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contact phenomena lias been taken into account it will not lead 
to any substantial changes in the conclusions of the paper regard-
ing the geometric analysis of the ball motion or the friction 
torque, computed on the basis of slip motion. Referring to Figs. 
1 to 3 of the paper, it is a geometric fact that no matter how the 
ball pivots, the four circles on the ball through A, A,} C, C, on the 
ball at the edge of the contact bands and the corresponding cir-
cles over the pivot through A, At and over the race through C, C, 
cannot all have the same length ratios. Since at these extreme 
points of the contact bands (through C, C\) slipping must take 
place, the main conclusions obtained must be valid. 

The predicted ball motion has been verified experimentally, as 
stated in the paper, by rotating the outer race in the direction 
opposite to the pivot and at such a speed that the ball center was 
maintained at rest, and observing the motion of the ball with a 
low-power microscope. The rotation diameter of the ball was 
found by attaching small magnets to the ball surface. 

Again the torque was calculated by multiplying the local 
Hertz pressure by pi and by the lever arm about the pivot axis. 
This moment for the ball-pivot contact is larger than for ball-race 
contact; since the actual friction force may be less than the maxi-
mum value used, the conclusion was drawn that the actual fric-
tion moment is represented by the smaller of two moments, and 
that slipping will occur between the ball and the race. A more 
complicated motion at ball-race contact may occur—partly slip-
ping, part twisting and untwisting—but this does not change the 
magnitude of the computed maximum friction torque. The 
authors doubt whether the friction torque which would be com-
puted from the complete theory when the latter becomes available 
would be appreciably less than the torque computed in the paper. 
They cite the observed agreement with the minimum measured 
friction torque as a partial proof of this belief. 

It is pointed out in the Barish discussion, for the case of radial 
bearings one must add the friction between the ball and inner race 
as well as between the ball and the outer race. Contrariwise, in 
the paper such an addition was not carried out. The reason is 
very clear. If no slipping takes place between the ball and the 
pivot no energy can be lost in friction at that contact. More-
over, the friction torque over the contact between the ball and 
the race must be transmitted in turn to the contact between the 
ball and the pivot, by Newton's third law of equal action and 
reaction (neglecting gyroscopic effects for the balls for rapid rota-
tion.) In the radial bearing case the slipping is of an entirely dif-
ferent type and rotation takes place about the points A, A of 
Fig. 1 of the Barish discussion, and about two similar points over 
the contact with the outer race. 

In conclusion the authors thank Mr. Ilorak for the much 
shorter derivation of the final equation for the friction torque. 

On the Use of Power Laws in Stress 
Analysis Beyond the Elastic Range1 

S . B . B A T D O R F 2 A N D E . Z . S T O W E L L . 2 This paper shows that 
although desirable from the point of view of simplicity, a power 
law for the stress-strain relation in the theory of plastic deforma-
tion must be used with caution. The authors also show that the 
simplifications occur only if a single power law is applied over the 
whole range. However, the particular example chosen to illus-
trate these points may result in an unduly pessimistic impression 
as to the possibility of handling problems with satisfactory ap-
proximation by use of a power law. The purposes of this discUs-

1 B y Alice Winzer and W . Prager, published in the December, 1947, 
i s s u e o f t h e J O U R N A L OF A P P L I E D M E C H A N I C S , T r a n s . A S M E , v o l . 
09, p. A-281. 

! Langley Memorial Aeronautical Laboratory, Langley Field, Va. 

sion are to show that much better results can be achieved using a 
different law, and to call attention to certain considerations which 
may serve as a guide in the proper selection of the power law to be 
used. 

One should have a rough idea of the range of the stress-strain 
relation to be approximated. In the example of the paper, 
the power law used is shown as a dotted line, and the more 
realistic stress-strain curve as the solid line in Fig. 1 (the dashed 
curve will be discussed later). We have added, as points C and 
D (Fig. 1 of this discussion) the highest stresses occurring when 
the plastic domain extends to 10 r0/9 and 4 ro/3, respectively. It 
is clear that the dotted curve is a very bad approximation to the 
applicable portion of the solid curve in the first case and not too 
good in the second. 
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In the second place it is desirable to assess the relative impor-
tance of good approximation in the elastic and plastic portions of 
the stress-strain curve. This can be done very roughly before-
hand, at least in such cases as the example of the paper. To do 
this, let us assume initially that the problem is a purely elastic 
one. One may now ask, what fraction of the applied load is ab-
sorbed in the immediate neighborhood of the applied force, i.e., 
r0<r< 10/9 r0 or r0<r< 4/3 r0? 

To answer this question we take m = 0 in Equations [20] and 
[25] of the paper and obtain a = 2, so that from Equation [21] 

S, = - ' = — (ro/r)2 

V 

The radial load at the distance r is 2<TI ; it follows that the 
initial load has dropped only 10 per cent at r — 10 ro/9 and 25 per 
cent at 4 ro/3. In the actual ease, the regions under considera-
tion are in a plastic state and therefore support less than the 10 
per cent and 25 per cent of the load just computed elastically. 
Since most of the load is absorbed elastically, it would seem more 
important to obtain a fair fit to the elastic than to the plastic part 
of the stress-strain curve. 

Applying these thoughts, a calculation was made on the as-
sumption that 

( Y* 
<r, = 45,000 ) 

\0.005/ 
which is given as the dashed curve in Fig. 1 of the present discus-
sion, and is a fair fit to the solid curve up to point C. The results 
of the application of this law are shown in Figs. 2 and 3 of this 
discussion, which correspond to Figs. 2 and 3 of the paper. The 
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solid, dotted, and clashed lines correspond to the similarly desig-
nated stress-strain curves of Fig. 1. Whether the accuracy is 
satisfactory will depend upon the purposes of the calculation; 
in any event, the dashed curves are far better than the dotted ones 
(which give zero for the circumferential stress, S2), and could no 
doubt be improved in the case of Fig. 3 by a better choice of power 
law. 

W. P. ROOP.3 This paper relates to the question whether the 
stress-strain curve of a material strained into the plastic range 
up to, say, 3 or 4 times the elastic limit, can be represented ade-
quately by putting the stress equal to the strain, raised to a con-
stant fractional power. The advantage of such an assumption is 
demonstrated, and its accuracy is tested in the case of a specific 
structure made of a specific material. 

It is shown how, if the power law is adequate, the law of super-
position, which so greatly facilitates solution of elastic problems 
is, in some degree and in a limited sense, still available. 

In general, if the forces in a system by which a given structure 
is loaded are all increased in proportion with each other in a given 
progressive loading, the loading is said to follow a fixed path, as in 
a diagram in which the co-ordinates are components of load. 
This does not in itself assure that the stresses in the different parts 
of the metal of the structure will all follow the same path, since, 
at points of high stress intensity, plastic flow will enter into the 

3 Swarthmore College, Swarthmore, Pa. 

action to a different degree from that at points of low stress in-
tensity. 

But if the stress-strain curve is a "power" curve, the stresses, 
at least in the type of structure investigated, will increase at all 
points throughout the structure in the same progressive pattern 
as the loads. This simplifies calculation of distributions, and it 
is taken as an assumption in obtaining the radial distribution of 
radial and hoop stresses in an infinite plate loaded by radial pres-
sure in a circular hole. 

The real question at issue now appears to be this: If the stress-
strain curve cannot be represented by a power curve, how much 
error is incurred in solutions for distribution when the power law 
is assumed as an approximation? Naturally, this will depend 
upon the divergence of the assumed from the actual stress-strain 
curve. 

For example, a more realistic assumption is now made for the 
form of the stress-strain curve. This still does not correspond 
exactly with the observed eurve, but it does eliminate a large 
discrepancy between the assumption and the fact in substituting 
a straight line for the lower part of the curve in place of the con-
tinuous curve of the power law. The process of inferring the 
distribution under these circumstances requires a numerical 
integration. No observations on the distribution in the actual 
material are reported. 

The distribut ion calculated from the more realistic assumption 
about the stress-strain curve differs strongly from that calculated 
by the simpler method. It is inferred that the power law must 
be used with caution. 

J. TwV.MAX.4 Ilyushin's assumption that the secant shear 
modulus is proportional to a power of the octahedral shearing 
stress has no physical basis and cannot be justified unless it both 
(a) leads to a simple anaj'lsis and (6) yields reasonable results 
when t his analysis is applied to specific problems. 

The assumption certainly fulfills condition (a) but when applied 
to the problem of pressure in a circular hole in a plate, it produces 
the surprising result that the circumferential stress is everywhere 
zero. This is known to be incorrect for the elastic zone,5 and, 
since no sharp discontinuity of stress can exist at the boundary 
with the inelastic zone, it must be incorrect for some, if not all, of 
the inelastic zone also. 

The authors' modification, using the more realistic stress-
strain curve, yields a much more reasonable result. In the elastic 
zone, the numerical equality of radial and circumferential 
stresses is in agreement with the classical theory of elasticity, and 
there is no discontinuity of stresses at the yield boundary. How-
ever, the method still suffers from the following disadvantages: 

1 It is limited to the solution of problems where strains are 
so small that their products may be neglected. 

2 It is limited to small displacements. 
3 It is still based upon an approximation to the simple tensile 

stress-strain curve. 
4 The assumption that the transverse contraction ratio is 0.5 

in both elastic and inelastic zones is not supported by experi-
mental evidence.6 

5 It involves the solution of a very complex differential equa-
tion by a tedious method. 

The problem of pressure in a circular hole in a thin plate has 
already been solved by Swainger,7 using a step-by-step method 

1 Civil & Mechanical Engineering Department, Northampton Po ly -
technic, London, England. 

6 " T h e o r y of Elasticity," by S. Timoshenko, McGraw-Hil l B o o k 
Company , Inc. , New York , N . Y . , 1934, p. 57. 

6 "Plastic Transverse Contraction of a Longitudinally Strained 
Meta l , " by K . H. Swainger, Nature, vol. 158, 1946, p. 165. 

7 "Compat ib i l i ty of Stress and Strain in Yielded Metals , " by K . H. 
Swainger, Philosophical Magazine, vol . 36, 1945, pp. 459-463. 
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based upon the actual simple tension stress-strain curve for the 
material. The method is simple, it allows for differing elast ic and 
plastic transverse contraction ratios, and it gives no anomalous 
discontinuities in stresses, strains, or displacements. It is still 
limited to small strains and displacements, but a recent publica-
tion8 by the same author foreshadows extension of his theory to 
cover any finite strains and displacements. 

P. F. CHENEA.9 There appears to be a growing interest in 
stress-strain relations for the plastic range which suggest interest-
ing generalizations although they do not apply even reasonably 
well to any material of engineering concern. Certainly simple 
theories of plasticity are desirable and generalizat ions are most wel-
come, but only when the}' lead to usable results. A. A. Ilyushin's 
procedure of drawing general conclusions from approximate 
properties of short segments of the stress-strain curve is most 
risky, and it is not surprising that the results are not in agreement 
with more realistic theories. 

It might be thought that the authors' argument is limited by 
the assumption of Poisson's ratio (v) equal to >/2 in the elastic as 
well as the plastic zones. In fact, this point was raised at the time 
the paper was presented. It is important to note that this is not. 
so. For a general value of Poisson's ratio denoted by (v) Equa-
tions [8] have the form 

2 G 
a\ = - (ei + Vii) 

1 — v 

2 G , 
<r2 = (e2 + c«i) 

1 — v 

Equations [29] may be obtained directly in the usual manner and 
they are found to be true for all values of v. The appropriate 
value of G, however, must be used in determining the displace-
ment w. The effect of varying G is to alter slightly the radius of 
the boundary between the plastic and clastic zones, but the same 
general results will be obtained. 

8 "Large Strains and Displacements in Stress-Strain Problems," by 
K . H. Swainger, Nature, vol . 100, 1947, p. 399. 

9 Instructor, Engineering Mechanics, University of Michigan, Ann 
Arbor, Mich . 

It is also important to note that the use of Poisson's ratio in 
the neighborhood of */s does not necessarify imply that the ma-
terial is nearly incompressible. To see this it is expedient to 
write Poisson's ratio in terms of the bulk modulus K and the 
shear modulus G, as follows: 

_ 1 3 0 

" ~~ 2 ~~ 2(3IC + (?) 

Prof. P. W. Bridgman has shown that the bulk modulus K, is 
very nearly constant for most materials up to strains far beyond 
that which may be treated by the theory of infinitesimal strain. 
Therefore it is not the incompressibility of the material, but the 
rapid decline in the shear modulus G that accounts for the change 
in Poisson's ratio upon the entrance into the plastic range. In 
the case of metals, such as steel with a sharp knee in the stress-
strain curve, the change in Poisson's ratio is very rapid, and the 
shear modulus G decreases to sufficiently low values to make 
Poisson's ratio approach almost as soon as the yield point is 
past. For other materials the change in Poisson's ratio is not so 
rapid, as the shear modulus does not vary as quickly. For these 
reasons the bulk modulus and the shear modulus are much more 
significant physical parameters for the treatment of problems in-
volving plastic flow (as previously pointed out by the authors) 
than are Young's modulus and Poisson's ratio. 

A U T H O R S ' C L O S U R E 

The authors wish to thank the discussers for their comments. 
They are particularly grateful to Captain W. P. Roop for his 
lucid formulation of the principal argument of their paper. 

The authors welcome this opportunity of supplementing the 
reference given in footnote 10 of their paper. In his paper "On 
the Creep of Solids at Elevated Temperatures" (Journal of 
Applied Physics, vol. 8, 1937, pp. 418-432) Dr. A. Nadai has used 
a method of analyzing creep produced in a circular disk with a 
concentric circular hole by radial pressure which is uniformly dis-
tributed over the boundary of the hole. This method agrees 
essentially with the method used by the authors in the case 
where the analysis of the plastic deformation of such a disk is 
based on a simple power law. The authors are grateful to Dr. 
Nadai for drawing their attention to this fact. 
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