
DISCUSSION 

frequencies than the Rayleigh-Ritz method of the authors' ref­
erence [1]. One minor advantage of the finite-element method is 
that it can be applied to shells with any end conditions without 
adding to the complexity of the computation; whereas with the 
authors' method a change from simply supported ends would re­
quire the use of more complicated functions for i/'„m(aO, ymn(x), 
and f„m(.r). 

Authors' Closure 
The authors would like to extend their appreciation to Professor 

Egle and Professor Warburton for their interesting comments. 
With respect to Professor Egle's first comment, we would like to 

point out that the equations resulting from the authors' formula­
tion, equations (22), are not the same as those obtained in the 
discusser's reference [2]. For, the authors have represented 
the deflections of the stiffened shell in terms of the actual modes of 
free vibration of the unstiffened shell, while in the discusser's 
analysis, the corresponding representation of these deflections are 
given in terms of a Fourier series in u, v, w. True, the functions 
employed are those used to describe the modes of the unstiffened 
shell; however, in the discusser's work, the coefficients of super­
position in these series are independent parameters. The dis­
tinction between the two representations is made clear by rewrit­
ing them. In the authors' paper, in the case of the freely sup­
ported circular cylindrical shell, equation (10) for the deflections 
of the stiffened shell, becomes 

3 
», = E E <l„J(l)l(U„J/Wm,n cos (rmrx/l)] cos n6 

A' = 1 m 

3 
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where the qmn
h(t) are generalized coordinates, and the ratios 

(Umn
h/W„m'') and (Vmn"/Wmn

k) are the amplitude ratios deter­
mined by the k = 1, 2, or 3 natural mode of the unstiffened shell, 
vibrating in a configuration consisting of in half waves in the 
axial, and n full waves in the circumferential direction. In Pro­
fessor Egle's reference [2], the displacements of the stiffened shell 
are taken as 
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where the terms involving primed and unprimed coefficients 
differentiate modes symmetric and antisymmetric with respect to 
a given reference plane. For free vibrations of axisymmetric 
shells, attention may be confined to unprimed terms, and by con­
sidering one circumferential mode at a time, the summation on n 
ignored. Now, the consequence of the difference between the 
author's and the discusser's representation is this: In the 
authors' analysis, the addition of a term in the series representa­
tion of the deflections involves the addition of a single parameter 
corresponding to a mode of the unstiffened shell, in which there is 
a definite ratio of the amplitudes of u, v, w, see equations (1) pre­
viously mentioned. In the analysis corresponding to the fore­
going equations (2), the addition of a term involves the addition 
of three independent parameters corresponding to three different 
Fourier series. Thus the author's formulation and the discusser's 
formulation do not lead to the same set of equations. 

Some further remarks which might be made here concern the 
equivalence of the extremum and equilibrium problems. If the set 

of admissible functions which are used to yield an extremum (for 
the potential energy in this case) also satisfy the equivalent sys­
tem of differential equations and physical as well as geometric 
boundary conditions, then the formulation of the extremum and 
equilibrium problems become identical. Under such circum­
stances a formulation resulting from a Rayleigh-Ritz procedure 
can be identical with a formulation based on the authors' tech­
nique. 

Professor Egle's comment concerning convergence is significant. 
His results bring striking attention to a possible pitfall. Results 
for the cases reported in the authors' paper were obtained by 
carrying the computations out to terms involving 30 modes of the 
unstiffened shell. In these cases convergence was usually ap­
proached after several terms. Upon becoming aware of the dis­
cusser's comment, the authors performed computations for a shell 
having the same geometric and physical properties as the dis­
cusser's, stiffened by 13 equally spaced rings. These rings, al­
though of rectangular cross section, possessed moments of inertia 
identical to those chosen by the discusser. The results of the 
authors' computations essentially confirm those reported by Pro­
fessor Egle. 

The computations for the freely supported circular cylindrical 
shell were made principally to illustrate the application of the 
proposed technique, and consequently were limited in scope. 
The authors are thankful to Professor Warburton for employing 
those results and drawing on his own work to shed additional 
light on several aspects of this problem. 

In conclusion, we would like to recall that at the heart of the 
technique proposed by the authors is the analysis of the unstiff­
ened shell. That is, the natural modes of the unstiffened shell 
are used to construct the solution to the vibration problem of the 
stiffened shell. This progression from the solution of the un­
stiffened configuration, in addition to being an adjunct to the 
analysis, is part of the natural order of the investigation of a 
problem into which an additional complexity has been introduced 
(the stiffening elements). For, in connection with vibrational 
characteristics, the choice of stiffening elements depends strongly 
upon a knowledge of the behavior of the unstiffened structure. 
Solutions for a number of classes of unstiffened shells are already 
available in the literature. 

The Linearization of the Prebuckling 
State and Its Effect on the Determined 
Instability Loads1 

W. T. KOITER.2 The main purpose of the paper is clearly re­
flected by its title, and the results obtained show that great 
caution should be exercised in linearizing the prebuckling state 
in problems where the nonlinear character of the behavior prior 
to budding may be significant. This conclusion is, of course, 
hardly unexpected, but the detailed numerical results in the 
present paper are valuable because they indicate that the errors 
implied by the linearization of the prebuckling state may be quite 
substantial. In the two problems examined by the authors, the 
calculation of critical loads on the basis of a linearized pre­
buckling state results in an (unsafe) overestimate of the critical 
load. 

In view of the scarcity of (more or less) "exact" analyses of 
postbuokling behavior of a continuous system in the literature 
mentioned by the authors, it may be worthwhile to draw atten-

1 By A. D. Kerr and M. T. Soifer, published in the December, 1969, 
issue of the JOUENAL OF APPLIED MECHANICS, Vol. 36, THANS. 
ASME, Vol. 91, Series E, pp. 775-783. 

2 Professor, University of Technology, Delft, The Netherlands. 
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DISCUSS/ON 

tion to some additional references [1, 2] .3 The papers by Biezeno 
are particularly relevant in this connection. 

The primary purpose of the present discussion, however, is to 
explain the discusser's disagreement with a subsidiary conclusion 
of the authors, expressed in the last two paragraphs of the sec­
tion "Conclusions," as well as in the body of the paper and the 
last two sentences of the summary. The point made by 
the authors may be formulated in the following way. In the 
bifurcation occurring in their problems a linear relationship (to 
a first approximation) exists between the magnitude of the skew-
symmetric buckling mode and the change in external load. The 
authors conclude from this undisputed fact that "the usual ad­
jacent equilibrium argument presented in the literature accord­
ing to which only the displacements are perturbed, is not ap­
plicable for the determination of the bifurcation pressures of the 
shallow arch" (quotation from summary). This conclusion, 
however, seems to be incorrect. In fact, from the authors' own 
analysis of the bifurcation pressure, leading from their equation 
(77) to equation (94) it appears that condition (94) for the bi­
furcation point is obtained by putting the change in pressure 
pa equal to zero. 

In other words, the correct bifurcation pressure is indeed ob­
tained, even if the change in load following the postbuckling 
range is ignored. If one is only interested in the bifurcation 
point, and not in the postbuckling behavior, the usual "adjacent 
equilibrium" argument is actually applicable (provided the 
system is, of course, conservative). 

The mathematical reason for the validity of the usual adj acent 
equilibrium procedure in the determination of a bifurcation point 
is the nonuniqueness of displacement increments for a well-de­
fined (infinitesimal) load increment at the bifurcation point. 
This lack of uniqueness implies that the linear operator L in the 
equation for the incremental displacement field u 

Lu = f>, 

where p represents the load increment, is a singular operator with 
nonvanishing solutions of the homogeneous equation 

Lu = 0. 

The latter equation is precisely the mathematical expression 
of the adjacent equilibrium argument. 

References 
1 Biezeno, C. B., "Ueber eine Stabilitatsfrage beim gelenkig 

gelagerten, schwachgekrlimmten Stabe," Proceedings of the Royal 
Netherlands Academy of Science, Vol. 32, 1929, p. 990; "Das Dur-
chschlagen eines schwach gekrtimmten Stabes," Z eitschrift fur angew-
andte Mathematih und Mechanik, Vol. 18, 1938, p. 21. Cf. also 
Biezeno, C. B., and Grammel, R., Technische Dynamik, Springer-
Verlag, Berlin, Vol. 1, 1939, pp. 526-538. 

2 Timoshenko, S. P., and Gere, J. M., Theory of Elastic Stability, 
2nd ed., McGraw-Hill, New York, 1961, pp. 305-310. 

E. F. MASUR.4 The customary approach to the problem of de­
termining the stability of an equilibrium configuration involves 
the superposition of a small disturbance on that configuration. 
The ensuing system of equations is then linear in terms of the 
disturbed displacements; however, the coefficients, which are 
often complicated functions of the space variables, require the 
prior solution of the basic nonlinear equations governing the 
configuration itself. In view of the mathematical complexity 
of the problem it is therefore reasonable to search for suitable 
simplifications. In particular, it appears reasonable to scrutinize 
the effect of the noulinearity of the basic equations. 

This nonlinearity generally arises from two possible sources. 
I t ma}' be of a constitutive nature, especially if "soft" materials 
are involved. However, in the present paper, as in most papers 

3 Numbers in brackets designate References at end of Discussion. 
4 Head, Department of Materials Engineering, University of 

Illinois at Chicago Circle, Chicago, 111. 

of this tjqje, the assumption is made that the strain energy is 
quadratic in the (properly defined) strain components, and that 
therefore the stress components (again, after proper definition) 
are linearly related to the strain components. 

The other source of nonlinearity, which applies also to the 
present paper, is Idnematic in origin. If the strain-displacement 
relations contain quadratic terms, then a variational process 
applied to the potential energy leads to the equations of equilib­
rium as referred to the actual configuration. If the quadratic 
terms are deleted the same procedure yields the equations of 
equilibrium in the unstrained configuration. In other words, 
within the context of the current paper, the question of including 
or deleting nonlinear terms in the strain-displacement equations 
is tantamount to a discussion of the effect of the prebuckling 
deformation on the buckling characteristics of the structure. 

Normally, this effect is negligible. For example, the buckling 
of a column is governed by the well-known Euler formula, which 
ignores the shortening of the column prior to buckling. Simi­
larly, rings under external pressure are analyzed as if the radii, 
at the instant of buckling, were the original radii. Even arches 
or shells may often be analyzed under this assumption, although 
the actual boundary conditions may complicate the state of stress 
in the structure a t t h e instant of buckling. 

If prebuckling deformations are to be significant then the 
structure should exhibit a certain measure of geometric pathology; 
that is, an arch should be "shallow." I t then becomes even 
shallower before it buckles, and, as expected and as demonstrated 
again in the present paper, to neglect this effect is to place one­
self on the side of unrealistic optimism. Shallow shell caps fall 
in the same category, and the linkage, shown in the authors' 
Fig. 1, might again be considered shallow if 0O = 15 deg, as in­
dicated. 

The question raised in the present paper has been the subject of 
two recent studies. Thompson, reference [3]6 of the Discussion, 
has made a thorough investigation of the effect of nonlinearities 
on the budding characteristics of structures with finite degrees 
of freedom. The first part of the current paper should therefore 
represent a special case of that previous analysis, and it would be 
interesting to note how the authors' results compare with the 
broader conclusions established in the discusser's reference [3]. 

Another recent investigation of the effect of prebuckling de­
formations was carried out by Masur and Schreyer, reference [4] 
of the Discussion. This study, which was conducted within the 
framework of general continuum mechanics, went well beyond 
the objective of the present paper. Since the linearized version 
of the analysis may lead to unacceptable error and the exact 
version may run into unsurmountable mathematical difficulties, 
a perturbation technique has been suggested which may greatly 
increase the accuracy of the linear analysis while bypassing the 
need to solve a nonlinear set of basic equations. 

What is of further interest herein is that the shallow arch em­
ployed as a demonstrative example by the present authors was 
also used in reference [4] of this Discussion, and for the same 
purpose. Moreover, the exact solution of the problem had al­
ready been obtained previously by Schreyer and Masur, the 
authors' reference [22] .6 I t is therefore not surprising that the 
results given in Fig. 5 of reference [4] of this Discussion (allowing 
for a slight change in the definition of the variables) are in fact 
identical with Fig. 6 of the present paper, with respect to both 

5 Numbers in brackets designate Additional References at end of 
Discussion. 

6 Except for modifications in the notation the exact analysis and re­
sults of present paper appear to be identical with [22]. However, it 
has been shown in [22] that while unsymmetric buckling is indeed 
possible for K > 5.02, (as claimed in the present paper) the point of 
bifurcation (point A) may lie on the descending branch of tfhe curve. 
In that case, and unless initial imperfections change the picture, the 
arch snaps through symmetrically when the value of the load reaches 
Pu even though Pu is greater than the nonsymmetrie buckling load PCr. 
The latter governs when point A lies on the ascending branch of the 
curve; this happens for K > 5.74. 
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DISCUSSION 

exact and approximate analyses. In addition, Fig. 5 of the 
previous paper also shows the improvement brought about 
through the introduction of one more term in the perturbation 
expansion developed in that paper. 

On several occasions the present authors emphasize the point 
that the results of their anatysis contradict the "adjacent equilib­
rium argument encountered usually in the literature." Since 
this argument has been developed on a very broad basis, reference 
[5-7] of this Discussion, and appears to cover all problems of 
elastic bodies under conservative loading conditions, it would in­
deed be surprising if the shallow arch were to be excluded from 
its range of applicability. The remainder of this Discussion is 
intended to show that this is in fact not the case and that the ap­
parent contradiction seems to be based on a misinterpretation 
of the argument itself. 

The question of buckling, or instability, is inherently a dynamic 
one and has no a priori connection with "neighboring configura­
tions" or "points of bifurcation." If the problem is conservative, 
however, it is readily shown7 that stability, that is (loosely), small 
responses to small disturbances, is assured provided the potential 
energy V of a configuration in equilibrium with a given load is less 
than that of any neighboring configuration (which need not be in 
equilibrium with that load). I t is for this reason that static 
methods of the tjnpe discussed by the authors have been widely 
in use. 

Specifically, if, following Koiter [[8] of this Discussion], the 
potential energy associated with any kinematically admissible 
configuration is compared with the potential energy of an equilib­
rium configuration (State I), then the difference AV may be ex­
pressed in the form 

AV = y2 + y3 + vi+..., (i) 

in which V2 is quadratic in the relative displacements, V3 cubic, 
etc. The two configurations and the corresponding potential 
energy levels are associated with the same load parameter. As 
expected, the linear term in the discusser's equation (1) is missing 
because State I is in equilibrium. 

This equilibrium is then locally stable if F 2 > 0 for all possible 
(not identically vanishing) displacements, and locally unstable if 
V% < 0 for at least one displacement field. The transition occurs 
when Vi is positive but not definite. In that case there exists at 
least one displacement field for which Vt vanishes, or 

min(72) = 0. (2) 

The discusser's equation (2) governs incipient buckling. Since 
in its variational form it is linear in the disturbed displacements, 
it represents the equations of equilibrium of a configuration which 
is contiguous to State I and which is associated with the same 
load. The customary adjacent equilibrium argument has thus 
been established. However, only Vi, rather than the full ex­
pression for AV, is involved, and hence the actual existence of such 
an equilibrium configuration is, in general,8 not to be inferred. 

C. V. SMITH.9 This paper presents an extremely interesting and 
informative comparison of the effect of linearized prebuckling 
deformations oh the magnitudes of critical loads. I t appears, 
however, that certain objections can be raised concerning state­
ments such as, " . . . the usual adjacent equilibrium argument pre­
sented in the literature, according to which only the displace­
ments are perturbed, is not applicable for the determination of the 

7 This discussion is valid only in an averaging sense (relative to an 
appropriate norm) and does not include singular behavior. 

8 A common, and pedagogically unfortunate, exception is the case 
of the column under axial load. If the effect of very large deflections 
is disregarded, then AV = Vi, and the column buckles under constant 
load. 

9 Associate Professor, School of Aerospace Engineering, Georgia 
Institute of Technology, Atlanta, Ga. 

bifurcation pressures of the shallow arch." One might infer 
from this statement, taken by itself, that the usual argument 
would give wrong answers for the magnitudes of the critical loads 
for a shallow arch., (This would be just an inference because the 
authors do not make such a conclusion.) However, the analysis 
shows that such is not the case. Indeed, equation (92) states 
that pa = 0 and, therefore, equation (93) is exactly what one 
would get by applying the classical adjacent equilibrium cri­
terion. 

Perhaps the authors object to the usual criterion because of the 
fact that " . . ., at the bifurcation point, the deformations are 
symmetrical and unique." However, this uniqueness of deforma­
tion at the bifurcation point is characteristic of all bifurcation 
problems. When the axial compressive load on a perfect simply 
supported column reaches ir'EI/L2, the unique equilibrium con­
figuration is straight. This is true even though, in the neighbor­
hood of the bifurcation point, an infinitesimal measure of bend­
ing deformation requires a higher-order infinitesimal change in 
load for equilibrium. 

There are, of course, several possible definitions for the critical 
load. The classical approach can be nonprecisely stated as 
follows. Assume that the system is in an equilibrium configura­
tion. Fix the value of the load, and then impose a disturbance 
on the system. If every infinitesimal disturbance leads to mo­
tion of the system infinitesimally close to the equilibrium con­
figuration, then the equilibrium state is stable. If there exists 
any infinitesimal disturbance which leads to motion finitely re­
moved from the equilibrium configuration, then the equilibrium 
is unstable. Critical loads might then be loosely defined as the 
boundary points between stable and unstable regions on a load 
magnitude line. I t can be shown mathematically that for a 
conservative system, these critical loads can always be de­
termined from the classical adjacent equilibrium criterion, even 
though the equilibrium configuration is unique at the critical 
point. 

In view of the preceding discussion, it would be much ap­
preciated if the authors would further comment on their objec­
tions to the usual adjacent equilibrium argument as applied to 
shallow arches. Once again thanks are extended for a very useful 
paper. 

The example of the arch, as indeed most examples of elastic 
buckling (such as plates, shells, etc.), can be invoked to illustrate 
this point. Stated and interpreted properly, however, the cus­
tomary argument is confirmed rather than contradicted. 

Additional References 

3 Thompson, J. M. T., "The Estimation of the Critical Loads," 
Journal of the Mechanics and Physics of Solids, Vol. 15, 1967, p. 311. 

4 Masur, E. F., and Schreyer, H. L., "A Second Approximation to 
the Problem of Elastic Instability," Proceedings of the Symposium on 
the Theory of Shells (Donnell Anniversary Volume), University of 
Houston, Texas, 1967, pp. 231-254. 

5 Pearson, C., "General Theory of Elastic Stability," Quarterly of 
Applied Mathematics, Vol. 14, 1956, pp. 133-144. 

6 Hill, R., "On Uniqueness and Stability in the Theory of Finite 
Elastic Strain," Journal of the Mechanics and Physics of Solids, Vol. 
5, 1957, pp. 229-241. 

7 Masur, E. F., "On Tensor Hates in Continuum Mechanics," 
Zeitschrift fur Angewandte Mathemalik imd Physik, Vol. 16, 1965, 
pp. 191-201. 

8 Koiter, W. T., "On the Stability of Elastic Equilibrium," 
thesis, Delft, H. J. Paris, Amsterdam, 1945. 

Authors' Closure10 

I t is well known that any stability problem can be analyzed by 
the "dynamic method." Because this method is usually cumber-

10 Because the contested idea was suggested by Professor Kerr and 
since Dr. Soifer is presently fully occupied with nonrelated mechanics 
problems, it was agreed by the authors that Professor Kerr would 
write the reply. 
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DISCUSSION 

some, for elastic conservative systems subjected to static loads 
the "energy method" or the so called "adjacent equilibrium 
method" is usually preferred. 

According to the energy method for an equilibrium configura­
tion to be stable the corresponding total potential energy II has 
to be a proper minimum with respect to the II 's of all kinemati-
cally admissible states (not necessarily equilibrium states). Thus 
the stability proof of a given equilibrium configuration consists 
of showing that the necessary and sufficient conditions for I I to be 
a weak minimum are satisfied at the considered equilibrium con­
figuration. This problem is discussed, for simple functionals, in 
a number of texts on the calculus of variations [9, 10] .n For the 
more complicated functionals encountered in stability analyses of 
elastic solids, this problem is discussed by Koiter [11, 12]. 

A system is defined to be in "neutral" equilibrium when 82TI 
= 0 for nonzero perturbations. The condition S2II = 0 is satis­
fied by the nonzero solutions of the corresponding Jacobi equa­
tions. I t should be noted that the Jacobi equations are in general 
identical with the so called "variational equations" which are ob­
tained by perturbing only the displacements in the equilibrium 
equations and then by retaining only the linear terms in the per­
turbations. The condition for the existence of nonzero perturba­
tions which satisfy 52II = 0 is then used as criteria for the deter­
mination of the "critical" loads at which neutral equilibrium 
takes place. 

In the adjacent equilibrium method it is assumed tha t an 
equilibrium state becomes neutral if there exists, for the same 
loads, at least one adjacent equilibrium configuration [13-15]. 
This assumption is identical with the stipulated procedure for ob­
taining the variational equations just discussed. Hence, as long 
as the variational equations and the Jacobi equations are identical, 
the two methods obviously yield the same critical loads. 

In the discussed paper, it is claimed, that the previous assump­
tion that at a bifurcation point there always exists an adjacent 
equilibrium configuration, when the loads are held constant, is incor­
rect, although the method yields the correct critical loads. (This 
claim is not restricted to shallow arches; the arch was meant as 
an example.) This is the only point questioned by all three 
discussers. I t is a point of fundamental importance since it af­
fects the teaching of structures also on the elementary level, and 
therefore has an influence on the development of the intuition, 
related to stability problems, of future engineers. 

The question of the existence of an adjacent equilibrium posi­
tion was posed some time ago by Pearson (reference [8] of paper), 
who was concerned about a number of conceptual difficulties 
which arise in connection with the usual adjacent equilibrium 
argument. Pearson found that also for his general formulation of 
elastic solids, the Jacobi equations and the variational equations 
are identical, and then concluded that therefore, at neutral 
equilibrium, an adjacent equilibrium state, keeping the loads 
constant, always exists. 

I t appears to this writer, that by showing that the Jacobi 
equations and the variational equations are identical, Pearson 
proved that the two methods lead to an identical formulation for 
neutral equilibrium (as expected); however, this does not consti­
tute a proof that at neutral equilibrium (for example, at a bi­
furcation point) an adjacent equilibrium configuration always 
exists when the loads are kept constant. 

Professor Masur, one of the discussers, uses essentially Pear­
son's argument to prove the existence of an adjacent equilibrium 
state. Therefore, the foregoing statement also applies to his 
argument. 

Professor Koiter's objection appears to be based on a misun­
derstanding. In the paper it is not claimed that the "adjacent 
equilibrium" argument is not applicable because it may lead to 
incorrect bifurcation pressures, but rather that the argument is 
physically incorrect as an equilibrium argument. I t is of interest 

11 Numbers in brackets designate additional References at end of 
Closure. 

Fig. T (Note: branches II meet with the symmetric branch at point B) 

to note that Professor Koiter's "mathematical reason for the 
validity of the usual adjacent equilibrium procedure in the deter­
mination of a bifurcation point" does not imply the existence of 
an adjacent equilibrium configuration. I t does imply, however, 
that the argument on which the procedure used in the paper is 
based is physically correct. 

The foregoing comments answer also some of the questions 
raised by Professor Smith. 

To clarify some of the questions related to the perturbation of 
the load, let us consider a class of elastic conservative systems de­
scribed by two degrees of freedom (for example, various variations 
of the symmetrical problem shown in Fig. 1 of paper). We as­
sume that equilibrium of each system is described by the two non­
linear algebraic equations 

f(ct,P,P) = 0 
(1) 

ff(a,|8,P) = 0 

which are equivalent to equations (4) and (5) for the system shown 
in Fig. 1 of paper. Their exact solution yields equilibrium 
branches, as shown in Fig. 1 of this Closure. Denoting by (° ) 
the variables at the critical points, the equilibrium equations in 
(1), for each of these points, become 

f(a,$,P) = 0 
(2) 

g(a,$,P) = 0 

In the adjacent equilibrium method used in the literature it is 
assumed that there always exists an adjacent position of equi­
librium for 

P = P; a = a+ &; 0 = /S + /? 

which is described, in view of (1), by the equations 

f(a + aJ + P,P) = 0 
(3) 

g(a + &J + @,P) = 0 
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Expanding the equations in (3), using Taylor's theorem, and re­
taining only linear terms in (") , we obtain, noting (2 j , 

a / 3 . ).'-° 
(£).*+&).'-' 

(4) 

The equations in (4) constitute the usually encountered eigen­
value problem. The stability criterion, equivalent to the condi­
tion for the existence of a nontrivial solution (a, /3), is 

\daJo\ b(3 Jt 
= 0 (5) 

At this point it should be noted that point (a + 6>, /§ + J3, P ) , 
for any admissible nonzero a and for p, is in general not a point 
on any of the equilibrium branches near point A, and hence the 
equations in (3) are not equilibrium equations for such points. 

Let us now consider, as a counterexample, the same problem 
using the method presented in the paper. This method is based 
on the observation, that at all points which are of interest for a stabil­
ity analysis (as well as at point B which is not of interest) there 
exists, in a close vicinity on a neighboring a-fi-plane, more than one 
stale of equilibrium (which may or may not be stable). This is 
shown in Fig. 1. The equations of equilibrium for such points 
are those given in (2). The points of interest are those, for which 
on the plane P = p + P there exists, in a close vicinity, more than 
one equilibrium configuration with the coordinates 

a = a + a; /3 = $ + 0 

Substituting these perturbed quantities into the equilibrium 
equations (1), we obtain 

f(a + a, $ + (3, P + P) = 0 

g{& + a, $ + /?, P + P ) = 0 
(6) 

Expanding the foregoing equations using Taylor's theorem, and 
retaining only linear terms in (" ) , we obtain, noting (2), 

(£).*+(3).»--(£).' 
(7) 

Note that the equations in (6) are equilibrium equations. 
Let us estimate the order of P in terms of & and /J. Because at 

the limit points the equilibrium branches are differentiable, we 
may write 

P + P = P(& + a, $ + 0) 

(£).*+(-
dP\ 

= P(«: 0) + I ^ 7 ) « + I J£)o & 

+ 

Noting that P(&,: 

Y d 2 P \ / d2P \ 

\*j).a2 + 2 Uw.< 
/ d 2 P \ 

+ ... (8) 

P and that at the limit points 

(£).-° ( 
d P \ 

d/S/o 
(9) 

/ d 2 P \ . / S2P \ ~ 
- — a2 + 2 aft 

\ d a 2 / „ \ d a d ^ / „ 

/ d 2 P 

+ (10) 

thus of order higher than one in a and /3. 
Retaining in equations (7) only terms of the order of a and 

(3, it follows that for the limit points the equations in (7) become 
homogeneous, as shown in (4). However at the bifurcation 
point, P may be of the order of a and ft and hence, for these 
cases, the linearized equations in (~ ) are those shown in (7). 

The condition for the existence of more than one state of 
equilibrium in a close vicinity on the P + P plane, is equivalent 
to the condition for the existence of a nontrivial {a, 0) at the 
limit points and to the condition for the existence of a nonunique 
(a, 0) at the bifurcation point A (and point B). For both cases 
this condition is 

da 

da 

(11) 

it follows that at the limit points 

except that in the second case also an orthogonality condition has 
to be satisfied in order to insure the existence of a solution [16]. 
Condition (11) is identical with condition (5). Hence, as ex­
pected, both methods lead to the same results. However, the 
physical arguments are very different. 

Because the argument used in the so-called adjacent equi­
librium method is identical to the one prescribed for the deter­
mination of the variational equations, its j ustification is obviously 
derived from the energy criterion. Because it is not associated 
with a true adjacent equilibrium configuration, there is no reason 
to classify it as an equilibrium method. On the other hand, the 
method discussed in the paper is based on true equilibrium states. 

I t appears to this writer, that a reclassification of the adj acent 
equilibrium method as a special case of the energy criterion and 
the adoption of the method used in the paper as the equilibrium 
method will greatly contribute toward the elimination of the con­
ceptual difficulties and misunderstandings which are reported in 
the literature (see Pearson's paper page 134 and Bolotin [15], 
page 43). This will also make the presentation of the elementary 
theory compatible with the physical intuition of engineering and 
science students. 

As to the first part of Professor Masur's discussion, it should be 
noted that the first four paragraphs are essentially a restatement 
of a part of the Introduction. Professor Masur's statement, that 
for prebuckling deformations to have a significant effect, an arch 
has to be "shallow," is not correct. The most obvious counter­
example is the symmetric in-plane buckling of a semicircular thin 
arch subjected to a load at the vertex. For recent results on this 
subject, the reader is referred to a paper by Huddleston [17]. 

While writing the paper the authors were not aware of the 
papers by Thompson (Masur's reference [3]) and by Masur and 
Schreyer (Masur's reference [4]) which appeared in 1967. A 
review of the reference by Masur and Schreyer revealed, however, 
that their presentation of the shallow arch and the presentation 
contained in the paper are very different, although the obtained 
stability loads, according to Masur, are the same. 

From a historic point of view, it should be noted that as early as 
1947, Friedrichs [18] succeeded in reducing the two simultaneous 
nonlinear differential equations for the shallow arch to one linear 
equation. A similar approach was used by Kornishin and Mush-
tari [19] in 1955 for the analysis of a shallow cylindrical strip. 
Schreyer and Masur (paper reference [22]) also used this proce­
dure. Their solution is not complete in the sense that they did 
not evaluate the resulting formulation for the arch deflections, 
but for an average deflection w*. The. solution given in the 
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DISCUSSION 

paper is complete in that it is presented in terms of loads and arch 
displacements. The reader should note that the resulting exact 
solution also exhibits equilibrium branches not discussed in the 
previously stated papers. These branches are discussed in 
reference [20]. 

Thanks are extended to the discussers, Professors Koiter, 
Masur, and Smith, for their comments. I t is hoped that their 
comments and the foregoing reply will contribute to the clarifica­
tion of a fundamental question in the theory of stability of con­
servative elastic solids. 

References 

9 Bolza, O., "Voiiesungen uber Variationsrechnung," B. G. 
Teubner, Leipzig unci Berlin, 1909. 

10 Gelfand, I. M., and Fomin, S. V., Calculus of Variations, 
Prentice Hall, 1963, Chapter 5. 

11 Koiter, W. T., "Over de stabiliteit van het elastisch even-
wicht" dissertation, Delft, H. J. Paris, Amsterdam, 1945. 

12 Koiter, W. T., "Stability of Equilibrium of Continuous 
Bodies," Report, Division of Applied Mathematics, Brown Uni­
versity, Apr. 1962. 

13 Timoshenko, S. P., and Gere, J. M., Theory of Elastic Stability, 
2nd ed„ McGraw-Hill, New York, 1961. 

14 Pfltlger, A., Stabilitatsprobleme der Elastostatik, 2nd ed,, 
Springer, Berlin, 1964, p. 59. 

15 Bolotin, V. V., Nonconservative Problems of the Theory of 
Elastic Stability, Pergamon Press, 1963. 

16 Hildebrand, F. B., Methods of Applied Mathematics, Prentice 
Hall, 1952, p. 29. 

17 Huddleston, J. V., "Finite Deflections and Snap-Through of 
High Circular Arches," JOXJBNAL OF APPLIED MECHANICS, Vol. 35, 
No. 4, TRANS. ASME, Vol. 90, Series E, Dec. 1968, pp. 763-769. 

18 Friedrichs, K. O., "Seminar on Nonlinear Elasticity," New 
York University, 1947-1948, Section IX, Printed Notes. 

19 Kornishin, M. S., and Mushtari, Kh. M., "The Instability of 
an Infinitely Long Shallow Cylindrical Strip Subjected to a Normal 
Uniform Pressure" (in Russian), Izvestia Kazanskogo Filiala AN 
USSR, Seria fiz.-mat. i tekhn. nauk, Nr. 7, 1955, pp. 36-50; see also 
Chapter XI of "Nonlinear Theory of Thin Elastic Shells," Mushtari, 
Kh. M., and Galimov, K. Z., Tatknigoizdat Kazan 1957. English 
translation available as NASA-TT-62, 1961. 

20 Kerr, A. D., and El-Bayoumy, L., "On the Nonunique Equi­
librium States of a Shallow Arch," QuaHerly of Applied Mathe­
matics, 1970. 

An Asymptotic Solution for Laminar 
Flow of an Incompressible Fluid 
Between Rotating Disks1 

M. DeSANTIS,2 L. GALOWIN,2 and E. RAKOWSKY.2 The authors' 
solution for this problem illustrates the viscous dissipation of 
angular momentum in the radial inflow between parallel disks 
and is of special interest since we are currently investigating a 
similar phenomenon.3 Results which display very similar 
behavior to the theoretical values of the radial velocity profiles 
were obtained in our experiments for fi = 0 with h/r0 = 0.031. 
Development of nonsimilar velocity profiles from "fully de­
veloped" is anticipated in the presence of a varying strong favor­
able pressure gradient, e.g., see comments by Savage, reference 

[I].4 

The flow field in a sink vortex device was investigated with ap-

Fig. 1 Velocity profiles 

plication to a flueric angular rate sensor and was reported in 
reference [2]. In tha t study the development of the radial inflow 
of the fluid between parallel coaxial disks into an axisymmetric 
outlet was determined. Experimental velocity profiles were 
measured by hot-wire anemometry, and numerical solution of the 
axisymmetric Euler equations was obtained from a computer 
program. Comparisons of the radial velocity component, taken 
from Fig. 3,1 with our experimentally measured values indicate 
substantially the same development with decreasing r, as shown 
in Fig. 1. Differences are attributed to the zero angular rate in 
the experiments. 

Numerical results obtained from the inviscid analysis for r —*• 
0 indicate local maxima in the radial velocity component, i.e., 
inflections do occur in the profiles approaching the axis of 
symmetry. 

In our case the pressure field is a function of r and z so that the 
adverse pressure gradient in the vicinity of the stagnation point 
decelerates the flow. Outside that region the flow is turned and 
accelerated into the outlet. In the analysis presented in the sub­
ject paper, p(r) only is assumed, but with the varying centrifugal 
field (due to the z distribution of the v^/r term becoming in­
creasingly large at small z and decreasing r) the radial inflow is 
then subjected to an effective p(r, z). A mechanism then be­
comes apparent for radial decelerations about z = 0 for decreas­
ing r and inflections develop in the profile. A mechanism for 
acceptance of profile solutions with velocity overshoot is postu­
lated and discussed in a Note on the Falkner-Skan equation by 
Libby and Liu, see reference [3]. Consequently, the interpreta­
tion that inflections in the radial velocity distributions are nec­
essarily associated with the onset of transition to turbulence is 
speculative and unwarranted. 
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Authors' Closure 
The authors appreciate the references to experimental work in 

the subject area dealt with analytically in the paper. The dis­
cussion concerning the meaning of inflected profiles is welcomed 
by the authors; in particular, the conclusion reached by the dis­
cussers is also held by the authors at the time of preparation of this 
closure. 
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