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I t is found that the portion of the steady-state amplitude and 
frequency curves with negative slopes give at least one eigen
value with positive real parts. The portions of the steady-state 
oscillations curves with negative slopes are in fact unstable 
branches. Therefore, there is only one state of stable steady-
state oscillations under a load less than (he critical load. 

Author's Closure 
The author extends his thanks to Professor Tso and Mr. Asmis 

for their comments. 
I t is true that unless the angular rotation exceeds the value a, 

the system analyzed by the author is identical to an undamped 
system; however, it should be noted that, the parameter a used in 
the investigation can be assigned any small value greater than 
zero. In other words, if the initial disturbances and <pt are of 
the first-order infinitesimal quantities, we may assign a a magni
tude which is greater than zero but is smaller than the first-order 
infinitesimal quantities so that the hysteretic effects will still be 
present in the s.ystem. Since this reasoning is valid for any small 
disturbances and $,-, the notion of "stability in the large" used 
in the hysteretic damping case is rather weak. 

To throw additional light on problems concerning the notion of 
stability needed in the hysteretic damping case, let us consider 
the case in which a distributed-yielding hysteretic model is used 
in the representation of the restoring and dissipative mechanisms 
in the hinges of the double pendulum. The hysteretic restoring 
moments induced may, then, be written as functionals c.I/,[$,, fi(, 
t, Yj(a)] where i = 1, 2, and the functions Yt(a) define, respec
tively, the fraction (or percentage) of the material elements with 
yield limit equal to a in the hinge. Assume that 

5',(a) = - [H(o) - H(o - a*)] (« = 1, 2) 

where a* is the highest yield limit of the material elements in the 
hinge and H( ) is the Heavyside's unit step function. The total 
area of the yield-limit distribution diagram so specified is unity. 
The relationship between the restoring moment and the angular 
displacement may implicitly be depicted by Fig. 2 of the paper 
with the labeling of the ordinate Jljf1-(0,-) u„ 0 replaced by 

— — — JW,-[0i, Mi. '> F,-(a)]. It can be shown that the resultant 
3 ,(«) da 
system hysteresis loops are composed of smooth curves whose 
cur/atures are equal to ^ . ^ ( ( / l , - — <j>,)/2) for the lower branch 
curves, and — ^ , 7 , ( 0 4 , - + <p:)/2) for the upper branch curves. 
(See ref. [18] in the paper and [1] given in this Closure.) 

The distributed-yielding hysteretic model just described will, 
no doubt, exhibit hysteretic damping effects whenever the system 
oscillates with any small amplitudes. This illustration shows 
that the notion of "stability in the small" is applicable in the 
hysteretic. damping case as well as in the viscous damping case. 

In a recent studj r ([2] of this Closure), the distributed-yielding 
hysteretic damping was found to have similar destabilizing effects 
as the bilinear hysteretic damping. Thus the hysteretic damp
ing may exert destabilizing effects on stability of the system 
"in the small." 

With respect to the latter part of the discussion, the author 
would like to express his appreciation to the discussers for bring
ing out the stability analysis of the steady-state curves which was 
not emphasized in the paper. However, it should be noted that 

the author has indicated only the possibility that two disparate 
states of stead3'-state oscillations of the system may exist under 
a certain identical loading. There was no assertion that both of 
these two states of steady-state oscillations are stable. 
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Thermal Instability in Fluid Layers in the 
Presence of Horizontal and Vertical 
Temperature Gradients1 

S. H. DAVIS.2 T H E authors wish to consider the effects of both 
horizontal and vertical temperature gradients on the motion of 
fluid in a two-dimensional slot. They use the methods of linear 
hydrodynamic stability to analyze the basic state of zero velocity 
with the temperature profile 

T = To- Px-x - P,-z. (1) 

Perturbations are superposed on this state and critical Rayleigh 
numbers (for the onset of motion) are computed. 

The basic state (1), however, is not a solution of the basic hy
drodynamic equations. The proper basic equilibrium state re
quires zero velocity and the temperature and pressure (p) fields 
must satisfy 

V"2r = 0 (2) 

Vp + gpk = 0 (3) 

where we have the equation of state 

p = p„[l - a(T - To)]. (4) 

Here k = (0, 1), g is the acceleration of gravity, a is the volume 
expansion coefficient, and the zero subscript denotes a (constant) 
reference value of the corresponding quantity. 

The temperature field (1) does satisfy equation (2) but not 
equation (3). To see this, take the curl of equation (3) and 
obtain 

0 = V X pic = Vp X k. (5 

Equation (5) can only be satisfied if p is independent of x. From 
equation (4), this implies that T is independent of x. 

Since basic equilibrium states exist only when T = T(z) only, 
the stability of state (1) cannot be discussed. In fact, any 
horizontal temperature gradient should be sufficient to induce 
motion. 

Authors' Closure 
The writers appreciate the discussion by Mr. Davis and agree 

with the points raised by him which the writers consider to be 
valid for the most general case. However, one of the aims of the 
writers was to demonstrate the effect of small horizontal tempera
ture gradients on the instability in adversely heated fluid layers 
of high thermal conductivity. Thus, in the energy equation, 

1 By T. E. Unny and P. Niessen, published in the March, 1969, 
issue of the JOURNAL OF APPLIED MECHANICS, Vol. 36, TRANS. ASME, 
Vol. 91, Series E, pp. 121-123. 

2 Assistant Professor of Mechanics, The Johns Hopkins University, 
Baltimore, Md. 
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DISCUSSION 

the convective transport of heat is neglected in comparison to the 
conductive transport. Further, without obtaining the detailed 
steady-state base flow solution, the writers analyzed the instabil
ity in the fluid layer considering the base flow motion to be of 
negligible order. How far this is valid can be ascertained only by 
experimentation or further detailed analysis. The writers be
lieve that the results obtained would be found correct within 
agreeable limits at least for small values of 7 . For 7 = °°, i.e., 
for the horizontally heated case, departures from the values given 
in the article may be found as a result of the existence of the base 
flow. 

There is no particular difficulty in including the base flow 
velocity in the stability analysis. However, to obtain the base 
flow pattern for such a system with aspect ratios, d/I « 1 (where 
d is the distance in the vertical direction and / distance in the 
horizontal direction) is very difficult. Elder3 has previously ob
tained through experimentation the base flow pattern for a hori
zontally heated system with aspect ratios, d/l» 1. Furthermore, 
using finite-difference approximation to the governing differential 
equations, Elder4 obtained theoretical results which verified his 
experimental values. In Elder3 certain difficulties were men
tioned in satisfying exactly the boundary conditions at the hori
zontal surfaces. The writers are at present, engaged in develop
ing a finite-element procedure to determine the base flow in a 
horizontally heated system with very small aspect ratios. Once 
this has been successfully carried out, the writers intend to include 
the base flow in the stability analysis for such systems. 

3 Elder, J. W., "Laminar Free Flow in a Vertical Slot," Journal 
of Fluid Mechanics, Vol. 23, Part 1, 1965, pp. 77-98. 

4 Elder, J. W., "Numerical Experiments With Free Convection in a 
Vertical Slot," Journal of Fluid Mechanics, Vol. 24, Part 4, 1966, pp. 
823-843. 

A Numerical Solution for the Laminar 
Wake Behind a Finite Flat Plate1 

R. J. EL-ASSAR.- In their paper,1 the authors present "an 
improved first approximation of the solution in the trailing-
edge region for large values of the Reynolds number." I t is 
surprising to note that the results in the authors' Figs. 7 and 8 
show considerable sensitivity to the mesh size Ax. This is an 
indication that their numerical solution did not converge. The 
reported disagreement with Goldstein's results [ l ] 3 in the im
mediate neighborhood of the trailing edge is, therefore, not sub
stantiated. Indeed, the trend of their results in Fig. 7 shows that 
they might have achieved good agreement if they had employed 
a finer mesh. While the authors report that the size of the 
circular region around the trailing edge, where boundary-layer 
approximations are not valid, is estimated as LR~1^ which is 
extremely small for large Reynolds numbers, and while their 
major effort was to study the structure of the flow field within 
this region, they use a mesh size that is hundreds of times larger 
than this size. The trailing-edge disturbance is negligible out
side the circular region of size LR~3'* and the use of the Navier-
Stokes equations outside this region, although legitimate, onljr 

makes matters worse. This is due to the Drichlet-type boundary 
conditions necessary for the existence of the solution of the elliptic 
equations not being known a priori. One tends to believe that 
the boundary-layer equations are accurate enough to describe 
the whole flow field because of the rapid decay of the trailing-edge 

1 Bj' A. Plotkin and I. Flilgge-Lotz, published in the December, 
1968, issue of the JOURNAL OF APPLIED MECHANICS, Vol. 35, TRANS. 
ASME, Vol. 90, Series E, pp. 625-630. 

2 Assistant Research Professor, Department of Mechanical Engi
neering, Rutgers University, New Brunswick, N. J. 

3 Numbers in brackets designate References at end of Discussion. 

disturbance. The region where the influence of the trailing 
edge is significant is smaller than the mesh size in any efficient 
and stable numerical scheme [2]. We believe that the preasymp-
totic solution of Goldstein is valid and the choice between the 
Navier-Stokes equations and the boundary-layer equations de
pends on how close to the trailing edge one wants to extend the 
solution. Because of the parabolic nature of the boundary-layer 
equations any disturbance in the Blasius profile at the trailing 
edge (initial condition) due to the trailing-edge singularity would 
decay rapidly with no significant effect on the behavior of the 
near and far wakes. If one wants to study the behavior of the 
flow field in the immediate vicinity of the trailing-edge singu
larity, the method of series truncation as proposed by Van Dyke 
[3] should be used because of the rapid decay of the disturbance 
and, hence, the difficulty in achieving convergence in a difference 
scheme. 
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Authors' Closure 
I t is not surprising that our results show some sensitivity to 

the mesh width Ax since decreasing the mesh width forces the 
necessity of making calculations closer to the trailing-edge sin
gularity. This in itself does not indicate lack of convergence. In 
fact, the axial velocity component on the wake center line (Fig. 
7) appears to be converging quite well, more rapidly even than 
the comparable convergent results for the boundary-layer solu
tion as shown in Fig. 3.5 of Plotkin and Fliigge-Lotz.1 The more 
sensitive local shear stress coefficient (Fig. 8) appears to be con
verging (albeit slowly) in the region closest to the trailing edge. 
A close look at Fig. 7 will show that the trend of convergence is not 
toward the Goldstein5 result closest to the trailing edge, as is 
stated by El-Assar. 

The size of the region in which the boundary-layer approxima
tions are not valid was estimated to be LR~3li by Van Dyke.6 At 
the time of publication, this estimate was as yet not substantiated 
by further analysis and to the authors' knowledge has still not 
been. The authors were therefore justified in searching for the 
trailing-edge disturbance in a larger region. We note that the size 
of the disturbance region as calculated in our paper is independent 
of mesh widt h for a given Reynolds number. 

El-Assar "tends to believe that the boundary-layer equations 
are accurate enough to describe the whole flow field because of the 
rapid decay of the trailing-edge disturbance." Since the interest 
in this problem is primarily of an academic nature, the authors 
take exception to this statement. The initial conditions for the 
wake problem are only determined from a knowledge of the flow 
in the trailing-edge region, and without this knowledge can only 
be approximated. The numerical solution in the neighborhood 
of the assumed initial profile is therefore uncertain and, although 
the Goldstein solution may be approached downstream, it is not 

4 Plotkin, A., and Fltlgge-Lotz, I., "A Numerical Solution for the 
Laminar Walce Behind a Finite Flat Plate," Tech. Rep. No. 179, 
Division of Engineering Mechanics, Stanford University, Stanford, 
Calif., 1968. 

6 Goldstein, S., "Concerning Some Solutions of the Boundary Layer 
Equations in Hydrodynamics," Proceedings of the Cambridge Philo
sophical Society, Vol. 26, 1930, pp. 1-30. 

6 Van Dyke, M., "A Survey of Higher-Order Boundary-Layer 
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