3 Lin, C. C., ed., Turbutent Flows and Heat Transfer, Punceton University Press, 1959
4 Stanisic, M. M., and Groves, R. N., "On the Eddy Viscosity of Incompressible Turbulent Flow,' Zeitschrift für angewandte Mathematik wad Physik, Vol. 16, 1965, p. 709.

5 Ragsdale, R. G., "Applicability of Mixing-Length Theory to a 'Tumbulent Vortex System," NASA TN D1051, 1961.

References

1 Lanczos, C., Applied Analysis, Prentice-Hall, Englewood Cliffs, N. J., 1956.

2 Denman, H. H., and Liu, Y. K., "Application of Ultraspherical Polynomials to Nonlinear Oscillations-II. Free Oscillations," Quarterly of Applied Mathematics, Vol. 22, No. 4, Jan. 1965, pp. 273292.

3 Deuman, H. H., and Liu, Y. K., "Apphication of Ultraspherical Polynomials to Nonlinear Systems With Step-Function Excitation," Tndustrial Mathematics, Vol. 15, Part 1, 1965, pp. 19-35.

4 Denman, H. H., "Computer Cieneration of Optimized Subroutines," Journal of the Association for Computing Machinery, Vol. 8, No. 1, Jan. 1961, pp. 104-116.
5 Demman, H. H., and Schmidt, R., "Chebyshev Approximation Applied to Large Deflections of Elastica," Industrial Mathematics, Vol. 18, Part 2, 1968, pp. 63-74.

Author's Closure ${ }^{5}$

The purpose of the paper was to outline the procedure to follow in applying Newton's method in the neighborhood of bifurcation points and limit points. In the example of the imperfect column problem, only terms up to the third power in A were retained in the numerical computations involving $\cos (A \cos$ z) and $\sin (A \cos z)$. This was done with the aim of making the discussion of the method easier to follow. However, this truncation led Professor Schmidt and Professor DaDeppo to the erroneous conclusion that the Taylor series expansion that is used to start Newton's method in equation (4) of the paper is inaccurate.

Newton's method is based on the assumption that a sequence of linear differential equations can be solved. In practice, most linear problems cannot be solved in closed form. This does not make Newton's method inaccurate. A review of the analysis for the perfect column will illustrate this point.

To solve the differential equation

$$
\theta^{\prime \prime}+\lambda \sin \theta=0
$$

with boundary conditions

$$
\theta^{\prime}(0)=\theta(\pi / 2)=0
$$

by Newton's method, assume a solution θ_{1} and seek a correction y such that

$$
\theta=\theta_{1}+y
$$

Substituting in the differential equation and expanding $\sin \theta$ in a Taylor's series about θ_{1} leads to equation (4) in the paper. Away from bifurcation points, it is sufficient to retain only linear terms in y so that the equation to be solved for y is

$$
y^{\prime \prime}+\lambda\left(\cos \theta_{1}\right) y=-\left(\theta_{1}^{\prime \prime}+\lambda \sin \theta_{1}\right)
$$

When

$$
\theta_{1}=A \cos z
$$

the equation becomes

$$
\begin{aligned}
& y^{\prime \prime}+\lambda\left[J_{0}(A)-2 J_{2}(A) \cos 2 z+2 J_{4}(A) \cos 4 z-\ldots\right] y \\
& =\left[A-2 \lambda J_{1}(A)\right] \cos z+2 \lambda\left[J_{3}(A) \cos 3 z-J_{5} \cos 3 z+\ldots\right]
\end{aligned}
$$

In the paper, only terms up to the third power in A were retained in the previous equation, leading to a 4 percent error when A is 80 deg.

The right side of the equation is the error in the assumed solu-

[^0]Equation (5) is an approximate nonlinear relation between the applied load P and the rotation $\alpha \equiv \theta(0)$ of the free end. For example, if $\lambda=1.293, \alpha=1.403$ as compared to the author's value of $\alpha=1.340$ and the exact value of $\alpha=1.396$. More extensive numerical results are presented in [5].

The foregoing presentation does not detract anything from the author's method, which is of a more general nature.

[^1]tion θ_{1}. The constant A can be selected to make the first term vanish or nearly vanish
$$
\frac{A}{2 J_{1}(A)}=\lambda
$$

The foregoing equation corresponds to equation (5) of the discussers.
The particular solution for y, which also satisfies the boundary conditions, can be computed by Galerkin's method from the series

$$
y=\sum_{n=1} C_{2 n-1} \cos (2 n-1) z
$$

If only two terms are retained in the series, we have

$$
\begin{aligned}
& {\left[J_{0}(A)-J_{2}(A)-1 / \lambda\right] C_{1}-\left[J_{2}(A)-J_{4}(A)\right] C_{3} } \\
&=\left[A / \lambda-2 \cdot J_{1}(A)\right] \\
&-\left[J_{2}(A)-J_{4}(A)\right] C_{1}+\left[J_{0}(A)-J_{6}(A)-9 \lambda\right] C_{3}=2 J_{3}(A)
\end{aligned}
$$

when $A=1.40$ and $\lambda=1.29389$, the result is

$$
\begin{gathered}
\theta=1.40 \cos z+0.01233 \cos z-0.01619 \cos 3 z \\
\theta(0)=1.39614
\end{gathered}
$$

as compared to the exact result

$$
\theta(0)=1.39626
$$

More accuracy for y can be obtained by taking more terms in the series solution. To improve the solution for θ, set

$$
\theta_{2}=\left(\theta_{1}+y\right)
$$

and repeat the foregoing procedure to obtain y_{2}, the correction 1 , θ_{2},

$$
y_{2}^{\prime \prime}+\lambda\left(\cos \theta_{2}\right) y_{2}=-\left(\theta_{2}^{\prime \prime}+\lambda \sin \theta_{2}\right)=\frac{\lambda\left(\sin \theta_{1}\right) y^{2}}{2}-\ldots
$$

A general conclusion can be drawn for the remarks of Professor Schmidt and Professor DaDeppo and this Closure. In starting the Newton's method iteration, it is necessary to have a first guew at the solution. One possible choice is a function containing a free parameter (A in the example). The free parameter can then be set by minimizing the error that appears on the right sile of the linearzed equations over the interval of integration. This minimization can be only approximate, as it was in the foregoing example.

[^0]: ${ }^{3}$ Professor Gaylen A. Thurston is now at: Department of Mechanical Sciences and Environmental Engineering, College of Engineering, University of Denver, Denver, Colo.
 ${ }^{6}$ There is a typographical error in equation (4). The coefficient of y^{3}.should have a positive sign. Also, the first term in equation (21a) should be $L(F)$.

[^1]: ${ }^{2}$ By G. A. Thurston, published in the September, 1969, issue of the Journal of Applied Mechanics, Vol. 36, Trans. ASME, Vol. 91 ,
 Series E, pp. 425-430.
 ${ }^{2}$ Professor of Engineering Mechanics, University of Detroit, Detroit, Mich. Mem. ASME.
 ${ }^{3}$ Professor of Civil Engineering, University of Arizona, Tueson, Ariz.
 ${ }^{4}$ Numbers in brackets designate References at end of Discussion.

