
DISCUSSION 

minimum value of frictional coefficient po (dependent only on the 
strip Poisson's ratio). From [1, 2], MO is given as 

U + l)simr/3 
un(v) = (1) 

\(K - l)(cos ir/3 + 1) - 2U + l)(/3 - 1) + 4(0 - l)2] 

where /3 is a solution of 
2K cos T/3 - (K2 + 1) + 4(/3 - l ) 2 = 0; 0 < /3 < 1 (2) 

and 

f 3 — 4i', for plane strain, and 

1(3 — e)/(l + v), for plane stress. 

If M > Mo(c), the exact solution of the problem corresponds to the 
case of c = 1 and should be identical to the solution presented in 
[2]. The solution presented by the authors is strictly applicable for 
the cases in which n < fioiv) and one obtains c < 1. Thus equation 
(57) in the paper is valid only for p. =S po(v). Consequently, the cor
rect representation of Fig. 6 must have a bounding curve corre
sponding to a plot of /3 versus v, from equation (2) of this Discus
sion. 
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Authors' Closure 

We would like to thank Dr. G. D. Gupta for his interest and the 
comments on the nature of stress singularity that arises in our in
vestigation of the effect of friction on contact stresses in an elastic 
rectangle. Some comments are appropriate, however, for certain 
misunderstandings of our explanation of the results. 

The statement quoted from the original paper by Dr. Gupta per
tains to the "approximate solution" and does not refer to the main 
results obtained by the solutions of the simultaneous integral 
equations. This complete solution, indeed, confirms the points 
raised by Dr. Gupta and have been mentioned several places in the 
paper. This may also be clearly seen from Figs. 1 and 2 of the 
paper. The approximate solution is included in the paper for sake 
of comparison and is based upon the idea of R. D. Mindlin, which 
neglects the effect of friction on the contact pressure distribution 
in the slip zone. Mindlin's approximation has proved quite suc
cessful in several applications and is easy to apply. This approxi
mation although, is quite good in the present case when consider
able slip takes place, but is not so satisfactory when c —- 1. The 
part of discussion quoted by Dr. Gupta offers an explanation of 
this anomaly and should be read in conjunction with the proceed
ing statement. We are sorry that this was misunderstood. 

Regarding the minimum values of the friction coefficient raised 
in the discussion, we are in complete agreement with Dr. Gupta. 
We had hoped that this was fairly apparent from a general study of 
the paper and did not include as a separate discussion for fear that 
the editorial office would wave the flag on exceeding the length re
quirements. 

I On the Creep Rupture of a 
Tube and a Sphere1 

F. K. G, Odqvist.2 Using theory of Hayhurst and Leckie (Jour-

1 By R. P. Goel and published in the September, 1975, issue of the JOUR
NAL OF APPLIED MECHANICS, Vol. 42, TRANS. ASME, Vol. 97, Series 
E, pp. 625-629. 

2 Professor, Torstensonsvagen 7D, S-18264, Djursholm, Sweden. 

nal of Mechanics and Physics of Solids, 1973, Vol. 21, p. 431) au
thor computes lower bounds on creep rupture time in cases of sim
ple geometry and loading, both for "homogeneous" and "nonhom-
ogeneous" damage rate law, material constant a in general being a 
fixed number between zero and one. Load is applied at time t = 0 
and step-by-step calculations with respect to t presented in di-
mensionless form. For a solid rod of circular cross section and a 
thick-walled tube, both in torsion with a constant torque, three 
cases were treated (a = 0, 0.5, 1.0) and in each case the ratio inner 
radius over outer radius of tube given the values 0 (solid rod), 0.5 
(thick-walled tube), and 0.9 (thin-walled tube). A series of differ
ent values of material constants n (Norton) and v (Kachanov) were 
used. For example, the case n = 4, v = 3, a = 0 for a solid rod, the 
dimensionless times to rupture were estimated to be 0.288 and 
0.412 for a homogeneous and a nonhomogeneous maximum shear 
damage law, respectively. In this particular case, the ratio p = esti
mated rupture time for nonhomogeneous damage law over that for 
homogeneous damage law turns out to be very much the same for 
the solid rod and the thick-walled tube for all values of a consid
ered. In fact, from Table 2 may be inferred, for the solid rod: p = 
0.412/0.288 = 1.43 for a = 0. Similarly p = 1.23 for a = 0.5 and p = 
0.98 for a = 1. In the case of the thick-walled tube was obtained, 
correspondingly: p = 1.44 for a = 0, p = 1.24 for a = 0.5, and p = 
0.99 for a = 1. Note that the figure 0.412 is taken from the table, 
whereas the text under "Conclusions" presumedly shows the erro
neous figure 0.142:—thus the author's conclusion "that creep rup
ture time of a structural element could be significantly effected by 
the choice of damage law" hardly seems to be justified but, possi
bly, for the limiting case of the solid rod. Conversely, the depen
dence of creep rupture time on the material constant a seems to be 
quite insignificant. The difference between the time to rupture 
and time for the first crack to appear is so small that the failure oc
curs almost instantaneously, and this difference appears to be in
sensitive to the value of a, in accordance with author's conclusion. 
Lower bounds on the rupture time for a hollow sphere creeping 
under constant internal pressure were also obtained, but in the 
case a = 0 only. 

Author's Closure 

The author would like to thank Professor Odqvist for his valu
able comment. 

Parametric and Combination 
Resonances of a Pipe Con
veying Pulsating Fluid1 

Takuzo Iwatsubo.2 The authors have reported some very in
teresting analytical work on the parametric and combination reso
nances of a pipe conveying pulsating fluid. The presence of combi
nation resonances is open to question. 

First, it is concluded in the left side of page 4 and the conclu
sions that the combination resonances appear to involve only the ' 
difference. But our results for the cantilevered beam are not the 
same as this result because from our results the combination reso
nances of the sum and the difference type appear as shown in 
Table 1. 

From our analytical result, only the combination resonances of 
the difference type cannot occur. 

1 By M. P. Paidoussis and C. Sundarajan and published in the December, 
1975 issue of the JOURNAL OF APPLIED MECHANICS, Vol. 42, No. 4, 
TRANS. ASME, Vol. 97, Series E, pp. 780-784. 

2 The Faculty of Engineering, Kobe University, RokkoNada Kobe, Japan. 
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DISCUSSION 

Table 1 Parametric resonance and combination resonance 
of sum and difference type (co,-: eigenfrequency) 

Mode 
no. 1 

1 2co, co2 — co, co, + co3 co4 — c o , co, + cos 

2 2c0j co3 — co 2 co2 + co4 cos — co2 

3 2co3 co4 — co3 co3 + co s 

4 2co4 cos — co4 

5 symmet ry 2cos 

Second, it is concluded that for the cantilevered pipes the para
metric resonances are selectively associated with only some of the 
modes of the system. Is it the general conclusion for a pipe convey
ing pulsating fluid? If it is, I would like to know the reason. 

Authors' Closure 

We are very grateful to Professor Iwatsubo for his discussion of our 
paper. 

Concerning his first point, there appears to be some contradiction 
between the second and third paragraphs of the Discussion. However, 
we agree with the first statement made by the discusser that, for 
cantilevered columns, both sum and difference-type combination 
resonances are possible. In our paper, concerning cantilevered pipes 

conveying fluid, we were careful to say that "the combination reso
nances appear to involve the differences, rather than the sums." We 
have not made a special study of this, and our supposition was based 
on the consideration that for the low frequencies involved it is more 
likely that the combination resonances be of the difference rather than 
the sum type, since in the latter case (co; + a>y)/fc near zero would imply 
very large values of k. 

Concerning the second point, the limited extent of our calculations 
does not allow us to say with certainty that, let us say, first-mode 
parametric resonances are impossible for all possible sets of system 
parameters. However, we have never found such instabilities in our 
analysis, nor has it ever been found in the experiments [1] .3 A possible 
explanation is this. In the cantilevered pipe the Coriolis acceleration 
acts effectively as a damping force and the effective damping varies 
from one mode to another [2]. It is certainly possible that some modes 
are simply too heavily "damped" by the Coriolis effect to exhibit 
parametric resonances, either over a wide range of flow velocities or 
for all flow velocities. 
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Measurement of Angular 
Acceleration of a Rigid Body 
Using Linear 
Accelerometers1 

Y. King Liu.2 The authors are to be commended for posing a 
most interesting inverse problem in rigid body mechanics, i.e., is it 
possible to infer the total acceleration of a rigid body from strateg
ically placed linear accelerometers? The writer wishes to indicate 
however that the equations (3)-(5) of the authors' paper in fact 
can be shown analytically to be unstable. Equations (3)-(5) can be 
rewritten as 

ux = ax - u)swz (a) 

ioy = - ay + wxu, (b) 

(c) co, = a, - u>vw„ 

where i (A2i - Azo)/pyi, ay - (AZ2 - Az0)/px2 and < (A •yf 

Ayo)lf>xi- The stability analysis of the system of equations just 
given can be obtained through the calssical Routh-Hurwitz criteri
on [l].3 A state of equilibrium may be represented by a singular 
point, i.e., where all the derivatives of the dependent variable with 
respect to time are simultaneously zero, i.e., 

ax - oj»cu2° = 0 (d) 

-a- - w°a>° = 0 (e) 

0 (/) 
where co" a>y and ioz denote a set of equilibrium values for the de
pendent variables. Consider small perturbations, £;, defined by the 
following equation: 

1 By A. J. Padgaonkar, K. W. Krieger, and A. I. King, and published in the 
September, 1975, issue of the JOURNAL OF APPLIED MECHANICS, Vol. 
42, TRANS. ASME, Vol. 97, Series E, pp. 552-556. 

2 Professor and Director, Biomechanics Laboratory, Tulane University 
Medical School, New Orleans, La. 

:1 Numbers in brackets designate References at end of Discussion. 

CO, = 0J° + £x 

w, = co» + ^ 

W, = CO» + Hz 

Substituting the foregoing into {a)-(c) yields the following: 

L = a# x - u»£, 

ky = <»% + 0 J ^ 

L = -«#» - <•#* 

(g) 

(h) 

a) 

( j ) 

(*) 

(i) 

It has been shown by Liapunov [2] that if the real parts of the 
roots of the characteristic equation of the foregoing system are 
negative then the corresponding equilibrium state is stable or if at 
least one root has a positive real part the equilibrium is unstable. 
The characteristic equations may now be written as follows: 

-A 

-A 

— i t ) . -A 

- x 3 + (- + w « ) \ + 2uvVco» - 0 (m) 

The Routh-Hurwitz criterion requires that all coefficients in the 
characteristic equation exist and are positive. In (m), the A2 term is 
missing. Thus the given set of differential equations is unstable. 

Since the solution to the foregoing set of equations is unique 
given the initial values, in spite of its being unstable, one can fur
ther assert that no amount of additional manipulation or clever 
placement of the six accelerometers would yield a set of equations 
which will be stable. 

By going to the nine accelerometer scheme the authors have in 
fact added 3 pieces of information, i.e., equations (6)-(8) to the 
original (3)-(5). The authors' equations (9)-(l l) now contain 9 
temporal measurements and straightforward algebra to obtain the 
desired result. The major disadvantage is obviously the addition of 
3 channels of data acquisition and analysis. 
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