
DISCUSSION 

Table 1 Parametric resonance and combination resonance 
of sum and difference type (co,-: eigenfrequency) 

Mode 
no. 1 

1 2co, co2 — co, co, + co3 co4 — c o , co, + cos 

2 2c0j co3 — co 2 co2 + co4 cos — co2 

3 2co3 co4 — co3 co3 + co s 

4 2co4 cos — co4 

5 symmet ry 2cos 

Second, it is concluded that for the cantilevered pipes the para
metric resonances are selectively associated with only some of the 
modes of the system. Is it the general conclusion for a pipe convey
ing pulsating fluid? If it is, I would like to know the reason. 

Authors' Closure 

We are very grateful to Professor Iwatsubo for his discussion of our 
paper. 

Concerning his first point, there appears to be some contradiction 
between the second and third paragraphs of the Discussion. However, 
we agree with the first statement made by the discusser that, for 
cantilevered columns, both sum and difference-type combination 
resonances are possible. In our paper, concerning cantilevered pipes 

conveying fluid, we were careful to say that "the combination reso
nances appear to involve the differences, rather than the sums." We 
have not made a special study of this, and our supposition was based 
on the consideration that for the low frequencies involved it is more 
likely that the combination resonances be of the difference rather than 
the sum type, since in the latter case (co; + a>y)/fc near zero would imply 
very large values of k. 

Concerning the second point, the limited extent of our calculations 
does not allow us to say with certainty that, let us say, first-mode 
parametric resonances are impossible for all possible sets of system 
parameters. However, we have never found such instabilities in our 
analysis, nor has it ever been found in the experiments [1] .3 A possible 
explanation is this. In the cantilevered pipe the Coriolis acceleration 
acts effectively as a damping force and the effective damping varies 
from one mode to another [2]. It is certainly possible that some modes 
are simply too heavily "damped" by the Coriolis effect to exhibit 
parametric resonances, either over a wide range of flow velocities or 
for all flow velocities. 

R e f e r e n c e s 
1 Paidousis, M. P., and Issid, N. T. "Experiments on Parametric Resonance 

of Pipes Containing Pulsatile Flow," JOURNAL OF APPLIED MECHANICS 
Vol. 43, No. 2, TRANS. ASME, Vol. 98, Series E, pp. 198-202. 

2 Paidoussis, M. P., and Issid, N. T. "Dynamic Stability of Pipes Conveying 
Fluid," Journal of Sound and Vibration, Vol. 33,1974, pp. 267-294. 

3 Numbers in brackets designate References at end of Closure. 

Measurement of Angular 
Acceleration of a Rigid Body 
Using Linear 
Accelerometers1 

Y. King Liu.2 The authors are to be commended for posing a 
most interesting inverse problem in rigid body mechanics, i.e., is it 
possible to infer the total acceleration of a rigid body from strateg
ically placed linear accelerometers? The writer wishes to indicate 
however that the equations (3)-(5) of the authors' paper in fact 
can be shown analytically to be unstable. Equations (3)-(5) can be 
rewritten as 

ux = ax - u)swz (a) 

ioy = - ay + wxu, (b) 

(c) co, = a, - u>vw„ 

where i (A2i - Azo)/pyi, ay - (AZ2 - Az0)/px2 and < (A •yf 

Ayo)lf>xi- The stability analysis of the system of equations just 
given can be obtained through the calssical Routh-Hurwitz criteri
on [l].3 A state of equilibrium may be represented by a singular 
point, i.e., where all the derivatives of the dependent variable with 
respect to time are simultaneously zero, i.e., 

ax - oj»cu2° = 0 (d) 

-a- - w°a>° = 0 (e) 

0 (/) 
where co" a>y and ioz denote a set of equilibrium values for the de
pendent variables. Consider small perturbations, £;, defined by the 
following equation: 

1 By A. J. Padgaonkar, K. W. Krieger, and A. I. King, and published in the 
September, 1975, issue of the JOURNAL OF APPLIED MECHANICS, Vol. 
42, TRANS. ASME, Vol. 97, Series E, pp. 552-556. 

2 Professor and Director, Biomechanics Laboratory, Tulane University 
Medical School, New Orleans, La. 

:1 Numbers in brackets designate References at end of Discussion. 

CO, = 0J° + £x 

w, = co» + ^ 

W, = CO» + Hz 

Substituting the foregoing into {a)-(c) yields the following: 

L = a# x - u»£, 

ky = <»% + 0 J ^ 

L = -«#» - <•#* 

(g) 

(h) 

a) 

( j ) 

(*) 

(i) 

It has been shown by Liapunov [2] that if the real parts of the 
roots of the characteristic equation of the foregoing system are 
negative then the corresponding equilibrium state is stable or if at 
least one root has a positive real part the equilibrium is unstable. 
The characteristic equations may now be written as follows: 

-A 

-A 

— i t ) . -A 

- x 3 + (- + w « ) \ + 2uvVco» - 0 (m) 

The Routh-Hurwitz criterion requires that all coefficients in the 
characteristic equation exist and are positive. In (m), the A2 term is 
missing. Thus the given set of differential equations is unstable. 

Since the solution to the foregoing set of equations is unique 
given the initial values, in spite of its being unstable, one can fur
ther assert that no amount of additional manipulation or clever 
placement of the six accelerometers would yield a set of equations 
which will be stable. 

By going to the nine accelerometer scheme the authors have in 
fact added 3 pieces of information, i.e., equations (6)-(8) to the 
original (3)-(5). The authors' equations (9)-(l l) now contain 9 
temporal measurements and straightforward algebra to obtain the 
desired result. The major disadvantage is obviously the addition of 
3 channels of data acquisition and analysis. 
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DISCUSSION 

In spite of the fact that the system of equations (3)-(5) is unsta
ble, it might still be possible to utilize these results in a short dura
tion impact because instabilities take time to grow. It is conceiv
able that a scheme could be devised in which the growth rate of the 
dependent variables are as slow as possible, i.e., make the positive 
real part of the characteristic root as small as possible so that its 
effects in a short duration impact are negligible. 

References 
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Authors' Closure 

The authors are indeed pleased that Dr. Liu has provided ana
lytical support to the experimental findings discussed in the paper. 
While it is important to show that the use of six linear accelerome
ters can lead to erroneous values of angular acceleration, it should 
be pointed out that the stability analysis provided by Dr. Liu con
siders a special configuration of six accelerometers and that it may 
not be valid for the general case of arbitrarily located accelerome
ters. In the latter situation, the governing equations become quite 
complex and a linearized perturbation analysis cannot definitely 
establish the instability of the system. In fact, the results in the 
discussion show that the solution is not asymptotically stable and 
are not sufficient to prove that it is unstable. 

With regard tp the growth of instability it should be noted that 
the problem at hand is the accurate determination of angular ac
celeration. If the system of equations is indeed unstable, then error 
is present as soon as t > 0. Furthermore, it is only in very special 
cases that one can insure a slow growth rate, since the characteris
tic roots are dependent upon the magnitude and sign (direction) of 
the angular velocity components of a rigid body in general three-
dimensional motion. 

Finally, the burden of proof of stability rests with the six-accel-
erometer user who must also identify quantitatively the time be
yond which the errors become intolerably large. 

Scattering of Water Waves 
by a Pair of Semi-Infinite 
Barriers1 

G. Dagan.2 The independence of the transmission coefficient T 
upon the angle of incidence a of the far wave, which represents one 
of the main results obtained by the author, seems to be in contra
diction with simple physical facts. 

Indeed, let us consider an incident wave with crest normal to the 
breakwaters, i.e., with a = 0. In this case there is no scattering and 
<l>s = 0 (eq (7)) while <pi = A exp (-ikx). It is obvious that an exact 
solution for the wave propagated along the channel is 4> = <j>i and 
the transmission coefficient is exactly T = 1. Hence, the solution 
for (T) (equation (27)) cannot hold in this case and it is doubtful 
that it applies to other angles of incidence as well. 

Author's Closure 

G. Dagan raised an important point on the uniform validity of the 

1 By P.L.-F. Liu and published in the December, 1975, issue of the JOUR
NAL OF APPLIED MECHANICS, Vol. 42, No. 4, TRANS. ASME, Vol. 97, 
Series E, pp. 777-779. 

2 Professor of Fluid Mechanics, Technion, Israel Institute of Technology, 
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asymptotic solution; in particular, for the normal incidence, i.e., a —• 
0. The author agrees with him that in this case the transmission 
coefficient should be exactly T = 1. Due to the fact that the scattered 
waves (equation (8)) were in the order of magnitude of 0{\/kr) and 
were neglected in the </> analysis, the transmission coefficient (equation 
(26)) could be best interpreted as T = 1 + 0{Vka). In other words, 
as Vka « 1 the transmitted waves between two breakwaters are in
deed independent of the angle of incidence. 

To include the effects of the angle of incidence, the scattered waves 
should be included and modifications on the inner solutions are 
needed. The author has not so far completed this study and would 
consider the question an open one. 

I A Practical Two-Surface 
Plasticity Theory1 

A. Phillips.2 The author should be congratulated for a very in
teresting and stimulating paper. Three comments should be added 
to the author's presentation. The two most important ones are first 
that according to a large number of experimental results, by the 
reviewer and his coworkers, some of which have already been pub
lished [1-3]3 and some of which are still in the process of publica
tion [4], the theory of Mroz, at least as used in the general formula
tion of the present paper, does not agree with the experimental re
sults. Not only the form of the yield surface changes with the mo
tion but also the center of the yield surface does not move in the 
direction indicated by the author. The law of hardening of the 
yield surface is still not clear. The limit surface on the other hand 
could be considered to grow isotropically from the initial yield sur
face with its center remaining unchanged. 

The second comment is that the stress-strain curves, the mod
eling of which is attempted by the author, include rate effects and 
therefore cannot be modeled very well by a plasticity theory. A 
theory of vlscoplasticity is more likely to be successful. In particu
lar, a theory of plasticity will represent the gross behavior of the 
stress-strain curves, while a theory of viscoplasticity will be able to 
represent the exact form of the curves. 

The third comment is that the concept of the two surfaces plas
ticity theory has some previous history. It was considered first by 
this reviewer [5] and elaborated in a number of subsequent publi
cations by him and his coworkers [6-8], 

All three comments do not distract seriously from the achieve
ment of the author in presenting a complete theory which, how
ever, requires extensive improvements to become useful for the 
practice. 
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