
Discussion 
Evaluation of Stress Distribution 

in the Symmetrical Neck of 
Flat Tensile Bars1 

E. H. LEE.2 Presumably the type of strain distribution con-
sidered by the author applies only for a range of width-to-thick-
ness ratios, for with flat wide specimens the constraint of the 
width prevents contraction, and necking occurs through the 
thickness of the specimen. Thickness gradients then become 
large, and the system no longer can be considered as in plane 
stress. It seems that there is a range of width-thickness ratios 
sufficiently large to permit the assumption of plane stress, 
and sufficiently small to avoid sharp necks producing local re-
duction in the thickness. Perhaps the author would comment 
on the range of validity of this type of behavior. 

A U T H O R ' S C L O S U R E 

The comments made by Professor Lee are appreciated. The 
author agrees, as was stated in the text, that the t}rpe of strain 
distribution considered can be applied only for a relatively 
narrow-range width-to-thickness ratio. 

Presumably the type of sharp necks in the thickness direction 
that Professor Leo described for larger width-to-thickness ratios 
is the same type of necking described in the literature by Koerber, 
Siebel, Bijlaard, and Hill. 

A separate investigation was carried out by the author to 
study what effect the width-to-thickness ratio and strain-
hardening has on the mode of necking. These results were 
presented at the First U. S. National Congress of Applied Me-
chanics, June, 1951, at Chicago, III. The later results indicate 
that the mode of necking will undergo a transition from the 
symmetrical-type neck to the oblique neck as the width-to-
thickness ratio is increased. However, there are not sufficient 
data available to make a general statement. 

Free Vibrations of a Pin-Ended 
Column With Constant Distance 

Between Pin Ends1 

N. J. HOFF.2 The most important result obtained in the paper 
is an explanation of the failure of attempts to establish a nonde-
structive method of testing the elastic stability of structures. It 
often has been proposed that such structures should be loaded up 
to as high values of the loads as can be reached without danger of 
permanent deformation. At different load levels the lowest 
natural mode of vibration of the structure should be excited. 
The curve representing the natural frequencies plotted against the 
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load can be extrapolated, and the buckling load of the structure is 
the load at which the natural frequency is zero. 

The author has shown that in an ordinary column test the 
natural frequency depends greatly upon the amplitude of the vi-
bration, and the frequencs' is considerably higher than zero at the 
instability load. As an example, it might be mentioned that 
when the amplitude is one half the radius of gyration of the cross 
section, the frequency at the buckling load is equal to 20 per cent 
of the natural frequency of a column upon which no end load is 
acting. This is true, naturally, only if the load is applied by means 
of controlled end displacements, as is done in an ordinary testing 
machine, and not through the application of dead weights. Con-
sequently, extrapolation of the curve to zero frequency results in a 
load differing substantially from the critical load of the classical 
theory of stability. Moreover, variations in the amplitude of the 
vibrations at different stages of the loading cause a great deal of 
scatter in the results and add to the difficulties of obtaining the 
buckling load by means of vibration tests. 

It appears, therefore, that attempts at determining the buck-
ling load by such nondestructive tests either have to be given up or 
else will have to be modified in the light of the author's results. 

E. H. LEE.' With reference to the author's comments on 
the restriction on the initial shape of the strut, it may be worth 
mentioning that this type of analysis will go through for an initial 
eccentricity comprising a sine curve with any integral number of 
half waves. While this provides an infinite number of initial 
configurations, they cannot be superimposed to cover any 
initial shape since the problem is nonlinear. 

Vibration of Rectangular and Skew 
Cantilever Plates1 

M . Z . v. K R Z Y W O B L O C K I . 2 A S mentioned in the paper, the 
Rayleigh-Ritz method gives an upper bound, but it is possible 
to find a lower bound. The combination: The Rayleigh-Ritz 
and the Weinstein methods proved to be a successful mathe-
matical tool, giving upper and lower bounds. It may be of 
interest to apply this combination in the case considered by the 
author. 

Analysis of Deep Beams1 

A. J. DURELLI.2 The problem dealt with here by the authors is 
very important in many industrial applications, and the contri-
bution made by them will certainly be welcome since the study 
is far from exhausted. 

It may be worth mentioning that a series of papers was pub-
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lished a short time ago along lines similar to those followed by the 
authors (1 to 6).3 A comparison is made in these papers between 
the finite-difference method and the method of superimposing two 
stress functions in very much the same way as the authors did (2, 
4). A photoelasticity test (5) was also conducted to check results. 
In other papers published shortly after (3, 6), the Galerkin method 
was used to approach the solution of the same problem, compari-
sons again were made, and tables were given for several loading 
conditions and widths of supports. Several of the numerical ap-
plications were made for beams loaded on the lower boundary, 
but the photoelastic test considers a beam loaded on the upper 
boundary. An interesting point brought out by this test is that 
the maximum stress is not on the axis of symmetry but on the 
lower boundary near the support. 

A photoelastic test to check the authors' results does not seem 
too difficult to realize in the case of loading on the upper bound-
ary. Uniform loading can be obtained either by using several 
sheets of cardboard (7), or by means of air pressure applied to a 
thin rubber hose placed inside a metal channel, with one side of 
the hose resting on the photoelastic specimen. The separation of 
the principal stresses should be easily obtained by iteration meth-
ods since all boundary conditions will be known and the shape 
is rectangular. 

The related problem of the high beam on three supports, 
loaded on the lower boundary, has recently been approached us-
ing Fourier's series (8). 
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M. Z. v. KRZYWOBLOCKI.4 The authors apply to the case of 
continuously distributed stresses the strain-energy method and 
a numerical method of finite difference and compare the results. 
But there does not exist any strain-energy method in the case 
considered by the authors. The sentence in the paper, "This 
solution by strain-energy methods would be exact only if an 
infinite number of parameters were used," cannot be accepted 
from a mathematical standpoint. Similarly, the conditions for 
a minimum V used by the authors are not, under any circum-
stances, sufficient conditions for a minimum of a function of 
n-variables. In the defense of the authors it should be men-
tioned that there exists a confusion in the literature on the sub-
ject, increased, perhaps, by the fact that one of the writers cited 
by the authors invented and published in one of his textbooks a 

s Numbers in parentheses refer to the Bibliography at the end of 
this discussion. 
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proof of that method, which proof violates all the principles of 
elementary differential calculus and is no proof at all. It assumes 
as the base that the condition for a minimum of a function of 
N-variables is sufficient in the same form as accepted by the 
authors. But the conditions for a minimum of a function of 
>!-variables are much more complicated. Moreover, we are 
seeking the absolute minimum of the function of n-variables and 
not a minimum. From the nature of the problem so defined, it 
is obvious which analysis must be used—calculus of variations. 
This question was pointed out in 1936 by Th. Poschl in his brief 
and excellent but evidently unnoticed or forgotten paper in 
"Der Bauingenieur." Here are Poschl's points: 

1 The so-called strain-energy method is mathematically 
rigorous only in the case of concentrated loads. 

2 From a mathematical standpoint it cannot be used under 
any circumstances in the case of continuously distributed stresses. 

3 In the last case the methods of the calculus of variation 
should be used. 

The writer published in 1947, two short papers on this subject 
in the Journal of The Franklin Institute and two letters in the 
Journal of the Aeronautical Sciences (under the titles, "On the So-
called Principle of Least Work Method") . Recently, his paper 
with all details and with a proposition of the generalized Casti-
gliano's principle appeared in Oesterreichisches Ingenieur Archiv 
(1951). In one of the examples it was shown clearly how large 
errors and completely wrong results may be obtained using the 
procedure called strain-energy method in the case of continu-
ously distributed stresses. 

The writer askes the authors of the paper to accept these re-
marks not as a criticism but as a certain contribution to the 
explanation of their results. The wrong conception of Casti-
gliano's theorem should have been corrected earlier, since, iir 
the case of continuously distributed stresses, the procedure used 
is a purely random-choice engineering process which in certain 
instances gave fair results. But it is impossible to foresee in 
which cases it will succeed and in which cases it will not. Hence 
it always should be verified by reliable methods (tests, etc.) and 
applied only to similar cases. 

In case there are some fundamental changes in the system, the 
procedure again should be verified. Previous authors often sup-
ported their results based upon that procedure by experimental 
tests; but it does not mean that one may claim that the process 
always gives a solution (what is more, an exact solution). It is 
quite possible that tests will approve the results of the procedure 
in the present case justifying the authors' considerations. 

The writer wishes that this would be the case. Even that 
fact should not be used as a justification for not presenting the 
truth to readers, which is that no item in this procedure has a 
mathematical justification, and one cannot talk about a mini-
mum or exact solution, and that the cited author who developed 
the method simply misinterpreted the mathematical conception 
of the minimum of the strain-energy. 

CLOSURE BY H . D . C O N W A Y 

The comments of the discussers are appreciated. 
The list of recent publications given by Dr. Durelli indicates 

the very considerable interest taken in the subject. Since the 
publication of the paper, further photoelastic tests have been 
made applying the load through various media (including card-
board) and quite good agreement with the theoretical results 
has been obtained. 

In the first method of analysis used in the paper, the writing 
of the approximate stress function in the form of a series of 
polynomials leads, after equating the partial derivatives of the 
strain energy to zero, to a set of algebraic equations which yield 

D
ow

nloaded from
 http://asm

edc.silverchair.com
/appliedm

echanics/article-pdf/18/4/422/6747202/421_6.pdf by guest on 13 M
arch 2024



DISCUSSION 423 

the parameters. An infinite number of parameters do not neces-
sarily lead to an exact solution and this statement in the paper 
is retracted. 

As the author understands it, Professor Krzywoblocki's 
criticism of the method is that the foregoing procedure does not 
necessarily lead to a minimum value of the expression for the 
strain energy. The writer believes that the following (sug-
gested by Prof. J. N. Goodier) shows that it does. 

The strain energy V may be written as the integral of 

Vo = - 1 - j ^ 2 + <V - 2m<T,«T, + 2(1 + 

where the stresses are such that V is stationary (dF/d / i = 0) 
for the set of variations we admit. Assuming that the stresses 
are varied to ax + 8crx, av + &av and rxv + 8rxy, respectively, 
and that equilibrium and the original boundary conditions are 
maintained, the corresponding strain energy is the integral of 

^ {crx- + <rf — 2naxcru + 2 ( 1 + H)Txu* 

+ 2<rx8crx + 2cr v8a „ — 2n(ax8<ry + <rv8ax) + 4(1 + h)txu8txv 

+ (5<rx)2 + (5<r„)2 — 2jj.8ox8<jy + 2(1 + m X ^ ) 2 } 
= Vo + 5Fo + value of Fo for 8ax, 8av, 8txv 

Since 5Fo (integrated) is zero and the third term is always 
positive, we have the conditions for a minimum. 

Further comment seems unnecessary. Suffice it to say, that 
despite the dire consequences predicted by Professor Krzy-
woblocki, the writer still believes the foregoing to be a very valu-
able method. 

Large-Deflection Theory for Plates 
With Small Initial Curvature 
Loaded in Edge Compression1 

S A M U E L L E V Y . 2 The analysis of plates with mixed boundary 
conditions, that is, displacement conditions on one pair of edges 
and stress conditions on the other, is often necessary in structural 
design but is generally difficult to make. The author has man-
aged to obtain such solutions with the additional complications 
of initial curvature and large deflections. Although his primary 
object was to evaluate various methods of deducing buckling 
loads from measured center deflections and strains, the methods 
he has developed for taking account of mixed boundary conditions 
are quite general and will be useful in analyzing other plate prob-
lems. 

The author develops an "exact" solution for several examples of 
buckling of a square plate, and from the resulting plots of deflec-
tion and strain versus load, draws interesting conclusions regard-
ing five widely used approximate methods of estimating buckling 
loads from test data. The comparison of experimental results 
with the computed curves confirms the theoretical derivations 
and shows the important effects both of initial deviations from 
flatness and of restraint of the supported edges from transverse 
displacements. 

The writer believes that it will be necessary to use large-deflec-
tion theories to explain satisfactorily a large proportion of the sec-
ondary effects associated with the bending of plates. The impor-
tance of even small deviations from flatness, as evidenced by the 

1 By J. M . Coan, published in the June, 1951, issue of the JOURNAL 
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author's Fig. 4, was first brought to light by Hu, Lundquist, and 
Batdorf. The additional importance of the absence of restraint 
(in plane warping) along the supported edges has never been so 
clearly shown as in the comparison of Figs. 2 and 3 in the paper. 
The stress distribution in the plate at loads of about 1.7 times the 
buckling value is markedly different in the two cases. 

S. B . B A T D O R F 3 A N D G . J . H E I M E R L . 3 Experimental buckling 
stresses are obtained mainly for three purposes, as follows: 

1 To check theory. 
2 To indicate the behavior of actual structures. 
3 To provide a basis for calculating postbuckling behavior. 

The paper is concerned with an evaluation of current proce-
dures for predicting experimental buckling loads for the purpose of 
checking theories, which are usually concerned with the behavior 
of perfectly constructed and perfectly loaded specimens. Ac-
cordingly, the paper deals with the determination of the buckling 
loads of flat plates from measured behavior of imperfect plates. 
The analysis is based upon boundary conditions of uniform dis-
placement of the loaded edges and stress-free supported edges. 
In these respects, it differs from NACA Technical Note 1124 
which was concerned with a comparison of the behavior of imper-
fect plates with that of perfect plates when all edges were kept 
straight. It would appear that the author's boundary condi-
tions are appropriate for a single plate and for a variety of more 
complex test specimens, such as rectangular tubes, for example, 
whereas the boundary conditions of the Technical Note mentioned 
are more appropriate for structures such as stiffened panels in 
which the continuity of the sheet helps to hold the edges of each 
constituent plate straight. 

With regard to methods for predicting flat-plate buckling loads 
experimentally, the author showed that the point of inflection of 
the curve of load versus deflection gives the true buckling load 
more accurately than other methods which have been used. 
Reference to the curves of TN 1124 indicates that this is true also 
when the side edges of the plate are kept straight. It is generally 
recognized, however, that slopes cannot be reliably determined 
when test data exhibit appreciable scatter. It would seem that 
this remark should apply a fortiori to the determination of the 
point of inflection, which in effect represents a determination of 
the second derivative of the curve, whereas the slope constitutes 
only the first derivative. Moreover, if one is concerned with 
either plastic buckling or with buckling with a stress close to the 
elastic limit of the material, there actually may be no point of in-
flection. For these two reasons it might be expected that the 
vertical tangent of the plot of load against axial median strain at 
the center of the plate would generally be preferable to the inflec-
tion-point method. However, it should be noted that this 
method is of limited applicability; whereas the load versus me-
dian axial-strain curve exhibits a vertical tangent when the sides 
of the plate are stress-free, no vertical tangent occurs when the 
sides are kept straight. 

As the author has indicated, the top-of-the-knee method will 
give somewhat lower buckling loads. It may be in order to point 
out here that the top-of-the-knee method has been used exten-
sively by the NACA for checking flat-plate theory, but it has been 
applied only to cases in which there was negligible initial curva-
ture, for example, extruded H-, Z-, and channel sections, and 
drawn square tubes. Consequently, the knee of the curve is so 
sharp that little latitude actually exists for choice of buckling 
stress, and the experimental buckling loads can be considered to be 
a close indication of the flat-plate buckling load. 

According to both the author's results and those of T N 1124, 
initial eccentricity influences plate behavior markedly in the vi-

3 Structures Research Division, NACA, Langley Airforce Base, Va. 
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