
the last ten years." The original version of the paper did present 
considerable numerical examples and analyses, which, however, 
were dropped during the revision following reviewers' instruc- 
tions that the paper was overlong. As a matter of fact, the 
published paper was still three pages over the limit, after consid- 
erable simplifications including the Introduction. As Dr. Velin- 
sky points out, the relevant literatures are too numerous to men- 
tion. The author cannot see any reason to provide a complete 
publication list, in addition to those needed to be cited, espe- 
cially in such an overlength situation. Dr. Velinsky then men- 
tions a 1985 paper of his, and concludes that the "nonlinear 
theory provides no value over the linear theory." The author 
disagrees with such a point of view. It is well known that almost 
all larger deformation problems encounter the possibility of 
plastic deformation. The elastic nonlinear theory, however, re- 
mains an important branch of mechanics. In general, Dr. Velin- 
sky denies any contribution of the paper and only advocates his 
own accomplishment in this field. The author has no intention 
of making any comments on his claims, but believes that readers 
are professionals and have the best judgement. 

Bifurcation of  Orthotropic  Solids 4 

A. Chattopadhyay s'7 and H. Gu ~'7. DeBotton and Schu- 
gasser (1996) recently presented an exact solution for bifurca- 
tion of orthotropic solids. In the paper, the following equilib- 
rium equations were used. 

V ' [ ( ~ r  + £ ) ' V ( x  + u) = 0 (1) 

An assumption was made for plane-strain conditions that £j~ 
= - p  is the only nonvanishing component of the initial stress 
in Eq. ( 1 ). Therefore, the remaining equilibrium equations can 
be derived by ignoring the product terms ~r. Vu and their deriv- 
atives. 

Octal 0~12 02u, 
- - + - - - p - - = 0  
Oxl Ox2 Ox~ 

&ri2 0022 02u2 
- - + - - - p - - = 0  
Oxl Ox2 Ox~ 

(2) 

However, it is our purpose to point out that their approach 
contains a fundamental error resulting from ignoring the pri- 
mary prebuckling displacements, which normally provide the 
same order of contributions as prebuckling stresses at the buck- 
ling state. Of course, these prebuckling displacement contribu- 
tions are not included in simplified plate-type theories for sim- 
plicity. For an exact elasticity solution, which is the motivation 
of DeBotton and Schugasser's work, these terms should be 
included to ensure a rigorous analysis procedure. 

If the superscript ( )0 is used to denote the prebuckling 
terms, the primary prebuckling state of for an orthotropic half- 
space whose material axes are parallel to the geometric axes 
can be truly simulated by 

0 -01 = --]3, 0"02 = 0"02 = O. (3)  

Using the constitutive equation for this orthotropic half-space, 
the derivatives of prebuckling displacements are derived as fol- 
lows: 

4 deBotton, G., and Schulgasser, K., 1996, "Bifurcation of Orthotropic Solids," 
ASME JOURNAL OF APPLIED MECHANICS, Vol. 63, pp. 317-320. 
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6 Graduate Research Associate. Mere. ASME. 
7 Department of Mechanical and Aerospace Engineering, Arizona State Univer- 

sity, Tempe, AZ 85287-6106. 

0U(I ) C22 0.~ Ci2 
(~Xl -- C11C22 - Ci2 p '  Ox~ 2 - C11C22 - C22 p 

O u  ° _ O u  ° 
0. (4 )  

OX 2 OX I 

Including these displacement contributions, the buckling equa- 
tions can be finally stated as 

+Ou°l~ o'i2 1 - p - - = O  
Oxl aN 1 OX 1 /1 OX 2 OX I /1 OX} 

0 OU~'~ 0 [ 0 . 2 2 ( l q .  - ] a; l +az ox j 

02U2 
- P Ox--7 = o (5 )  

and the buckling equation can also be expressed in terms of 
displacements as follows: 

( l  C22 ) [  02Ul 02.1 
C11C22_ C~2 p Cl, Ox-----~ q- C66 OOx----~- 

02/X2 ] 02"1 
+ (C12 + C66) OxjOx2_] - p Ox--Tl = 0 

( <2 )[ 02., 
1 @ ~11C22 -- c~2P (Ci2 + C66 ) OXl~)X--~-; 

02u2 ~ 02u2 ] 02u= 
+C<,~ O x - - - ~ + c = - ~ J - p ~ - = O .  (6) 

The prebuckling displacement contributions in these two 
equations can be written as 

C22 [ 02u__.__2 02u____2 
AI = -- Cl1C22 - c ~ 2 P L  CII 0x~ "1- C66 Ox~ 

02/'/2 ] 
"~ (Ci2 q-- C66 ) OXlOX2.] 

Ci2 [ 02ul 
/~2 -- C11C£2- ~ C22 p (Ci2 q- C66) OXlOX~ 2 

C 02u2 O'-u2] 
+ 66 Ox 2 + C22 Ox 2]  • (7) 

Therefore, their effects in the buckling analysis can now be 
discussed. 

Orthotropic Material With Cn > C22 
In this extreme case, the values of the material properties are 

assumed to be 

C= C= 
CH > C = ,  Ci2~- , G,6 

3 2 

The prebuckling displacement contributions in the buckling 
equations are thus simplified as follows: 

02Ul C22 02b/l C22 02u2 02.1 ~ - - p  
Ai ~ --p Ox 2 2C1~ p 0x22 C~ p OxlO& Ox 2 

C22 02.1 C22 02.2 C22 02u2 
A 2 ~ - - p  q- - - p  - -  q- ~ 0. (8) 

3Cl l O& Ox2 6Ci i Ox 2 -f~H P -~x~ 
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Compared to the prebuckling stress contributions, - p  (OZu~ / 
Ox~) and --p(oq2Uz]OX2), in Eq. (6), it is clear that the prebuck- 
ling displacements in the first equation of Eq. (6) provide at 
least similar magnitudes of contributions as the prebuckling 
stress in this case. 

Isotropic Material  
The values of the material properties in an isotropic case are 

assumed to be 

C22 C2~ 
C11 =C22, C12~ , C 6 6 ~ - - .  

3 2 

The prebuckling displacement effects in the buckling equations 
are now written as follows: 

02ul 1 02ul 02uz 
A 1 -~ - p  Ox 2 2P-~x~-POxlOX---~z 

1 02/~/1 1 OZuz 1 OZuz 
Az ~ -~ p ~ + -~ p Ox---T + 3 P Ox~ " (9) 

It can be concluded that, in this case, the prebuckling displace- 
ment contributions are at least the same as that due to the 
prebuckling stress in the first equation of Eq. (6) and are at 
least as much as one-sixth of that due to the prebuckling stress 
in the second equation of Eq. (6). 

The contributions due to the prebuckling displacements, in 
cases other than the two cases discussed above, should be some- 
where between these two extreme cases. Equations (6) were 
used by the authors (Chattopadhyay and Gu, 1996) in ad- 
dressing the buckling of orthotropic plates and composite lami- 
nates. To our knowledge, excluding prebuckling displacement 
contributions will introduce as much as a ten percent error, 
depending upon the material properties and the length-to-thick- 
ness ratio of the plates. 
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Authors '  Closure s 
A rigorous solution for the buckling of orthotropic solids 

was given in our paper. It was stated there explicitly that the 
equilibrium equation is expressed in terms of the second Piola- 
Kirchhoff stress which measures the tractions per unit area of 
the reference or undeformed configuration. Following Malvem 
(1969), in terms of the Piola-Kirchhoff stress 'I', the equilib- 
rium equation is 

V .[,]?.~,r] = 0, (1) 

and it is clear that the deformation gradient F and hence the 
entire equation, will depend on the choice of the reference con- 
figuration. In some cases, such as the one considered by us, it 
is useful to let 'r  = o- + ]c, where ~C is a uniform stress field 
and or is a stress increment beyond this pre-existing stress, and 
also to substitute F = V(x + u),  where x is the position vector 
and u is the displacement vector which is measured from the 
reference configuration. If we further assume that the stress 
increment is small, Eq. ( 1 ) may be rewritten in the form 

8 Department of Mechanical Engineering, Ben-Gurion University of the Negev, 
P.O. Box 653, Beer-Sheva 84105, Israel. 

(V" or)'(1 + Vu) + ~ :  VVu = 0. (2) 

In our work the reference configuration for the Piola-Kirch- 
hoff stress was specifically chosen as the prebuckled state, or, 
quoting from the paper: "Initially, the solid is in a state of 
homogeneous strain corresponding to compressive uniform 
stress p parallel to the free boundary along the xl direction". 
We note that, since the displacements are measured from the 
prebuckled state, the components of the displacement gradient 
which is proportional to or are small. Obviously, in this case, 
the product term (V" or)" Vu is small in comparison with other 
terms in the equation and may be neglected. If, on the other 
hand, another reference configuration is chosen and the dis- 
placements are measured from it, then, the term (V. or). Vu 
must be taken into account. As a result, terms that depend 
on the history of the deformation will appear explicitly in the 
equilibrium equation. Nonetheless, it should be realized that 
these terms appear solely due to the fact that Eqs. (1) and (2) 
are expressed in terms of the pseudo Piola-Kirchhoff stress and 
not in terms of the true Cauchy stress. 

We note that, from a purely rigorous mathematical point of 
view, the choice of the reference configuration is immaterial. 
However, we .also note that there exist good motivations in 
favor of choosing the reference configuration as the prebuckled 
configuration. First, this choice results in strictly simpler expres- 
sions because the term (V" or)" Vu is neglected. Further, and 
even more important, is the fact that by adopting this approach 
the problem can be solved without the need to account for the 
entire history of the deformation up to the instant when the 
material buckles. Thus, as was used in our paper, the instanta- 
neous stress-strain relation at the prebuckled configuration is 
all that is needed to obtain a rigorous solution for the problem, 
or in the words of our paper, "we assume a linear relationship 
between the stress increment and the infinitesimal strain incre- 
ment". This feature enables utilizing the proposed solution to 
predict the buckling stress of nonlinearly deforming materials. 
In fact, while the instantaneous stress-strain relation at any point 
of the deformation history may be linearized, it is well known 
that when the deformation gradient is large, the overall or total 
stress-strain relationship is usually nonlinear. This, of course, 
provides an additional motivation for choosing the reference 
configuration as the prebuckled configuration. At the same time 
it renders tile approach of Chattopadhyay and Gu tenuous at 
best. 

It is possible that in some special cases a different reference 
configuration will be a more appropriate one. However, since 
in such cases the deformation history will be incorporated into 
the solution, it will be valid only to the particular class of 
materials that was considered. But, if such an approach is taken, 
it will generally not be adequate to utilize a linear stress-strain 
relationship and thus the analysis of Chattopadhyay and Gu is 
an unwarranted simplification. Finally, we note that in some 
cases, usually when the longitudinal YOUBg'S modulus is much 
larger than the othe r moduli, the critical buckling strain is small 
and the assumption of a linear stress-strain relationship is satis- 
factory. In these cases, since the strains are small, the choice 
of the reference configuration is unimportant and hence, for the 
sake of simplicity alone, the formulation that was proposed by 
us is an advantageous one. 
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