almost all experimental investigations of viscoelastic heam vibra-
tion. Since relatively little work dealing with the effect of
imperfections in viscoelastic beams has heen published, this paper
is a valuable contribution to the field.

Author’s Glostre

The author would like to thank Professor Wiley and Dr.
Francis for their kind remarks,

Dr. Francis’ comments with regard to the response for w
~ 20 are well taken. As was indicated in the paper (at the end
of the =cction on Analytical Work), parametric resonance for w
~ 20 is a distinet possibility, This possibility was investigated
in reference [11] for the case of a perfect column. References
|5, 6] xhow that imperfections have little effect on the response in
the vicinity of this resonance, so no further analysis was pre-
sented.

The subharmonic response for w = 2{Q is the dominant insta-
bility for the perfect viscoelastic column. However, in the pres-
ence of imperfections, responses at other frequencies can also be
significant.  One of the objectives of this paper was to show that
this is =0. In no way was it intended to imply that possible
parameiric resonance in the first instability region could be
disregarded.

A Theoretical and Experimental Study
of Confined Vortex Flow’

O. L. ANDERSON.> The theoretical analysis and experimental
data presented in this paper represent a valuable contribution to
our understanding of confined vortex flow. The potential benefits
which may acerue with the development of a vortex reactor
are so great that continued research in this area is needed.
This paper invites several comments and like most research
prompts many new questions.

1 It is very rare that the theoretical analyst and experi-
mental investigator examine exactly the same problem. This
paper accomplishes this difficult task to our benefit and the agree-
ment is satisfying.

2 Much of the early theoretical work, authors’ references
[7-12], were accomplished only after many simplifications and
assumptions had been made. It is gratifying that the exact
numerical analysis presented in this paper produces results in
general agreement with these eatlier analysis. Thus the basic
assumptions have been confirmed.

3 Although the equations are singular at the axis of symmetry
and thus difficult to solve numerically, solutions obtained by re-
moving the inner porous boundary would prove very valuable.
Could the authors comment on this possibility?

4 Have these numerical solutions predicted ‘“‘vortex cell”
flow of the type predicted in the authors’ reference [11] and
examined experimentally by Travers.? The solutions for very
small Nge, , appear to indicate this possibility.

LBy G. J. Famis, G. J. Kidd, Jr.,, D. W. Lick, and R. E, Textor,
published in the December, 1969, issue of the JOURNAL OF APPLIED
Mzucuanics, Vol. 36, Trans. ASME, Vol, 91, Series E, pp. 687-692.

2 Senior Research Ingineer, Theoretical Gas Dynamics, United
Aircraft Research Laboratories, United Aircraft Corporation, East
Hartford, Conn.

3Travers, A. ‘‘Experimental Investigation of Radial Inflow
Vortexes in Jet-Injection and Rotary-Peripheral-Wall Water Vortex
Tubes,” NASA CR~1028, Apr. 1968.
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5 These vortex flows are known to have instabilities, Oc-
casionally exact numerical solutions predict instabilities. Is
there any evidence in your calculations that this has occurred?

T. 5. CHANG* and C. W. KITCHENS, JR.®! The authors have pre-
sented a most interesting numerical and experimental study of a
Newtonian vortex confined between rotating porous concentric
cylinders. The geometry considered is somewhat different from
that depicted in Fig. 1 of the paper; however, the numerical
solution exhibits much of the phenomena in the confined vortex
that has been observed experimentally. The numerical tech-
nique employed in this study should have application in many
other related problems where it is desirable to work with the full
Navier-Stokes equations.

It will be interesting to extend this technique to the solution of
the non-Newtonian confined vortex. A study of rotating flows
of non-Newtonian fluids has recently been completeds using the
constitutive equation for a second-order fluid considered by Cole-
man and Noll {1]7

[¢3] 1y &)
0y = =P8+ nedy; + BARA + YAy,
[¢V] 2)

where a,; is the stress tensor, P is the pressure, A;; and A,; are
the first two Rivlin-Ericksen tensors [2], 7 is the viscosity, and 8
and 7y are normal stress coefficients. The case of the motion
near a stationary wall, when the non-Newtonian fluid far from
the wall rotates at a constant angular velocity, is closely related
to the flow near the end wall of a confined vortex. Fig. 1 in this
Discussion shows the radial and tangential velocity distribution
functions (F and @) for such non-Newtonian flows, using the
notation of Bédewadt [3], where K and L are nondimensional
parameters related to 8 and v, respectively. 1t appears that the
difficulties associated with flow being diverted into the boundary
layers in the non-Newtonian confined vortex may be even more
pronounced than in the Newlonian case.

4 NSF Professor, North Carolina State University, Raleigh, N.
C.; also Cornell University, Ithaca, N. Y.

¢ First Lieutenant, U. 8. Army, Ballistic Research Laboratories,
Aberdeen, Md.

¢ Kitchens, C. W., Jr., “Vortex Tlows of Second-Order Non-
Newtonian Liquids,” PhD thesis, North Carolina State University,
Raleigh, N. C,, 1970.

7 Numbers in brackets designate References at end of this Discus-
sion.

— K=0.0,L.=0.1

.‘ﬁ—::?
N G{tangential)

N NEWTONIAN|(K=0.0,L=0.0)

=
\‘F(mdial)

K=0.0,L=0.1

Fig. 1 Newtonian and non-Newtonian velocity distribution functions
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C. G. RICHARDS.* The authors are to be commended for a very
nice piece of work which undoubtedly involved a goodly amount
of effort and skill.

However, this writer believes that the authors should now ex-~
tend their present work by apparently slight—but significant—
modifications of the boundary conditions.

The authors discuss two types of flows in their present paper.
This discussion has been restricted to the second case.

Tor the second type of flow which the authors discuss (i.e.,
radial flow crosses the boundaries) the boundary condition at the
inner eylinder is given as

Yiriz) = 10,2 0

IIA
(83
IIA

Z¢

This is a linear distribution which may not be realistic in that it
requires the radial velocity to have no variation along the outlet.

From Figs. 7 and 8 of the paper, this restriction appears to have
a rather drastic effect on the flow pattern (streamlines) in the
region near the inner cylinder. The flow is essentially “forced’’
(numerically) to become uniformly distributed at the (inner
cylinder) outlet. The question is, simply, “Does this accurately
represent the flow in the present case’’?

The reason for using such a condition on the inner boundary
is that the computational procedure is greatly simplified. It
may also be the difference between achieving or not achieving
stability, although this is probably not the case here.

Perhaps a more realistic condition would be to require that the
flow enter the inner cylinder horizontally, i.e.,

Y (ry2) _
o

0

In this way, the location of the streamlines on the inner eylinder
would not be fixed, but would be determined by the flow field.
However, this condition is more difficult to apply in practice and
may lead to other difficulties.

A second modification which might be considered would be to
remove the inner cylinder from the problem and utilize a sink
(i.e., drain hole) at the bottom surface of the chamber. This
would more closely approximate the conceptual application de-
picted in the authors’ Fig. 1. (In addition, the chamber might
be made stationary with fluid being introduced tangentially as in
the authors’ Fig, 1.)

Removal of the inner eylinder would allow the region of interest
to be extended to the axis of symmetry, where the motion is
solid-body rotation with an unknown angular velocity. The sink
might then be either a point sink (singularity) or a finite
sink. The point sink would cause computational difficulties,
while the finite sink would be very convenieni—provided the
velocity distribution was specified.

It is felt that perhaps these modifications may yield results
which will give even more insight into the phenomenon being
studied.

S_Associate Professor, Department of Mechanieal Engineering, The
University of New Mexico, Albuguerque, N. Mex. Assoc. Mem.
ASME.
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NIKOLAUS ROTT.®  Ag a comment to this valuable contriby.
tion to our knowledge of rotating flows, I merely wish to point
out a few cases which would be worth investigating by the
authors’ numerical method, and which could lead to a critica)
assessment of analytical methods. For instance, it would be
interesting to raise the tangential Reynolds number until evey
for the numerical method the special treatment of boundary-l;\yer
regions would become desirable; results could be compared
to those obtained by the methods of references [6 and 1)
of the paper. A different problem of great theoretical interess
could be treated in the case of zero radial flow, again in the
high Reynolds number limit, but letting the two end wallg
rotate with only a small velocity difference. The critical com-
parison with analytical results given elsewhere in the literatnre
would be very valuable.

Authors’ Closure

The authors would like to thank the reviewers for their com-
ments and suggestions. As several of the reviewers point out,
there are many additional aspects of this type of flow that should
be investigated and we would hope to be able to carry on some of
this work in the future. The potential usefulness of the vortex
nuclear reactor, as well as the importance of vortex flows in other
fields, are compelling reasons for further efforts in this area.

In responding to the reviews, we would like to discuss the vari-
ous modifications mentioned first and then reply to the specific
questions raised.

The elimination of the eentral exit tube, as mentioned by Dr.
Anderson and Dr. Richards, would indeed lead to additional
mathematical difficulty; however, we feel that this could be
handled. The major problem is of course specifying the nature
of the sink, The finite sink is of particular practical inferest
since it is the type that would probably be used in a reactor.
The case in which the flow is totally enclosed, that is, in which
there is no net radial flow and hence no need for a sink, has been
studied by Pao, reference [14] of the original paper.

Dr. Richard’s suggestion of the use of the boundary condition
that the flow enter the central tube horizontally is another pos-
sible way of handling the sink, and would be interesting to try.
However, in our experimental study, the resistance of the central
tube was high enough to give essentially uniform flow, so that we
feel the calculations do depict the actual physical situation.

The two extensions recommended by Professor Rott are
excellent examples of “test cases’” with which it should be pos-
sible to prove or disprove the validity of the use of simplications,
such as momentum integral techniques, in the solution of this
class of problems. A special case of the second type of flow he
discusses is deseribed in Fig. C3 of reference [18] of our paper.
This is the case for no net radial flow, the cylindrical walls rotat-
ing, and both end walls held stationary. The tangential Reyn-
olds number was relatively small (120) however. Our experi-
ence showed that computer times became unreasonably large
for the high Reynolds number cases and some improvement.
in the computing technique would probably be needed to
allow investigation of flows in this class.

The application of this technique to non-Newtonian flows, as
discussed by Professor Chang and Mr, Kitchens, is yet another
area of potential interest. The inclusions of a generalized stress
tensor in the calculational scheme would open up a number of
possible extensions, including, perhaps, the area of turbulent
flows. As a final comment on extensions of this study, it should
be mentioned that consideration of MHD effects would be of
value in relation to studies of a plasma-vortex-reactor generator.

In answer to Dr. Anderson’s question in point 4 of his dis-
cussion, a vortex cell type of flow does appear in the low radial

9 Professor, Eidg Technische Hochschule, Institut ftir Aerody-
namik, Zurich, Switzerland.
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inflow cases. TFor no radial flow, the entire cavity be(fom.és what
might be termed a single toroidal vortex c(?ll, and this situation
persists for small negative values of the radial Reynolds number.
[lowever, this phenomenon disappears as the radial inflow is
increased as can be seen in Fig. 7 of the paper.

Iinally, we believe that the oseillatory secondary flows that ap-
pearin the “corners’” between the inner cylinder and the end walls,
as shown in Figs. 7 and 8, are indicative of the flow instabilities
that Dr. Anderson asks about in his last question. The numerical
ealenlations were stable for these conditions and the convergence
was still good so that we ascribe this behavior to the physical
gituation and not to the numerical technique.

On Evaluation of Natural Frequencies
for a System of Equal Inertias and
Equal Spring Stiffnesses’

HANS BERGKVIST.2 The problem considered in the Brief Note
¢an, using the same notation, be described by the difference equa-
tion

ady, + pyr = 0

or

I

alyers — 26 + Yo-) +ue =0 k=12....n

under the boundary conditions
Yo = Y1 = 0

The characteristic values u = w? of this equation are known to be

2 = 4q sin? Ar__ A=1,2 n
= =4dasin? {———— = ce
B 201 + n) '
(compare, for example, Hildebrand?). This expression seems to
he a simpler form of the result given in the paper discussed.
Thus the natural frequencies of the system are given by

_ . AT .
w>\=2\/asmz<1 ) A=12....n (1)

I'urthermore a one-term expansion of the sine will give a value of
the lowest frequency that deviates from the exact one by less than
| percentifn > 6;1.e.,

- by
w = 2 v/ asin ———

T _
2(1+n)“1+n\/oz

<1
200 +n) 4

if —n 2 6
The illustrative example presented in the paper can be solved
directly and exactly by expansion of the determinant and solu-
tion of the secular equation, thus:

200 — w? —a 0
& = - 200 — w? - =0
0 —a 200 — w?

= (2a — w?) Ay — a?A; = 2a — w)(A — @?)

t By Fan Y. Chen, published in the September, 1969, issue of the
Journat or AprpriEp MucHANICS, Vol. 36, Traws. ASME, Vol. 91,
Series E, pp. 646647,

2 Research engineer, Division of Strength of Materials, Lund In-~
stitute of Technology, 8-22007 Lund, Sweden.

3 Iildebrand, F. B., Finate-Difference Fquations. and Stmulaiions,
Drentice Hall, Englewood Cliffs, N. J., 1968, pp. 37-39.
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which gives

@ = VaV2 — V2w o= Vavd; o = VaV2 £ 2

. T - . — . 37
These values equal 24/ sin é; 2+/a sin p and 24/« sin 3 re-

spectively, which are also obtained from (1) forn = 3.

Author’s Closure

The writer thanks Mr. Bergkvist for writing this discussion.
The writer will take this opportunity to quote two more ref-
erences of importance [1, 2].4 The eigenvalue equation (equa-
tion (3)) or its equivalent form such as the one mentioned by the
discusser are derivable from many approaches. Besides Cheby-
shev’s polynomial, previously mentioned, other methods include
transfer matrix [1], Fibonaceci number [2], as well as finite dif-
ferences. Derivation by induction is an alternative straight-
forward method. The writer has applied mathematical induc-
tion to other systems [3].

Mr. Bergkvist has raised an interesting point regarding the ap-
proximation of the lowest eigenvalue using one-term expansion of
the sine function. However, this may not be worthwhile, since
the exact frequency equation is already simple enough for gen-
eral purpose.

Finally, the writer might as well mention that the orthonormal
eigenmodes associated with this problem (governed by equation
(1) in the text)is [4]

92 . AN . 2ATw . onAm\7
{end = sin sin ———, .. ., sin
A 1+ n 14 n 14 n 1+4n

AN=1,2..,n

where ()7 represents the transpose.

More information on modeling and direct solution to a class
of mechanical vibration systems with different kinds of boundary
conditions are treated in a forthcoming paper [5].
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On Integral Methods for
Predicting Shear Layer Behavior'

D. E. ABBOTT.2  This paper treats approximate solution tech-
niques of the momentum integral type as applied to boundary-
layer problems. Specifically, the author discusses the role that

1 By 8. J. Shamroth, published in the December, 1969, issue of the
JOURNAL oF AprLiep MucHANICS, Vol. 36, Trans. ASME, Vol. 91,
Series Ii, pp. 673-681.

2 Professor, Purdue University, Fluid Mechanics Group, School
of Mechanical Engineering, Lafayette, Ind.
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