
DISCUSSION 

the case of constant tension. The case of the cable with non-
negligible weight has a rather extensive bibliography for both 
the static [1, 2, 3]3 and the dynamic cases [4, 5, 6]. 
Eringen [7] shows that extensional deformations need not be 
neglected in deriving the author's equation (17). In reference 
[3], the methods developed by Moser [8] and Wasow [9] for 
singular perturbation differential equations have been used to 
obtain solutions of this equation similar to those of equations 
(41) and (42) of the author's paper but for the more general case 
of linearly varying axial tension caused by the weight of the 
cable. I t is also shown there that the author's restriction to small 
angles is not necessary and that the effects of constant horizontal 
and vertical forces can be absorbed into the boundary conditions. 
The results he obtains, indicating that superposition can be used 
for calculating bending moments in the presence of lateral 
forces even for rather large angles, should be of interest for the 
important practical problem of offshore casings loaded laterally 
by tidal currents. 
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sin <p » — Ji(y)<P, cos if ~ J0(y) (2) 

where Jo and Ji are the ordinary Bessel functions of the zeroth 
and first order, respectively. Substituting (2) into (1) and letting 
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we obtain the approximate equation 

<p" - k2ip = 0 

which is satisfied by 

<p = & sinh (ks) + C% cosh (ks) 

(3) 

(4) 

(5) 

From the conditions ip = y at s = 0; and ip = 0, M = —EI<p' 
= Oa ts = L, 

Ci = - 7 coth (kL) - 7 tanh {kL), C2 = 7 (6) 

Hence, 

tanh (kL) = 1 

<p = 7[cosh (ks) — sinh (ks)] 

Mo = [2yJl(y)EIT*]l/i 

(7) 

(8) 

(9) 

For example, for y = 2 (7 ~ 114.59 deg), exact M0 = 1.683-
(EIT*) I / 2 ; from equation (9), M„ = 1.51Q(EIT*)1/2; and by the 
small-angle approximation, M0 = 2(EIT*)l/*. Of course, the 
accuracy of the method is much better for smaller angles. 
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R. SCHMIDT4 and D. A. DaDEPPO.6 The nonlinear differential 
equations governing the three problems considered by the author 
can also be linearized with the aid of Chebyshev polynomials [10-
12] .6 Such linearization yields more accurate results than the so-
called "small-angle approximation," i.e., linearization with the 
aid of Maclaurin expansions. 

Let us imagine the cable extended below the horizontal plane 
of fixity and take 

tp = 7 — 6, —7 < <p < y 

The author's equation (18) then becomes 

ip" - A2sin<p = 0 (1) 

where primes denote derivatives with respect to s. According 
to [13] of this Discussion, 

3 Numbers in brackets designate References at end of Discussion. 
4 Professor of Engineering Mechanics, University of Detroit, De­

troit , Mich. Mem. ASME. 
6 Professor of Civil Engineering, The University of Arizona, Tucson, 
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6 Numbers in brackets designate Additional References at end of 

Discussion. 

Author's Closure 
The author would like to thank Professors Plunkett, Schmidt, 

and DaDeppo for their informative comments and the lists of ad­
ditional references they have provided which include several re­
lated papers of which the author was unaware. In particular, it 
is gratifying to the author to know that some of the results of the 
paper have a wider range of application than indicated in the 
paper. 

Flow in a Two-Dimensional Channel 
With a Rectangular Cavity1 

ZEEV ROTEM.2 The authors are to be complimented on their 
investigation of this important problem which has a direct bearing 

1 By U. B. Mehta and Zalman Lavan, published in the December, 
1969, issue of the JOURNAL OF APPLIED MECHANICS, Vol. 36, TRANS. 
ASME, Vol. 91, Series E, pp. 897-901. 

2 Professor, Department of Mechanical Engineering, University of 
British Columbia, Vancouver, B. C , Canada. 
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DISCUSSION 

upon static hole errors for low and moderate Reynolds numbers 

Re. 
I t is interesting to compare the authors' results with those of 

previous investigators who examined more or less the same prob­
lem. Thus Thorn and Apelt [ l ] 3 assumed a Poiseuille-type 
flow over their cavity of aspect ratio 2 :1 , and Re = 5. While 
these early results may not be particularly accurate, they are at 
variance with the results of the authors, and some discussion of 
this would seem valuable. A particular point in case would per­
haps be the surprising degree of symmetry retained at Re = 100 
in the authors' results and the shape of the separating streamline. 
Burggraf [2] apparently does not find such a degree of symmetry 
in his case (which, however, assumed a different type of shear 
flow). 

An interesting comparison could also be made with the various 
models which impose a rate of shear at the cavity upper ("free") 
surface [3-6] and with the recent treatment of the authors' case 
by O'Brien [7]. 
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Authors' Closure 
In comparing our results with those of other investigators it 

should be recalled that we considered a Couette flow over the 
cavity and that the Reynolds number is based on the velocity of 
the moving wall rather than the velocity at the free surface. 

Thom and Apelt [8] i consider a Poiseuille flow over the cavity 
and obtain a dividing streamline that appears to start at the con­
vex corners but dips lower than our dividing streamline. O'Brien 
[9,10] has solved the same problem for both Couette and Poiseuille 
flow. She comes to the conclusion that "Poiseuille flows over 
cavities uniformly produce lower dividing streamlines than 
Couette flows for the same geometry." 

The discusser correctly observes that in our case there is a large 
degree of symmetry at ./VHO = 100 while Burggraf [11] does not find 
such symmetry in his cavity flow with a scrapping lid at the 
same A R 0 . The discrepancy is readily resolved if we recall tha t 
Burggraf's Reynolds number is based on the velocity of the upper 
cavity surface. Since in our problem the velocity of the cavity 
surface is approximately four percent of the velocity of the chan­
nel wall our Reynolds number of 100 corresponds to Burggraf s 
AR,, of approximately 8 for which case his structure would also be 
symmetric. 

The shear and the velocity at the cavity upper ("free") surface 
is not constant in our problem (which models a two-dimensional 
static hole). Therefore, no quantitative comparison can be made 
between the present problem and investigations that consider 
constant shear [12] and constant velocity [11-14] at the free 

3 Numbers in brackets designate References at end of Discussion. 
4 Numbers in brackets designate References at end of Closure. 

Table 1 

"Amax h/AR 

AR O'Brien Present O'Brien Present 
1.0 0.0102 0.0121 0.933 0.962 
2.0 0.0105 0.0125 0.9665 0.9875 

surface. Qualitatively, we see the similar flow phenomenon in 
both problems. 

O'Brien [9] should be complimented for her thorough and care­
ful investigation of vortices in viscous shear flows over wall cavi­
ties. She considers an identical geometry to ours and obtained 
solutions for rVRe = 0. We can compare her results [15] with our 
calculations at An,. = 1. 

1 In both cases the dividing streamline originates at the con­
vex corners and is concave. The lowest height (h/AR) of 
O'Brien's dividing streamline is lower than ours; see Table 1 of 
this Closure. 

2 While the flow structure is similar in both cases the actual 
values differ considerably. The values of l/'nmx for two geometries 
are shown in Table 1 of this Closure. 

I t should be pointed out that for the scrapping lid problem at 
ArRe = 0 our results agree within 4.5 percent with those of O'Brien. 
The larger discrepancy in the cavity problem is most likely due to 
computational difficulties associated with the singular nature of 
the convex corners. 
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Buckling of Composite and Homogeneous 
Isotropic Cylindrical Shells Under Axial 
and Radial Loading1 

G. WEMPNER.2 The authors have managed to obtain relatively 
simple buckling modes which fulfill eight different boundary con­
ditions by imposing two simultaneous equations involving the 
circumferential wavelength and the critical load (or axial length). 
Simultaneous solutions of the polynomial and transcendental 
equations are obtained numerically by a procedure of trial and 
correction. A difficult problem has been treated in a thorough 
manner and useful numerical results have been given. How­
ever, several questions arise. 

1 Jiy M. M. Lei and Shun Cheng, published in the December, 1969, 
issue of the JOURNAL OF APPLIED MECHANICS, Vol. 36, TRANS. 
ASME, Vol. 91, Series E, pp. 791-798. 
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