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Revisiting the Constrained
Blister Test to Measure Thin
Film Adhesion
A thin film is clamped at the periphery to form a circular freestanding diaphragm before
a uniform pressure, p, is applied to inflate it into a blister. The bulging membrane
adheres to a rigid constraining plate with height, w0, from the nondeformed membrane.
Increasing pressure expands the contact circle of radius, c. Depressurization causes
shrinkage of the contact and “pull-off” or spontaneous detachment from the plate. Simul-
taneous measurement of (p, w0, c) allows one to determine the adhesion energy, c. A solid
mechanics model is constructed based on small strain and linear elasticity, which shows
a characteristic loading–unloading hysteresis. The results are consistent with a large
deformation model in the literature. [DOI: 10.1115/1.4036776]
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1 Introduction

Thin film adhesion has significant impacts in nanotechnology
and life sciences. Dannenberg [1] introduced the classical blister
test where a uniform pressure drives an axisymmetric delamination
of a coating from a rigid substrate. The work of adhesion is then
determined by the contact radius as a function of the applied pres-
sure. A notorious shortcoming of the method is the catastrophic
crack propagation at onset of delamination. A number of alterna-
tive methods are available in the literature, including the expansion
of a fixed mass of gas at the film–substrate interface when the sam-
ple is exposed to an external vacuum [2] or elevated temperature
[3]. Dillard and coworkers [4–7] introduced the constrained blister
test by restricting the blister height using a rigid planar plate,
thus stabilizing the delamination under a constant pressure. A
“modified” constrained blister [8,9] pressurizes a freestanding
membrane clamped at the periphery until the membrane makes
adhesive contact with the constraining plate (Fig. 1). The modified
test belongs to “confined delamination” where the contact circle is
bounded by the diaphragm dimension [10]. Plaut et al. [9] extended
the work to include short-range to long-range intersurface attraction
based on linear elasticity. Xu and Liechti [11] adopted the modified
method to investigate structured acrylate layers on a polyethylene
terephthalate carrier film. Flory et al. [12] experimentally investi-
gated the adhesion of a pressurized elastomeric film on a planar
substrate. The measurement was later analyzed by Long et al.
[13,14] based on large deformation using rubber hyperelasticity.

In this paper, a solid-mechanics model for the constrained blister
is based on small strain approximation, linear elasticity, and zero-
range surface force. The loading–pressurization and unloading–
depressurization process are investigated, along with the critical
events such as “pull-off” or spontaneous detachment of film from
the substrate. The interrelations between the measurable quantities
of blister height, applied pressure, and contact radius are derived.
These functions will be useful to the experimentalists. Rigorous
comparison with the existing theoretical models are made in
Sec. 3.

2 Theoretical Model

Figure 1 shows a linear elastic, thin, freestanding, planar
membrane with radius, a, thickness, h, elastic modulus, E, and

Poisson’s ratio, v, clamped at its periphery. It is initially free of
residual stress and possesses a negligible flexural rigidity. The
deformation is therefore dominated by membrane stretching with
negligible plate bending. A rigid plate is placed at a distance, w0,
from the substrate to restrict the blister height. A uniform pres-
sure, p, is applied to form a free bulging blister. Further increase
in p causes the membrane to adhere to the constraining plate,
making a contact circle with radius, c, contact angle, h, and
deformed annular profile of w(r). A force F exerting on the plate
maintains the desirable w0. Upon depressurization, simultaneous
measurements of p and c allow the adhesion energy, c, to be
deduced. A thermodynamic energy balance based on small elastic
strain approximation is used to derive the adhesion–detachment
trajectory. Table 1 lists all the physical (bold) and normalized
(plain) variables to be used hereafter.

2.1 Mechanical Response With a Fixed Contact Circle.
Before addressing the adhesion mechanics, it is necessary to first
derive the mechanical response for an annulus with fixed inner
and outer radii based on Williams’ average stress approximation
for small strain and small debonding angle [8]. Figure 1 shows a

Fig. 1 Schematic of a constrained blister test with the mem-
brane adhering to the constraining plate
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freestanding annulus (c< r� a) inclining at a small angle
w� @w/@r to the horizon. Balancing vertical forces

pr2p� F ¼ 2pr � rh� sin w � 2pr � rh� w (1)

where r is the average membrane stress in the annulus. Rear-
rangement of Eq. (1) yields

w rð Þ ¼ p

r
� r � U

r

� �
(2)

with the loading ratio, U¼F/(pa2p)¼F/p. Note that U� 1 if
delamination at all occurs. When the membrane is in full contact
with the substrate with w0¼ 0, U¼ 1. When h¼ 0, the load is
fully supported by the applied pressure, and Eq. (1) requires
U¼ c2. At r¼ c, the debonding angle at the contact edge becomes

h ¼ w cð Þ ¼ p

r
� c� U

c

� �
(3)

and the annular profile

w rð Þ ¼
ð1

r

w:dr ¼ p

2r
� 1� r2 � U� log

1

r2

� �� �
(4)

with the blister height, or, plate-substrate gap

w0 ¼ w cð Þ ¼ p

2r
� 1� c2 � U� log

1

c2

� �� �
(5)

To obtain the membrane stress, a radial element with radius, r,
and width, dr, is stretched to an elongated length of dr� secw.
For w� 0, the linear engineering strain is approximated by
elinear¼ secw� 1�w2/2� (dw/dr)2/2. The average linear strain
over the annulus (c< r< a) is given by

e ¼ 1

2
�

ða

c

w2

2
� 2prdr

�ða

c

2prdr

" #
(6)

The square bracket is the average biaxial areal strain over the free-
standing annulus, and the factor of 1/2 reduces the 2D strain to
1D. The average membrane stress, r¼E. e, is given by

r ¼ 3

2

� �1=3

� p2=3 � 1þ c2 � 4Uþ 2
U2

f2

 !1=3

(7)

with f2¼ (1� c2)/log(c�2). Elimination of r from Eqs. (5) and (7)
leads to the mechanical response

p ¼ 12w3
0 �

1þ c2 � 4Uþ 2U2f�2

1� c2ð Þ 1� Uf�2
� �

( )
(8)

which is a cubic relation, p / w0
3, for a constant c.

2.2 Loading by Pressurization. The constraining plate is
fixed at w0¼ 1. A uniform pressure is applied to drive a blister.
Figure 2 shows c(p), h(p), and F(p), while Fig. 3 shows the corre-
sponding changing blister profile as a function of applied pressure.
Initial loading proceeds along path OA where the blister is yet to
make contact with the plate and c¼ 0 always. An elastic strain
gradually builds up upon loading. A free expanding blister is gov-
erned by p¼ 12w0

3 by substituting c¼ 0 and U¼ 0 in Eq. (8). At
A, the applied pressure reaches a critical threshold pA¼ 12, and
the blister makes a point contact with the plate. Further increase
in p proceeds along path AB, flattens the blister at the plate,
expands the contact circle, and raises force pressing against the
plate to ensure mechanical equilibrium. In the absence of interfa-
cial adhesion (c¼ 0), F¼ pc2 or U¼ c2, h¼ 0, and the mechanical
response c(p) follows Eq. (8) with c> 0. As the already strained

Table 1 Normalized variables

Physical variables Normalized variables

Geometrical parameters w¼ blister profile (m) w ¼ w=h
w0¼ blister height (m) w0 ¼ w0=h
a¼membrane radius (m) c ¼ c=a
c¼ radius of contact circle (m) r ¼ r=a
h¼membrane thickness (m)

w ¼ dw

dr
¼ a

h

� �
dw

dr
¼ a

h
�wr¼ radial distance (m)

w¼ profile gradient

Material parameters m¼Poisson’s ratio
c ¼ c

6ð1� v2Þa4

Eh5

� �
r ¼ r

12ð1� v2Þa2

Eh2

� �
E¼ elastic modulus (N�m�2)
c¼ interfacial adhesion energy (J m�2)
r¼ tensile membrane stress (N�m�2)

Mechanical loading F¼ external force (N)
F ¼ F

6ð1� v2Þa2

pEh4

" #

p¼ applied pressure (N�m�2)
p ¼ p

6ð1� v2Þa4

Eh4

� �

e¼Engineering strain
U ¼ F

p
¼ F

pa2p

U¼ energy terms (J)
e ¼ e

a

h

� �2

G¼Strain energy release rate (J m�2)
U ¼ U

12ð1� v2Þa3

pEh5

� �

G ¼ G
6ð1� v2Þa4

Eh5

� �
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membrane makes contact with the plate, the inner rim of the annu-
lus moves into the contact, and a residual strain e0 is locked up at
the interface. Increase in c stretches the shrinking freestanding
annulus further. The residual stress r0(r) is a monotonic increas-
ing function of r and continuous at r¼ c, and reaches a maximum
equal to the freestanding annular stress, r¼ r0 at r¼ c. No slip-
page is assumed at the membrane–plate interface. Depressuriza-
tion deflates the blister along BAO reversibly, and the elastic
energy due to the locked up strain returns to the freestanding
annulus. No hysteresis is expected in the loading–unloading pro-
cess. To account for interfacial adhesion (c> 0), the intersurface
attraction is taken to have zero range such that adhesion occurs
only when the membrane makes intimate contact with the plate.
As the contact expands, the contact angle remains zero with h¼ 0,
as the blister is supported by the applied pressure. The resultant
force on the plate is found by a simple vertical force balance. The
mechanical response c(p) traces the same path AB in Fig. 2 during
loading as if no adhesion is present. Depressurization leads a dif-
ferent path, resulting in a hysteresis.

2.3 Delamination by Depressurization. Before deriving the
delamination trajectory, it is necessary to establish the energy bal-
ance. The strain energy release rate is given by [8]

G ¼ rh
h2

2

� �
þ E:h

1� t2
e� e0ð Þ2 (9)

where e is the strain in the freestanding annulus, and e0 the resid-
ual stress at the contact edge. The first term corresponds to the

potential energy due to the applied pressure, and the second term
is the elastic energy due to the annular strain subtracted by the
locked-up strain. It is apparent that e0 has a negative contribution
to G, as the annular membrane moves into the contact circle lock-
ing up the stored elastic energy. Mechanical equilibrium is estab-
lished when the energy balance G¼ c is satisfied with c the
interfacial adhesion energy. Equation (9) can be recast as

c ¼ f1 � P4=3 þ 6� ðf2 � P2=3 � e0Þ2 (10)

with f1 c;Uð Þ¼ 1

121=3
�ðc

2�UÞ2

2c2
�ð1þ c2�4Uþ2U2f�2Þ�1=3

and f2 c;Uð Þ ¼ 1

4� 181=3
� ð1þ c2 � 4Uþ 2U2f�2Þ1=3

The constitutive relation, p(c, w0), for a fixed c can be found by
solving Eq. (10) in a self-consistent manner. Upon pressurization
along OAB, h¼ 0, e¼ e0, and G¼ 0. The deformed membrane is
here fully supported by p.

Depressurization along path BCD in Figs. 2 and 3 does not lead
to an immediate shrinkage of the contact area but a reducing blis-
ter volume and an increasing h in turn. At C, hC> 0 and
0<GC< c. The coupled adhesion line force at the contact edge
and the applied pressure now maintain the contact area
(c¼ constant) at the expense of the collapsing blister profile. At
D, G finally reaches c to trigger delamination. Along DHP, the
energy balance G¼ c is satisfied, and the contact further dimin-
ishes. The residual stress distribution r0(r) remains intact within
0� r� c, but is no longer continuous at the contact edge,
r0(c) 6¼ r(c). At P, (@c/@p) ! 1 at c* and p*. Any further
decrease in p (< p*) deviates from the energy balance, leading to
“pull-off” when the contact shrinks spontaneously from c* to 0,
and the membrane detaches from the plate. The loading (OAB)
and unloading (BCDHP) processes give rise to a hysteresis when
energy is dissipated due to the changing debonding angle. In the
special case of loading–pressurization to an initial contact radius

Fig. 2 Constrained blister test for adhesion energy c 5 5 and
plate separation w0 5 1. There are two possible loading (gray
solid) and unloading (dark solid) paths: (i) OAB-BCD-DHP with
“pull-off” at P, or, (ii) OAM-MN with “pull-off” at N. (a) Contact
radius, (b) contact angle, and (c) balancing force on the con-
straining plate, as a function of applied pressure. If the residual
stress retained within the contact circle is ignored, the unload-
ing curve is replaced by the thin dark dashed curve, which
almost coincides with the dark solid curve here.

Fig. 3 The changing blister profile during loading (top) and
unloading (bottom) based on Fig. 2. The flattened curve at
w 5 w0 5 1 corresponds to the constraining plate. Along BCD
the contact radius remains constant, but the contact angle
increases.
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c< c* along path OAM, subsequent depressurization traverses
MN with a constant c, before “pull-off” occurs at N without any
gradual shrinkage of contact. Loading–unloading hysteresis now
follows OAMN.

Figure 4 shows c(p) for a range of adhesion energy and w0¼ 1.
Delamination path DHP is identical to the same path in Figs. 2
and 3. In weak interfaces with c< c†¼ 9.98, “pull-off” occurs at
positive pressure or p*> 0. In case of c†, “pull-off” occurs at P†

with p*¼ 0 and c*¼ 0.2060. In strong interfaces with c> c†, suc-
tion with p*< 0 is necessary to detach the membrane. The “pull-
off” locus, c*(p*), along APP†P0, is where all c(p) curves termi-
nate. Figures 5(a) and 5(b) show the p*(c) and c*(c) for a range of
w0. Strong interface requires smaller p* to detach the membrane
at larger c*. Should the plate be placed further away from the
membrane, a larger p* is expected. Figure 5(c) shows c*(p*) for a
range of w0. For any w0, p*¼ 0 always requires c*¼ 0.2060.

3 Discussion

It is worthwhile to compare the present model with the related
literature. There are a number of similarities with the
Johnson–Kendall–Roberts (JKR) model [15] for adhesion of elas-
tic solid spheres with radius, R. The free membrane blister prior to
contacting the constraining plate resembles the geometry of the
JKR spheres, and both models assume a planar contact area.
According to Maugis’ interpretation [16,17], a change in the
external load, P, from P1 to P2 does not instantly lead to the equi-
librium configuration along the energy balance (G¼ c), but a
more tortuous path. Increasing P raises the approach distance, d,
yet a remains constant. The behavior then strictly follows the
Hertz theory with d¼ a2/R as if no adhesion is present. Once final
load P2 is reached and held constant, d and a will eventually
move to the equilibrium configuration. On the other hand,
decrease in load reduces d but leaves a unchanged. With P2 held
constant, (d, a) move to equilibrium. Maugis’ model thus leads to
a loading–unloading hysteresis. In the present work of membrane
adhesion, the predicted behavior is quite consistent with the JKR
model. The loading–pressurization expands the contact circle but
h¼ 0 as if c¼ 0, in reminiscent of the Hertz contact during the
JKR-loading. Upon unloading–depressurization, h increases but a
remains constant until the energy balance is satisfied, in parallel to
the JKR-unloading. Other similarities include the “pull-off”

instability and the nonzero critical contact radius. A distinct dif-
ference is that the “pull-off” force depends only on the sphere
radius in JKR, but both radius and film thickness in the present
model.

In our previous work [10], a circular diaphragm clamped at the
periphery adheres to the planar surface of a cylindrical punch. The
cross section is essentially the same as Fig. 1, though the confined
delamination is driven by a tensile force on the punch rather than
a uniform pressure. “Pull-off” is found to be c*¼ 0.1945, which is
consistent with c*¼ 0.2060 in the present work (c.f. Fig. 5(c)). In
the punch model, the membrane is initially in full contact with the
punch prior to delamination and is therefore free of any residual
stress within the contact circle. The present model requires the
membrane to be strained within the contact circle.

In Xu’s model [11], membrane in contact with the constraining
plate is taken to be stress free based on (@w/@r)r<c¼ 0, and all
elastic energy is stored in the freestanding annulus in both the
loading and unloading processes. Williams [8] determined the
strain energy release rate due to residual stress within the contact
area in the absence of adhesion and discussed the necessity of
zero contact angle during loading. The present work accounts for
coupled residual stress and adhesion in the contact area. It is pos-
sible to modify our model to accommodate for such approxima-
tion that the membrane stress is taken to be uniform and
continuous at r¼ c. Substituting e 5 e0 in Eq. (9), the strain
energy release rate becomes G¼ rh (1� cosh) for a finite angle h,
which is essentially the Young–Dupr�e equation [18]. Equation
(10) becomes

Fig. 4 Contact radius as a function of applied pressure for
w0 5 1 and a range of adhesion energy. The lowest curve indi-
cates loading with h 5 0 or unloading with c 5 0. The forbidden
area requires h < 0 and is nonphysical. Curve DHP with c 5 5 cor-
responds to that shown in Figs. 2 and 3. The thick black curve is
a special case with cy5 9.98 and pull-off occurs when the “pull-
off” pressure reduces to zero. “Pull-off” for c 5 14 occurs at P0

with a suction. All curves terminates at “pull-off” where (›c/›p)
fi ‘, and the locus is shown as gray dashed curve APPyP0.

Fig. 5 Relations of “pull-off” parameters for a range of plate-
substrate gap w0. (a) Critical pressure and (b) radius as func-
tions of adhesion energy. When adhesion is stronger than a spe-
cific threshold depending on w0, suction is necessary to detach
the membrane. (c) Critical contact radius as a function of critical
pressure. For any w0, p* 5 0 always leads to c* 5 0.2060.
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c ¼ f1 � p4=3 (11)

Figure 2 shows the loading–unloading process using Eq. (11) as a
thin dark dashed curve which almost coincides with the exact cal-
culation for w0¼ 1 and c¼ 5. Slightly larger p* and c* are
expected at “pull-off.” It is also worth to mention that models by
Plaut et al. [9] and Xu assume loading and unloading to follow the
energy curve and does not show the loading–unloading hysteresis
as in the present model.

Long et al. [13,14] modeled a hyperelastic blister under large
pressure. The membrane is blown into truncated sphere with a
large meridian angle as large as 90 deg that makes adhesion con-
tact with the plate. The loading–pressurization assumes h¼ 0, and
unloading–depressurization shows an initial constant contact
radius and an increasing h. The 3D stresses and strains in cylindri-
cal coordinates are computed numerically. The “pull-off” parame-
ters are also deduced based an energy balance. The general
features and trends of the interrelationships between measurable
quantities are consistent with the present model, e.g., monotonic
decreasing functions of p*(c) and c*(c). It is, however, difficult to
compare the two models, since two different normalization
schemes are used. The present model presents a limiting extreme
of the large deformation model and provides an analytical solution
to the experimentalists working with linear elastic membranes
under small strain.

As a final remark, the assumption that plate bending is ignored
in our theoretical model deserves further discussion. In linear elas-
ticity, bending dominates at small deformation when the blister
height is comparable to membrane thickness, or w0� h. However,
many practical membranes (e.g., biomembranes and lipid bilayers
in cells and liposomes) do not strictly follow this rule because of
the high degree of flexibility. Such films virtually conform to the
substrate topology under membrane stretching in a practical sense.
To facilitate description of complex biomembrane without
involved solid mechanics, a representative pseudo elastic modu-
lus, or areal expansion modulus, is adopted such that plate bend-
ing can be ignored at all times. A strictly plate bending model is
mathematically involved. Moreover, practical experiments always
operate in a deformation regime governed by membrane stretch-
ing. A comprehensive model involving mixed bending-stretching
leads to an analytical solution, if at all possible, which will be
challenging for experimentalists to adopt for data analysis.

4 Conclusion

A linear elastic model is built for a constrained blister test
where the clamped membrane adheres, delaminates, and detaches
from the constraining plate. The adhesion–delamination process
and the relations between the plate-membrane gap, applied

pressure, blister height, contact radius, and adhesion energy, as
well as the “pull-off” thresholds, are derived.
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