
DISCUSSION 

by Welander,4 which seems to be of interest, e.g., in oceanography. 
In conclusion I should like to give the following qualitative 

description of the mechanism for the generation of the instability 
in the airlift pump, a description which can be easily translated 
to other similar systems. Consider a harmonic small oscillation 
of the velocity around its stationary value at the injection zone. 
Under the half period, when this oscillation is negative, it causes 
a decrease in the density below its stationary value, which de­
crease is propagated with the flow and builds up an accelerating 
force. This accelerating force must reach its maximum on the 
elements in the injection zone after a lapse of time, which is of 
the same order of magnitude as the time of travel of the fluid 
through the pipe. If now this maximum is in phase with the 
maximum of the acceleration of the original oscillation, an over­
shooting occurs, producing growing amplitude of the oscillation, 
i.e., instability. If the condition (86) of my paper is interpreted 
according to this view, it is seen to give a time of travel as calcu­
lated from the velocity (42) of about a third ( 1 / V 8) of the time 
of oscillation as calculated from the coefficient of K in (70). 

4 Welander, P., "On the Oscillatory Instability of a Differentially 
Heated Fluid Loop," Journal of Fluid Mechanics, Vol. 29, Part 1, 
1967, pp. 17-30. 

Behavior of Dilute Polymer Solutions in 
the Inlet Region of a Pipe1 

W. MICHAEL LAI.2 One of the conclusions, stated in the con­
cluding remarks of the paper is that for dilute polymer solu­
tions, characterized by the constitutive equations (24) and (31), 
the theory predicts shorter inlet length and greater pressure drop, 
in agreement with the results of Tomita and Yamane [10]. On 
examining equations (48), (51), and Table 1, it is seen that the in­
let length is shorter and the pressure drop greater for 1.0 < m < 
1.30, whereas for m = 1.50, exactly the opposite is true and it 
appears that at some value of m between 1.30 and 1.50, the 
presence of elasticity has no effect at all on either the inlet length 
or the pressure drop. What significance, if any, is to be given to 
this value of m? Can one extrapolate the result of Table 1 to 
conclude that for say, m = 2, Cz is positive, and (Ap)eiastio is 
negative? 

On comparing equation (32) and (33) of the paper with 
equations (4) and (5) of reference [10], it appears that for the 

case n = 1 and m = 2 I in the notation of the present paper, i.e., 

Ur = — V I — —- I and t„ — t„ = 2r I — —- 1 I, the conclusions 

from the present paper and reference [10] are opposite (if ex­
trapolation of the numerical values are valid). 

Is it really necessary to invoke the Weissenberg's conjecture 
that trr — tee = 0? I t appears that with a»'s assumed to be 
0(52) it follows trr — tm = 0(1) so that its contribution to the 
pressure change across the boundary layer is 0(d). 

I t is noted that the tensors An(n = 2, 3, . . .) used in the 
paper, equations (22) and (23), are related to but not the same as 
the Rivlin-Ericksen tensors as defined in say, Encyclopedia of 
Physics, Vol. I I I / 3 , p. 54. 

1 By E. Bilgen, published in the June, 1973, issue of the JOURNAL 
OF APPLIED MECHANICS, Vol. 40, TBANS. ASME, Vol. 95, Series E, 
pp. 381-387. 

2 Associate Professor of Mechanics, Rensselaer Polytechnic Insti­
tute, Troy, N. Y. 

Author's Closure 
The analysis presented is strictly on the behavior of dilute 

polymer solutions and m > 1.30 does not have any physical 
significance. From the mathematical point of view, it should be 
noted however tha t the sign change in Table 1 for m > 1.30 and 
the impossibility to extrapolate the results for m near 2 can be 
attributed to the failure of the integral method and in that sense, 
a refinement using other methods discussed in the Introduction 
of the paper may be of help. 

a ; = 0 (52) is the necessary condition obtained from the stress 
equation of motion; hence if it is assumed that en = 0(52), ob­
viously the Weissenberg's conjecture will prevail and vice versa. 

The Response of an Elastic Disk With a 
Moving Mass System1 

C. D. Mole, JR.2 The discusser finds this paper by Prof. W. D. 
Iwan and Dr. K. J. Stahl very interesting and a notewoi'thy con­
tribution to the now voluminous circular plate literature. The 
discusser has also been interested in these problems for sometime 
and he would like to remark that one of his papers [1]3 may be an 
important companion for the present research. In his paper the 
Greens' function for a centrally clamped, peripherally free, circu­
lar plate is formulated as a eigenfunction expansion, similar to 
that in the authors' paper, and the plate response is investigated 
for two circumnavigating, peripheral prescribed loads. One is 
the rotating harmonic load, which includes as a special case the 
critical speed phenomenon mentioned by the authors. The 
second as a load whose speed contains a harmonic component 
which is similar to what occurs in some industrial processes. 
The paper includes detailed, exact eigensolutions including 50 
eigenvalues and corresponding eigenfunctions in a tabular form 
for these plates with b/a = 0.5. The discusser believes this is 
not unlike clamping radii used in computer disk file memory 
units. I t appears that these eigensolutions can be directly ap­
plied to the formation of D in [28] and thereby extend the 
authors' results to the other plates with little effort. 

The question of disk operation above its critical speed is a very 
interesting one, and the discusser understands from the authors' 
introduction that this is now common. The discusser has held 
the idea that stable operation above the lowest critical speed was 
unlikely. Tobias and Arnold [17] showed in the laboratory that 
instability extended over a wide rotation range, even for a con­
centrated moving load, because of nonlinear effects not contained 
in the linear, critical speed analysis. Dugdale [2] has inde­
pendently commented that stable operation above the critical 
speed is unlikely. In some of the discussers' studies [1, 3] opera­
tion above the critical speed was possible only in the absence of 
loading. The results in Fig. 4 of the present paper indicate a 
"broadened" instability region above the critical speed. One can 
assume that nonlinear effects would broaden it somewhat 
further. In many critical speed problems the modes (number of 
nodal diameters and nodal circles) of potential instability are 
quite close. Tha t is, in the authors Fig. ij/Fjn does not differ 
greatly for values of j = 2 — 6. I t appears then that overlapping 
of instability regions will occur. Besides the interesting implica­
tions of this overlapping, the present paper seems to indicate that 
the potential for instability can only be increased by the moving 

1 By W. D. Iwan and K. J. Stahl, published in the June, 1973, 
issue of the JOURNAL OP APPLIED MECHANICS, Vol. 40, TBANS. 
ASME, Vol. 95, Series E, pp. 445-451. 

2 Department of Mechanical Engineering, University of California, 
Berkeley, Calif. 

3 Numbers in brackets designate References at end of Discussion. 
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