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For the purpose of comparison, the values of the moment on 
the fixed edge of a square plate which were presented in Table 
3 of the paper are listed in the following, together with the 
corresponding values calculated from the solution obtained by 
Siess and New-mark: 

. Location- . Clamping moments X (l/qa-) 
Huang and Siess and 

X V Conway Stiles Newmark 
0 .2 a 0 —0.0272 —0.0257 —0.0275 
0.4 a 0 —0.0594 —0.060S —0.059S 
0.6a 0 —0.0092 —0.0684 —0.0691 
0.8a 0 —0.0510 —0.0515 —0.0507 

A U T H O R S ' C L O S U R E 

The authors are grateful to Mr. Yeletsos for bringing the work 
of Siess and New-mark to their attention. The agreement in the 
values of the clamping moments is most satisfactory. 

The Elastic Sphere Under Concen-
trated Loads1 

M. M. FROCHT.2 The paper raises several questions regard-
ing the fundamentals in the theory of elasticity. Of particular 
significance is the conclusion that to the three conditions gener-
ally accepted as sufficient for a unique solution a fourth "limit 
condition" must be added and that failure to include such a 
fourth condition will, in the case of concentrated loads, lead to 
pseudosolutions, that is, in essence, to false solutions. This 
conclusion carries with it the need for a re-examination of the 
meaning of Saint Venant's principle. 

To an experimentalist this paper is significant for an additional 
reason. It provides another illustration that mathematicians 
are not infallible and that the ultimate test of a theoretical solu-
tion lies in experimental verification. 

The agreement between the theoretical results of the authors 
and the photoelastic results of Frocht and Guernsey are particu-
larly noteworthy because the photoelastic solution is the first 
complete solution of its kind. The degree of agreement between 
the two sets of results is indeed remarkable, particularly at the 
center of the sphere where the difference in the value of (a z /a 0 ) is 
about 2 per cent. 

On the surface of the sphere, around the equator, where the 
stresses are relatively small, the agreement is less satisfactory. 
There the photoelastic value of (cr2/cr0) is zero and the theo-
retical value is 0.30, for v = 0.48. This aspect of the problem 
can be investigated by means of a strain-gage test. At the sug-
gestion of the discusser, Messrs. K. P. Milbradt,3 D. Landsberg,4 

and P. D. Flynn5 made such a test using an aluminum sphere of 
4.87 in. diam for that purpose, Fig. 1, herewith. 

Four Vs-in. SR-4 strain gages were mounted at points A-A, 
Fig. 2, on the equator. Two gages were set parallel to t, and 
the remaining two parallel to ey. Tests were made at 28,000 lb, 
56,000 lb, 84,000 lb, etc., up to 500,000 lb. Typical strain-load 
curves for several cvcles of loading and unloading are shown in 
Fig. 3. 

1 By E. Sternberg and F. Rosenthal, published in the December, 
1 9 5 2 , i s s u e o f t h e J O U R N A L OF A P P L I E D M E C H A N I C S , T r a n s . A S M E , 
vol. 74, pp. 413-421. 

2 Research Professor of Mechanics, Illinois Institute of Tech-
nology, Chicago, 111. Mem. ASME. 

3 Assistant Professor of Civil Engineering, Illinois Institute of 
Technology. 

4 Assistant Research Engineer in Experimental Stress Analysis, 
Illinois Institute of Technology. 

5 Research Corporation Fellow in Experimental Stress Analysis, 
Illinois Institute of Technology. 

It will be observed that the stress-strain relation is essentially 
linear. This linearity extended up to 280,000 lb, and the devia-
tions from linearity at higher loads were small, It also will be 
noted that recovery was somewhat incomplete in the first stage of 
each new load. The meaning of this initial set is at present not 
clear. Perhaps it may be connected with the development of 
small plastic zones in the region of the applied load. 

The stresses were based on the mean recoverable strain. The 
error resulting from neglecting the initial set is believed to be 
small. 

The final results are summarized in Table 1 of this discussion. 
The gages thus show that in the equatorial region there exist 
compressive cr2 stresses of a magnitude of 0.25o"0 and transverse 

Copyright © 1953 by ASME

D
ow

nloaded from
 http://asm

edc.silverchair.com
/appliedm

echanics/article-pdf/20/2/304/6747847/304_2.pdf by guest on 19 April 2024

https://crossmark.crossref.org/dialog/?doi=10.1115/1.4010677&domain=pdf&date_stamp=2021-06-04


D I S C U S S I O N 305 

S * 

26,000 lb. 
LOADING CYCLES 

F I G . 3 

tensile stresses 0.43<r0. The corresponding theoretical values for 
v = 0.32 are 0.24<rD and 0.44<70, respectively. The strain-gage 
tests thus corroborate the analytical conclusions of the authors. 

The reason for the small photoelastic error is believed to 
lie in the thermal stresses developed during the freezing cycle. 
A discussion of these must be deferred for another occasion. 

Theoretical.. . . 
Strain gage 

Photoelastic... 

TABLE 1 RESULTS OF TESTS 
—Stresses at z = 0, r = ro 

ax/oo ay/oa v I n v e s t i g a t o r 
—0.24 0.44 0.32 Sternberg and Rosenthal 
—0.25 0.43 0.32 Milhradt, Landsherg, and 

Flynn 
0 0.G8 0.48 Frocht and Guernsey 

N. J. HOFF.6 This excellent paper contains a result of much 
wider significance than the title implies. It shows that the ap-
plication of a self-equilibrating system of indefinitely large forces 
to a vanishingly small part of the surface of an elastic body gives 
rise to strains of not negligible magnitude at finite distances from 
the part. This seems to contradict Saint Venant's principle. 
It is the purpose of this discussion to explain the discrepancy by 
showing that Saint Venant's principle does not necessarily apply 
in problems involving mathematical singularities. 

In so far as the empirical foundation of the principle is con-
cerned there is not much possibility for an argument because no 
true singularities can arise in nature and no practical concen-
trated load can cause stresses much in excess of the yield stress of 
the material. If one re-examines Goodier's7 strain-energy analy-
sis of the principle, he must conclude that the odd behavior of the 
stresses discovered by the authors is not really unexpected. 
Goodier showed that that part of the elastic body, in which the 
order of magnitude of the stress is the same as the order of magni-
tude of the applied self-equilibrating tractions, is of the order of 
magnitude of the linear dimensions of the loaded part of the body. 
It does not follow from this statement that stresses of a finite 
magnitude cannot be found at any finite distance from the 

6 Head of Department of Aeronautical Engineering and Applied 
Mechanics, Polytechnic Institute of Brooklyn, Brooklyn, N. Y . 
M e m . A S M E . 

7 " A General Proof of Saint-Venant 's Principle ," by J. N . Goodier, 
Philosophical Magazine, Series 7, vol. 23, April, 1937, p. G07; Sup-
plementary Note on " A General Proof of Saint-Venant's Principle ," 
Philosophical Magazine, Series 7, vol. 24, August, 1937, p. 325; 
" A n Extension of Saint-Venant 's Principle, With Applicat ions," 
Journal of Applied Physics, vol . 13, March , 1942, p. 167. See also 
" T h e o r y of Elastic ity ," by S. Timoshenko and J. N . Goodier, second 
edition, McGraw-Hi l l B o o k Company , Inc., New York , N . Y . , 1951, 
p. 150. 

loaded part if the loading comprises tractions which are indefi-
nitely large, as will now be shown by means of a modification of 
Goodier's argument. 

Let the authors' problem be modified by replacing each con-
centrated load by statically equivalent distributed loads, acting 
upon small parts of maximum linear dimensions La, of the surface 
of the sphere. Because of the axial symmetry of the problem, 
L0 /2 may suitably be chosen as the radius of a circle, whose 
center is the point of attack of the original concentrated load, and 
which encloses the loaded part. The maximum absolute value of 
the applied surface tractions in this system <So will be denoted by 
so. The system will be so chosen that so is approximately equal 
to the elastic limit of the material. Let it also be assumed that 
all the stresses and strains caused in the sphere by the system 
So are known. 

A second system Si consists of distributed surface tractions of 
maximum absolute value Si acting upon two small parts, each of 
maximum linear dimension Lh of the surface of the sphere. 
Zi /2 will be chosen as the radius of a circle enclosing the loaded 
part whose center is the point of attack of the original concen-
trated load. Over each small part the loading is again statically 
equivalent to the original concentrated load. Obviously, the 
stresses and strains caused in the sphere by system Si can be de-
termined by superposition of the stresses and strains caused by 
system So and those caused by the combined system S2 = Si — So. 
System S2 contains self-equilibrating surface tractions distributed 
over two small areas of maximum linear dimension L0 or Lu 

whichever is greater. The maximum absolute value of the sur-
face traction is S2 < so + si. 

It is not unreasonable to consider the stresses and strains 
caused by system So as the standard solution, and to define that 
singly connected region of base (7T/4)LO2 of the sphere which in-
cludes all the points at which the maximum stress is equal to or 
greater than so/n as the region affected by the details of the load 
distribution. The value of n is to be chosen from considerations 
of accuracy; n = 2 defines a region of large disturbances while 
outside the disturbed region corresponding to n — 100 the effect 
of the details of the load application is probably always negligible 
for engineering purposes. 

The strains caused by system S2 in the loaded region are not 
greater than s2/G, where G is the shear modulus of the material. 
If one infinitesimal area of the loaded surface is fixed in space, 
the relative displacement of any point of the loaded surface with 
respect to the reference area is not greater than s2Lo/G if L0 > Li 
provided the effect of the rotations of the elements is neglected. 
If this effect is taken into account in the authors' problem, the 
relative displacement cannot be greater than ms2L0/G, where m 
is a positive number of the order of magnitude of unity. As 
displacement and load may be of the same sign over part of the 
loaded surface and of opposite sign over the rest, the total work 
done by the loads during a proportional loading is 

IK < (1/2)(TT/4)WS,2LOVG! 

The singly connected disturbed region just defined will now be 
approximated by a sphere of diameter D included in the sphere 
analyzed by the authors and having a common tangent plane 
with it at the point of attack of the original concentrated load. 
Inside this sphere the maximum absolute value of the stress is not 
everywhere greater than or equal to so/n, but there are neces-
sarily subregions where this is true. Nevertheless, if n is chosen 
sufficiently large, So/n is much smaller than s2 and the strain 
energy stored in the disturbed region 

U > (TT/24) (s07n2(?)D3 
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It follows then from the principle of the conservation of energy 

U = W 

that 

D < (3 mn' ) 1 / ' ( s 2 / s 0 ) , / , io 

It is of importance that in this equation the reference length L0 

is the diameter of the circle enclosing that loaded region in which 
the maximum surface traction is approximately equal to the 
elastic limit of the material. It follows from the equation that 
the diameter D of the disturbed region is smaller than (SATO2)1/* 
times L0 if s2 = so. When the two systems So and Si differ little, 
s2 is much smaller than s0 and the disturbed region is small. 
On the other hand, when Si is a concentrated load over each area, 
Li —<- 0, both Si and s2 are indefinitely large, and the disturbed 
region may extend over a distance which is the product of L0 

by a very large number. Hence the use of the somewhat arti-
ficial, although most useful, mathematical concept of a concen-
trated load may, in some cases, lead to results in disagreement 
with experimental evidence. 

The argument given implies that no independent nuclei of 
high stress exist inside the elastic body detached from the high-
stress region connected with the loaded surface. Their existence 
in a homogeneous elastic body would violate the complementary 
energy principle. 

The entire discussion presented referred to a three-dimensional 
solid body. In a statically determinate framework the forces 
are uniquely determined by the equilibrium conditions, and 
self-equilibrating systems of loads applied to a small number of 
joints may cause large stresses at distances from the loads which 
are large compared to the maximum distance between any two 
applied loads. When a large number of redundant bars is con-
tained in the framework, Saint Venant's principle holds reasona-
bly well, as was shown by the writer in an earlier publication.8 

Finally it should be mentioned that in an investigation dealing 
with concentrated loads R. von Mises9 showed that Saint 
Venant's principle does not, in general, hold for bodies of finite 
dimensions. 

E. H. LEE.10 The presentation and discussion of this paper 
emphasized the remarkable differences in the stresses away from 
the point of concentrated loading given by solutions involving 
different singularities, in apparent contradiction to the usual 
interpretation of Saint Venant's principle. It was suggested in the 
discussion that in the practical application of a problem of this 
type, such differences could be generated by the details of the 
contact conditions, such as friction. It would seem that in the 
case of contact over a small area, such additional surface trac-
tions will always produce negligible changes in stress away from 
the point of contact, so that the solution presented will apply 
independently of the details of loading. 

The reason for this statement is that such traction systems will 
be self-equilibrating, for example, in the case of friction a ring of 
radial shear traction at the surface, and can be considered as force 
doublets. The force magnitudes will be of the order of the 
applied normal force and in forming a doublet these will be multi-
plied by a dimension of the order of the extent of contact. The 
analysis of the stresses due to such a doublet will involve a smaller 
order of stress than that corresponding to the resultant applied 

8 " T h e Applicability of Saint-Venant's Principle to Airplane 
Structures," by N. J. Hoff, Journal of the Aeronautical Sciences, vol. 
12, October, 1945, p. 455. 

9 "On Saint-Venant's Principle," by R. von Mises, Bulletin of the 
American Mathematical Society, vol. 51, 1945, p. 555. 

10 Professor of Applied Mathematics, Brown University, Provi-
dence, R. I. Mem. ASME. 

load. The same also will be true of additional radial forces if the 
load is applied as pressure in an indentation. In considering the 
representation of these additional forces as doublets, the limit is 
taken of the product of force and separation to remain constant, 
while the force magnitude increases indefinitely, and the separa-
tion decreases to zero. However, this product is prescribed by 
the applied force and the contact dimension, so that the strength 
of the doublet will be small for small contact area, and the cor-
responding additional stresses will be negligible compared with 
those associated with the solution under discussion. The writer 
wishes to acknowledge help in clarification of these points during 
conversation with Dr. J. N. Goodier. 

A U T H O R S ' C L O S U R E 

The authors appreciate the interesting comments of Professors 
Frocht, Hoff, and Lee. The additional experimental corrobora-
tion of the theoretical results is, of course, gratifying. Professor 
Frocht's remark that the "limit condition" must be added to the 
usual three necessary conditions in order to assure a unique solu-
tion to a concentrated-force problem, was evidently prompted by 
a statement in the paper, the wording of which is apt to be mis-
leading. Actually, the requirement that the solution coincide 
with the appropriate limit of the solution corresponding to con-
tinuous surface tractions which are arbitrarily distributed over 
regions surrounding the points of application of the prescribed 
concentrated loads, by itself assures uniqueness and guarantees 
the satisfaction of the three necessary conditions referred to. The 
limit condition may thus be regarded as a definition of what is 
meant by the solution to a problem involving concentrated sur-
face loads, in analogy to Kelvin's definition through a limit proc-
ess of the concept of an interior concentrated force. The par-
ticular choice of these definitions is natural both on theoretical 
and physical grounds; the usefulness of the idealization of "con-
centrated forces" so specified ultimately rests on experimental 
verification. The photoelastic results of Frocht and Guernsey, 
as well as Professor Lee's observations, are relevant in this con-
nection. It should be mentioned that the present definition of 
concentrated surface loads is consistent with Kelvin's definition 
of interior concentrated forces, as is readily confirmed. 

A good deal of the discussion appears to center around the re-
sult that a solution appropriate to self-equilibrated singularities 
at the poles of the sphere, and otherwise clearing the surface from 
tractions, yields finite stresses at the center of the sphere. The 
authors agree with Professor Hoff that this result does not contra-
dict a rigorous statement of Saint Venant's principle although 
they would base this statement on a different type of argu-
ment. 

On this occasion reference should be made to a simultaneous 
treatment of the problem under discussion by C. Weber.11 

Weber, by different means, obtained the solution to the problem 
in the series representation designated by SL in our paper (see 
Equation [58]). His solution therefore suffers from the conver-
gence deficiencies mentioned in the discussion of SL. As pointed 
out in our paper, the singularities inherent in the problem require 
special and separate attention. Moreover, Weber's paper un-
fortunately contains two errors which are carried through a major 
portion of the development and are responsible for the incor-
rectness of his final stress formulas: the leading term in the de-
nominator of his equation (11] should read ( » —1) (n — 2) instead 
of (n — l)2 , whereas in his equation [23] the first factor in the 
numerator of the second fraction should read (2» + 5 ) instead of 
( 2 n + 3 ) . In conclusion, the authors wish to call attention to a 

11 "Kugel mit Normalgerichteten Einzelkraften," Zeitschrift fur 
Angeimndte Mathematik und Mechanik, vol. 32, no. 6, 1952, pp, 
186-195. 

D
ow

nloaded from
 http://asm

edc.silverchair.com
/appliedm

echanics/article-pdf/20/2/304/6747847/304_2.pdf by guest on 19 April 2024



D I S C U S S I O N 307 

paper by J. L. Synge,12 in which the closed formulas for the 
stresses at the center of the sphere were derived directly by al-
together different considerations. 

On Longitudinal Plane Waves of 
Elastic-Plastic Strain in Solids1 

W E R N E R G O L D S M I T H . 2 The author is to be congratulated on a 
significant contribution in the field of wave propagation in solids, 
particularly in view of the applicability of the paper to a proper 
understanding of the mechanism of resistance and failure of 
metals subjected to contact explosions. Several interesting points 
have been raised by this presentation. 

In the conversion of ordinary tensile and compressive stress-
strain curves to those appropriate for longitudinal waves exhibit-
ing no transverse deformation, it is rather surprising to note that 
the effective yield-point stress—denoted by the symbol 1 in Fig. 
2 of the paper—has been increased nearly 100 per cent over the 
yield point in simple tension for the 24S-T aluminum-alloy speci-
men. A similar calculation by means of Equation [10] of the 
paper indicates that materials with a Poisson's ratio /u = 0.45, 
such as lead, would possess a yield point under the action of plane 
longitudinal waves equal to 550 per cent of that observed in simple 
tension tests. These observations lead to the conclusion that the 
normal elastic range of a material may be extended considerably 
by imposing external constraints on the motion of the system. 
The lateral inertia exhibited by a material subjected to high 
transient loads produces an identical constraining effect and con-
sequent increase in the instantaneous dynamic yield point. This 
phenomenon is independent of the normal strain-rate sensitive be-
havior of the material proper, which is also responsible for an 
apparent increase in the dynamic yield point, as discussed by the 
author in the last paragraph and further described in reference (4) 
of the paper. 

The conditions of the present analysis involve the most severe 
type of restriction on any actual particle motion of the system. 
Thus the yield point for plane longitudinal waves, derived from 
Equation [10] as 

1 — M 
1 — 2n <7(ezp) 

= r * ( i - M ) t 
LP ( 1 + M ) ( 1 - 2 M ) J 

tion similar to that represented by Equation [7] of the paper, the 
writer has shown that the velocity of propagation of spherical 
plastic waves is given by 

3A'(1 — 2il/)' 

where 

M = 

- [ 

2m) + 3M 

3(1 + n) 

This differs by the correction factor 2M from the usual propaga-
tion velocity cv = [3K/p] cited by reference (7) of the paper, 
which was numerically closely substantiated by the author. 
However, the general treatment required for spherical waves 
involves considerably greater mathematical complexities than for 
the case under consideration, particularly in view of the attenuat-
ing effect of the divergence of spherical waves. This results in a 
decrease of the stress amplitudes of both elastic and plastic waves 
with increasing radius, in addition to the destruction of plastic-
wave amplitude due to annihilation by unloading waves. The 
writer is endeavoring to evaluate some quantitative results along 
these lines. 

J. S . R I N E H A R T . 3 This paper represents a valuable step for-
ward toward our understanding and appreciating the factors 
which control scabbing of impulsively loaded metal plates. 
The author mentions (a) effect of variable compressibility, (6) 
effect of temperature variations, and (c) time and rate effects. 
Another important factor is the changes which are wrought by en-
ergy absorption due to internal friction. In general, this absorp-
tion will cause the pulse to be attenuated and to become longer as 
it moves through the body. It is to be remembered that the mo-
mentum of the disturbance must be conserved even though energy 
is dissipated. A further factor which will contribute to the length-
ening of the pulse is the variations of Poisson's ratio and bulk 
modulus with pressure. These effects have been treated in the case 
of steel by Koehler andSeitz.4 The effect of decay is strikingly il-
lustrated by some examples of scabbing of fiat plates that were 
explosively loaded in the manner shown in Fig. 1 of this discus-

presumably represents the upper limit of a specimen subjected to 
any type of constraint upon its deformation, while the yield point 
in simple tension may be considered as the lower limit of this pa-
rameter. Any system with different constraints should exhibit a 
yield point intermediate between these two extremes. 

In the experiments of references (1) and (7) of the paper, the 
geometry employed is such that the propagation of strain occurs 
by means of spherical waves of dilatation rather than by plane 
longitudinal waves. A comparison of the two systems of propa-
gation shows that in both cases the velocity of elastic waves is 
given by 

F I G . 1 

sion. The two curves in Fig. 2 show clearly the effect that decay 
of the wave has on scab thickness.5'6-7 

The author indicates that it may be reasonably assumed that 
24S-T aluminum alloy will behave in about the same way as pure 

Utflizing an idealized tensile stress-strain curve consisting of two 
straight lines with moduli E and Ei, respectively, and an assump-

12 "Upper and Lower Bounds for the Solution of Problems in 
Elasticity," Proceedings of the Royal Irish Academy, vol. 53, series 
A, no. 4, 1950, p. 41. 

1 By D. S. Wood, published in the December, 1952, issue of the 
J O U R N A L OP A P P L I E D M E C H A N I C S , T r a n s . A S M E , v o l . 7 4 , p p . 5 2 1 - 5 2 5 . 

2 Assistant Professor of Engineering Design, University of Califor-
nia, Berkeley, Calif. Jun. ASME. 

3 Research Scientist, Michelson Laboratory, Naval Ordnance Test 
Station, China Lake, Calif. 

4 " T h e Stress Waves Produced in a Plate by a Plane Pressure 
Pulse," by J. S. Koehler and F. Seitz, OSRD Report No. 3230, 1944, 
(unclassified). 

6 "Investigations of Fracture Produced by Transient Stress 
Waves," by H. Kolsky and A. C. Shearman, Research 2, 1949, p. 384. 

6 "Behavior of Metals Under High and Rapidly Applied Stresses of 
Short Duration," by J. S. Rinehart, NavOrd Rept. No. 1138, 
September 1949. 

7 "Explosive Farces Widen Metallurgical Studies," by J. S. Rine-
hart, Steel, Nov. 20, 1950, p. 98. 
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