collapse in
the δ ∼ ω̂L̂2 are the poroelastic peaks (Fig. 13(b)).

The characteristic behavior of the GSV-spring gel is significantly
different from that of the GSV-dashpot gel. Unlike the
GSV-dashpot gel that can be regarded as a generalized KV gel,
the GSV-spring gel is a generalization of the MW gel. In both
GSV-spring gel and MW gel, the poroelastic dissipation is decou-
pled from the dashpot movement, and thus, the poroelastic dissipa-
tion can be completely separated from the viscoelastic time scale by
controlling the size of the gel. Furthermore, like the GSV-dashpot
gel, the existence of the two parallel springs of the GSV-spring
gel guarantees the elastic behavior of the gel, and thus, the phase
lag of the GSV-spring gel is zero at both the extremely high
and extremely low-frequency region as the time scale is far away
from both the viscoelastic and poroelastic time scales.

6 Conclusion
In this paper, we formulated the coupled visco-poroelasticy

for gels based on different rheological models. We adopted the
Maxwell model, the Kelvin–Voigt model, and the generalized stan-
dard viscoelastic model for the rheological behaviors of gels and
discuss how the coupling of solvent migration with spring or
dashpot motions influence the gel’s constitutive behaviors. We
used a compressible neo-Hookean hyperelastic solid model for
the deformation of the springs and the Flory–Huggins mixing
theory for the interaction of the solvent and polymers. All models
are implemented in the finite element codes in COMSOL. The time-
dependent behavior of the gel is studied via the simulation of the
uniaxial creep of the gel, and the frequency-dependent energy dis-
sipation is studied via the dynamic uniaxial loading of the gel. The
solvent migration could be either coupled with the dashpot move-
ment or unrelated to the dashpot. The first case generates a strong
couple of poroelastic deformation with the viscoelastic deforma-
tion. In this case, the solvent migration could be restricted by the
dashpot movement; therefore, the poroelastic behavior might not
be separated by changing the size of the gel. On the other hand, if
the solvent migration is not coupled with the dashpot movement,
the poroelastic deformation and energy dissipation could be sepa-
rated from the viscoelastic dissipation for both large-size gel and
small-size gels as long as the poroelastic time and viscoelastic
time are different. Furthermore, different rheological models
describe the physical characteristics of the gel in different ways.
The Maxwell model and the Kelvin–Voigt model give an intrinsic
fluid-like behavior in, respectively, a long time scale (low-
frequency region) and a short time scale (high-frequency region),
while the generalized standard viscoelastic models (both
GSV-dashpot and GSV-spring models) guarantee the elastic beha-
vior of the gel. The theory in this work could be generally
applied to gels with different time-dependent characteristics and
prospectively inspire future designs of experiments for characteriz-
ing gel properties or unraveling the time-dependent and frequency-
dependent mechanism of the various practical gel systems.
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