
• S o p discussion 

On Stability of a Circulatory System 
With Bilinear Hysteresis Damping1 

W. K. TSO2 and K. G. ASMIS.3 Professor Jong has considered a 
very interesting problem. The purpose of this discussion is to 
clarify two points in his paper. 

The author compares the effects of viscous damping and 
hysterelic damping on the critical load of a nonconservative 
system. I t should be pointed out that in the case of viscous 
damping, the notion of stability used is "stability in the small." 
Whether the system is stable or not depends on tire subsequent, 
motion of the system after it is subjected to infinitesimal dis­
turbances. On the other hand, the notion of stability used in the 
hysterelic damping case is "stability in the large." Unless the 
disturbances (finite) are sufficiently large so that the angular 
rotations exceed the value "a," the system analyzed by the 
author is identical to an undamped system. 

For example, consider the case where the hysteretic damping 
values correspond to 52 = 6 deg and £ = 5. From the author's 
Fig. 4, one can interpret that when F = 1.75, the system is stable 
both in the small and in the large. When F = 1.85, the author 
indicates that the system is unstable due to the destabilizing of 
hysteretic damping. I t is true that the system is unstable in the 
large, but the system is stable in the small since the load F is less 
than Fc = 2.086. Only then when F > Fe is the system unstable, 
both iu the small and in the large. Since the viscous damping has 
destabilizing effect on stability of the system subjected to in­
finitesimal disturbances, while hysteretic damping has destabiliz­
ing effect on stability of the system in the large, proper interpre­
tation of the result is necessary when comparing the destabilizing 
effects of viscous damping and hysteretic damping. 

The second point concerns the stability of the steady-state 
curves as given in the author's Figs. 4 and 5. The author indi­
cates that two disparate states of steady-state oscillations under 
the same loading exist. A stability analysis of the steady-state 
curves shows that the portions of the curve with negative slope in 
Figs. 4 and 5 are in fact unstable branches. The stability analy­
sis of the steady-state curves is given as follows. Let 

Ri = Bi° + fi (1) 

Ri = ft0 + f2 (2) 

$i = W + Vi (3) 

h = h" + >?2 (4) 

where Rf and i/-,° (i = 1, 2) are the steady-state amplitudes and 
phase angles, f,. and »/,• (i = 1, 2) are infinitesimal perturbations 
of the amplitudes and phase angles from the steady-state values. 
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Substituting equations ( l ) - (4) in the author's equations (23) and 
(24), noting that fl,° and \p!> (i = 1, 2) satisfy equation (32) and 
(33) of the author, and after neglecting higher-order terms in f,-
and rjj (i = 1, 2), the following result is obtained 

i f l ' jr. 
)vi' 

ft' 
= iB] h1 

iVi' Us 
where [D] is a diagonal matrix with elements flu = 4<o, A22 = 
4wfli», fl33 = - 2 w , and fl« = 2wfi2°. 

The elements in matrix B are listed as follows: 

Ba = S i * 

Bn = (2C§ - FRl) cos ^ + 2S°2 sin * 
Bl3 = (2C2* - F) sin ^ - 2S2* cos * 

Blt = {FRl - 2CS cos # ) - 2Sl sin * 
/-,'••] = 2co2 - Ci* 

£ 2 2 = 2S% cos * + {FR% - 2C§) sin ^ 

Bn = 2S2* sin * + (2C2* - F) cos * 

B» = -2S§ cos V + {2C°2 - FR%) sin ̂  
B31 = C\* sin * + S,* COS V 

B32 = C? cos ¥ - S? sin * 

B33 = -3S 2 * 

B34 = S? sin * - C? cos * 

Btl = d * cos-47 - S ^ s i n * 

li.. = - S ? cos * - C? sin * 

B* = co2 - 3C2* + F 

Bu = S? cos * + C? sin * 
where 

C , * = 3 — ' (r = 1,2) 

St" = ^ i ° — \p-? 

I t is implied in equation (5) that all quantities in the matrices 
A and B are to be evaluated at the steady-state values. Equa­
tion (5) is a system of first-order linear differential equations. 
The stability of the solution is governed by the eigenvalues of the 
matrix fl_Ifl. The solution of (5), and hence the steady-state 
amplitude and frequency, is stable if, and only if, the eigenvalues 
are either simple with nonpositive real parts or have negative real 
parts. 

To determine the stability of the steady-state oscillations, the 
values of F, o>, Ri°, and R-P were scaled from the author's Figs. 3, 
4, and 5. C,°, S,°, and 0,* {i = 1, 2) were calculated from the 
author's equations (38), (39), and (40). Sin ̂  and cos SF/ were 
obtained from the author's equation (33). The derivatives C* 
and S* are given by reference [13] of the author's paper. 
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DISCUSSION 

C,* =%£ = - \nftf + (1 - M.)T 

+ ~ sin 26* - 2pt sin 6t* 

I t is found that the portion of the steady-state amplitude and 
frequency curves with negative slopes give at least one eigen­
value with positive real parts. The portions of the steady-state 
oscillations curves with negative slopes are in fact unstable 
branches. Therefore, there is only one state of stable steady-
state oscillations under a load less than (he critical load. 

Author's Closure 
The author extends his thanks to Professor Tso and Mr. Asmis 

for their comments. 
I t is true that unless the angular rotation exceeds the value a, 

the system analyzed by the author is identical to an undamped 
system; however, it should be noted that, the parameter a used in 
the investigation can be assigned any small value greater than 
zero. In other words, if the initial disturbances and <pt are of 
the first-order infinitesimal quantities, we may assign a a magni­
tude which is greater than zero but is smaller than the first-order 
infinitesimal quantities so that the hysteretic effects will still be 
present in the s.ystem. Since this reasoning is valid for any small 
disturbances and $,-, the notion of "stability in the large" used 
in the hysteretic damping case is rather weak. 

To throw additional light on problems concerning the notion of 
stability needed in the hysteretic damping case, let us consider 
the case in which a distributed-yielding hysteretic model is used 
in the representation of the restoring and dissipative mechanisms 
in the hinges of the double pendulum. The hysteretic restoring 
moments induced may, then, be written as functionals c.I/,[$,, fi(, 
t, Yj(a)] where i = 1, 2, and the functions Yt(a) define, respec­
tively, the fraction (or percentage) of the material elements with 
yield limit equal to a in the hinge. Assume that 

5',(a) = - [H(o) - H(o - a*)] (« = 1, 2) 

where a* is the highest yield limit of the material elements in the 
hinge and H( ) is the Heavyside's unit step function. The total 
area of the yield-limit distribution diagram so specified is unity. 
The relationship between the restoring moment and the angular 
displacement may implicitly be depicted by Fig. 2 of the paper 
with the labeling of the ordinate Jljf1-(0,-) u„ 0 replaced by 

— — — JW,-[0i, Mi. '> F,-(a)]. It can be shown that the resultant 
3 ,(«) da 
system hysteresis loops are composed of smooth curves whose 
cur/atures are equal to ^ . ^ ( ( / l , - — <j>,)/2) for the lower branch 
curves, and — ^ , 7 , ( 0 4 , - + <p:)/2) for the upper branch curves. 
(See ref. [18] in the paper and [1] given in this Closure.) 

The distributed-yielding hysteretic model just described will, 
no doubt, exhibit hysteretic damping effects whenever the system 
oscillates with any small amplitudes. This illustration shows 
that the notion of "stability in the small" is applicable in the 
hysteretic. damping case as well as in the viscous damping case. 

In a recent studj r ([2] of this Closure), the distributed-yielding 
hysteretic damping was found to have similar destabilizing effects 
as the bilinear hysteretic damping. Thus the hysteretic damp­
ing may exert destabilizing effects on stability of the system 
"in the small." 

With respect to the latter part of the discussion, the author 
would like to express his appreciation to the discussers for bring­
ing out the stability analysis of the steady-state curves which was 
not emphasized in the paper. However, it should be noted that 

the author has indicated only the possibility that two disparate 
states of stead3'-state oscillations of the system may exist under 
a certain identical loading. There was no assertion that both of 
these two states of steady-state oscillations are stable. 
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Thermal Instability in Fluid Layers in the 
Presence of Horizontal and Vertical 
Temperature Gradients1 

S. H. DAVIS.2 T H E authors wish to consider the effects of both 
horizontal and vertical temperature gradients on the motion of 
fluid in a two-dimensional slot. They use the methods of linear 
hydrodynamic stability to analyze the basic state of zero velocity 
with the temperature profile 

T = To- Px-x - P,-z. (1) 

Perturbations are superposed on this state and critical Rayleigh 
numbers (for the onset of motion) are computed. 

The basic state (1), however, is not a solution of the basic hy­
drodynamic equations. The proper basic equilibrium state re­
quires zero velocity and the temperature and pressure (p) fields 
must satisfy 

V"2r = 0 (2) 

Vp + gpk = 0 (3) 

where we have the equation of state 

p = p„[l - a(T - To)]. (4) 

Here k = (0, 1), g is the acceleration of gravity, a is the volume 
expansion coefficient, and the zero subscript denotes a (constant) 
reference value of the corresponding quantity. 

The temperature field (1) does satisfy equation (2) but not 
equation (3). To see this, take the curl of equation (3) and 
obtain 

0 = V X pic = Vp X k. (5 

Equation (5) can only be satisfied if p is independent of x. From 
equation (4), this implies that T is independent of x. 

Since basic equilibrium states exist only when T = T(z) only, 
the stability of state (1) cannot be discussed. In fact, any 
horizontal temperature gradient should be sufficient to induce 
motion. 

Authors' Closure 
The writers appreciate the discussion by Mr. Davis and agree 

with the points raised by him which the writers consider to be 
valid for the most general case. However, one of the aims of the 
writers was to demonstrate the effect of small horizontal tempera­
ture gradients on the instability in adversely heated fluid layers 
of high thermal conductivity. Thus, in the energy equation, 

1 By T. E. Unny and P. Niessen, published in the March, 1969, 
issue of the JOURNAL OF APPLIED MECHANICS, Vol. 36, TRANS. ASME, 
Vol. 91, Series E, pp. 121-123. 
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