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F, m, and a may bo chosen so that go is unity and may be omitted 
from the equations. Thus either form (a) or (d) may logically 
be used, depending upon whether one prefers to work in a system 
of units where go and J are unity, or are not unity, respectively. 
The authors feel that form (a) is preferable because of its sim-
plicity. 

The use of the stagnation enthalpy, stagnation temperature, 
and stagnation pressure for the case of variable specific heat as 
well as constant specific heat, as suggested by Professor Hall, 
is of course acceptable. However, the authors felt that sim-
plicity in making numerical calculations should be a major aim of 
the analytical formulation. After having considered originally 
the use of the stagnation parameters, the conclusion was reached 
that they entailed unnecessary complications in the calculations, 
and the method described in the paper was adopted. 

In reply to Professor Hall's comments on the temperature at 
which the heat of reaction is reckoned, it might be stated that 
here again the aim was simplicity in numerical calculations, and 
that, in this respect the methods given in the paper were felt 
preferable to the selection of the heat of reaction at a fixed base 
temperature. 

We think Professor Rudnick's comments on the choking 
phenomenon interesting and illuminating. 

As to the possibility of beginning the integration of Table 1 
at the M = 1 surface, it is agreed that this is convenient in many 
cases. There are, however, instances in which this surface can be 
located only by trial and error, in which case the method of 
the paper seems preferable. The choice of the method seems 
to depend on the physical nature of the problem, and it is 
doubtful whether any general rule can be laid down. 

Sliding Friction of Ball Bearings 
of the Pivot Type1 

W. D. ANDERSON.2 During the last few years considerable 
progress has been made by the ball-bearing industry in develop-
ing ultrasensitive bearings for instrument work, and, while most 
of this progress has been based upon an experimental approach, 
the value of a mathematical analysis should be self-evident. 

The assumptions on which the analysis is based are reasona-
ble and necessary to avoid prohibitive mathematical complica-
tions. However, certain of these assumptions should be re-
examined before attempting to reduce to practice the results of 
the analysis. 

The assumption that the "pivot and race surfaces are correctly 
centered" implies that they also have colinear axes. In practice, 
errors of manufacture and assembly usually produce some angu-
lar error between the axes of the pivot and the race. In the gen-
eral case of a race whose surface is a torus rather than a sphere, 
such alignment errors will cause differential ball speeds, thus 
violating the assumed symmetrical ball distribution and causing 
the balls to contact each other or to contact the ball separator. 
In either case, frictional torques will be imposed upon the 
pivot. 

Experimental results indicate that these frictional torques are 
much greater than the torque due to imperfect rolling between 
ball and race. These frictional torques may be reduced materially 
by special designs of separators to space the balls. However, 
they still constitute a major problem in the design of ultra-
sensitive ballbearings. 

1 B y H. Poritsky, C. W . Hewlett, Jr., and R . E. Coleman, Jr., 
p u b l i s h e d i n t h e D e c e m b e r , 1 9 4 7 , i s s u e o f t h e J O U R N A L OF A P P L I E D 
M E C H A N I C S , T r a n s . A S M E , v o l . 0 9 , p . A - 2 G 1 . 

2 Assistant to Chief Engineer, Norina-Hoffmann Bearings Corpo -
ration, Stamford, Conn. 

T H O M A S B A R I S H . 3 In 1 9 3 8 an attempt was made to calculate 
and measure the ball-race friction in radial ball bearings under 
radial loads just as the authors of this paper have done for pivot 
bearings under angular contacts. This work was done by 
Seymour Herwald4 as a thesis for a degree at the Case Institute 
of Technology. Most of the conclusions closely agree with 
those of this later work but others were quite at variance; par-
ticularly, an entirely different concept of the "slipping" was de-
duced and confirmed by other considerations. 

The calculations followed similar lines except that under pure 
radial load (1) there is no tendency for only one race to slip; 
the friction of both races was calculated although not as com-
pletely as in this later work; (2) the friction was much smaller, 
being due only to the difference in radii along the contact area. 
True rolling occurs at points A,A, Fig. 1 of this discussion. In 
between, the ball surface precedes, and outside of these points 
the race surface precedes. These two effects balance on the 
neutral points A,A, and the friction torques about these points 
were summarized. 

F I G . 1 

Tests were made so as to eliminate all cage friction and most 
variations due to inequality of loading, as well as ball and race 
inaccuracies. A heavy pendulum was suspended from a single 
bearing with only two balls. The loss of amplitude for many 
swings was measured by an indicator at the end of the stroke, 
Fig. 2. It is evident that this friction will require fairly heavy 
loads to give appreciable widths to the contact area. Tests 
were made with varying loads and race curvatures. 

The calculations and tests indicated a coefficient of "sliding 
friction" of 0.2, approximately. The present paper assumes the 
same coefficient and reports agreement of calculations and testa. 
However, the figures of Mr. Herwald added friction at both 
inner and outer rings, whereas the new figure is only the friction 
at the inner ring. 

Mr. Herwald and the writer believed that there was no actual 

3 Consulting Engineer, Washington, D . C. 
' Westinghouse Electric Corporation, East Pittsburgh, Pa. This 

work was done with the co-operation and the equipment of the Mnrlin 
Rockwell Corporation, Jamestown, N . Y . 
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sliding at the contact surfaces (except possibly at the very edges 
where unit pressures are low and some sort of lubrication can 
exist). In most of the contact area, pressures vary from 50,000 

to 400,000 psi, and it was thought inconceivable that the metal 
would actually slide under such pressures and for such short 
displacements. Instead it is believed that the surface and sub-
surface metal are displaced tangentially; that in the section where 

F I G . 3 

sliding is supposed to occur, the lines ab, ac, and ad, Fig. 3, shift 
to the dotted lines ab', ac', and ad'. 

True sliding might occur if the displacements were large, but 
it would then resemble tearing rather than sliding. Under such 
conditions ball bearings are rapidly destroyed, as under very bad 
off-square operation when there is definite sliding between ball 

and race. Similarly, too close curvatures under heavy loads or 
steep angles will show rapid failure. 

If actual sliding did occur, the friction would be erratic with 
the continual change from static to kinetic friction. 

The absence of actual sliding is further confirmed by a similar 
action in metal-to-metal friction drives. Here the same type of 
contact delivers a positive tangential force without slipping, as 
long as the normal force is large enough. Instead of slipping, 
which would destroy the surfaces quickly, there is a definite 
and constant creep, corresponding to the displacement of the 
lines in Fig. 3, and varying with the size of the tangential 
force. 

Fig. 1 of the original paper indicates how banding of the balls 
would occur if there were sliding, and only at the outer race. 
In practice, banding does occur. It. always shows up under the 
following conditions: Enough thrust load so that the top balls 
are not loose, and no disturbance or removal of the load. These 
conditions happen regularly on ball-bearing testing machines. 

" ' 1 H 

F I G . 4 

The banding is clearly shown in Fig. 4 herewith. The banding 
is exactly on a diameter. The width is that of the wider area, the 
inner-ring contact, and does not follow the theory propounded in 
Fig. 1 of the paper. 

This paper considers only pivot bearings, and these may show 
different results. A simple test is suggested; the conditions pro-
posed would give a higher ball speed or cage speed around the 
shaft. This can be measured accurately since it is accumula-
tive, i.e., count the number of cage revolutions per 100 shaft 
revolutions. 

The paper mentions the fact that the deflection in the bearing 
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under radial load changes as the bearing rotates. The deflection 
is less when there is a ball at the bottom compared with the race 
straddling two balls. Any slight looseness in the bearing produces 
the same effect and adds to the inequalities of the deflection. 
Both of these effects fall off rapidly with increase in the number 
of balls as shown in Fig. 5 of this discussion. So much is this so 
that it would be an error to make a sensitive pivot bearing 
with less than 5 balls, and even a 5-ball bearing may be ques-
tionable. 

In most pivot ball bearings and especially in sensitive gyros, 

Number of Balls 

F I G . 5 

to have the friction constant is as important as having it low. 
Hence we should note in this type of development that the 
ball-to-ball or ball-to-cage friction frequently exceeds the ball-to-
race friction, and is very erratic. 

A. B. JONES.5 The authors of this paper have presented a 
clear and well thought out analysis of the effect of contact area 
spinning torque on the friction of pivot-type ball bearings. Their 
derivation of the torque required to spin an elliptical pres-
sure area about an axis normal to the center of the pressure 
surface agrees identically with the results arrived at by the 
writer. 

In addition to the spinning action, there is evidence that the 
slippages due to the curvature of the pressure surface itself are 
also of prime importance; in fact, in the conventional radial-type 
ball bearing under radial load, slippage of this type is the only 
source of contact-area friction. That slippage of this type may 
also be appreciable in pivot-type ball bearings is indicated by the 

6 Chief Research Engineer, New Departure Division, General 
Motors Corporation, Bristol, Conn. 

fact that the authors obtained correlation with minimum values 
of torque tests using a coefficient of friction of 0.20. 

Experiments conducted by the writer, in which a ball was 
pressed on opposite sides by sections of curved raceways and the 
ball rotated about an axis through both contact points, indicate 
a maximum value of 0.14 for the coefficient of friction. 

J . R . M A C I N T Y R E 6 A N D E . E . LYNCH. 6 It is always interesting 
to compare theoretical calculations with measured values. In 
this particular case it is probably impossible to separate sliding 
friction from the other types of friction which enter into the 
turning of ball bearings, by means other than theoretical. The 
binding of balls as they become partially "jammed," due to 
unavoidable tolerances in mechanical construction, and the 
unbalance torques exerted by the rotating masses due to the non-
perfect geometry of the bearing parts, makes the friction a varia-
ble which is difficult to measure. Moreover, the breakaway 
friction torques differ from the running torques; and running 
friction torques vary with the speed. It is interesting to note, 
therefore, the close agreement which is indicated between theo-
retical sliding friction and the minimum values of precise meas-
urements of total friction. 

The theoretical approach can be used to save time when com-
paring friction (sliding) of different shaped bearings. It may 
even indicate the advantages of new materials for bearings. It 
certainly sets a minimum friction for a particular design which 
can bo used as a guide in determining the "point of diminish-
ing return" on efforts made to reduce manufacturing toler-
ances. 

In publishing this work the authors have shown the way toward 
calculation of total friction. This is a goal which, if attained, will 
save much time-consuming effort in tests and statistical interpre-
tation of the results which is often necessary because of the ex-
tremely small torques involved. 

B R Y C E RUI.EY. 7 This excellent paper treats a rather special 
case of sliding friction in ball bearings and, for that reason, the 
sliding friction due to the torque wi can be isolated from other fric-
tional effects. 

Earlier investigators, notably A. Palmgren, in a series of 
papers,8 in 1926 and 1928, considered the effect, of sliding friction 
in the contact areas between balls and raceways. The case con-
sidered was the more general one where curvature within the 
contact areas could not be neglected, and the conclusions reached, 
while in general agreement with the present paper, were not as 
specific and easily verified by tests as in the special case of pivot 
bearings. Some cases were calculated in the third of the Palm-
gren papers, and reasonable confirmation by experiment was 
found even when friction due to curvature of the contact areas 
was not small. 

The occasional occurrence of contact bands on balls in bear-
ings of standard types (i.e., deep-groove ball bearings and 
angular-contact ball bearings), usually when the load is predomi-
nantly thrust or when all internal looseness has been removed 
from the bearing during mounting so that the balls never pass 
through an unloaded zone in the bearing, indicates that there 
may be cases where the «i torque is of predominant importance 
even in bearings of these standard types. 

6 Works Laboratory, General Electric Company , West Lynn, Mass. 
7 Senior Engineer, S K F Industries, Inc., Philadelphia, P-a., Jun. 

A S M E . 
8 " T h e Nature of Rolling Resistance," "Investigations With Regard 

to Rolling Under Tangential Pressure," and "Sliding Friction in Ball 
Bearings," Th,, Ball Bearing Journal, published by S K F Industries, 
Inc. , Philadelphia, Pa. 
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Z. HORAK.9 Starting from the Hertz's theory, the writer has 
deduced,10 for the moment of slipping friction, the expression 

" • ' ^ / / ^ V ' - s - S dxdy 

which is a direct consequence of the authors' Equat ions [12] and 
[15]. The integration is over the ellipse with semiaxes a, b 
and has been carried out by the meter,10 p. 163, as follows 

We put 

x 1/ 
- — p cos f>, 7 = p sin if 
a b 

and obtain 

D 
3 F r * = 2 * f " 1 

= f -7T / / V P " 2 
Itv J 0 J p=0 

*a* cosV + p'b- sin2 ip 

\ / l —P2 pdpdip = M f P2 — p2 dp 
Lit J 0 

y / a - — (a2 — 62) sin2 <p dip 

Now writing 

we have 
p — sin r 

ri r*/2 
I p- \/l — p2 dp = I sin2 T cos2 T dr 

Jo Jo 

= 8 X ( 1 — COS 4R)RFR = — 
16 

and 

\ / « 2 —- (a2 — 62) sin2 ip dip 

r , r / 2 
= 4 a J — A-2 sin2 tf*, = 4a 5(A) 

where 

A 2 = 
a2 — 6 2 

a* 

Therefore we get10 p. 164 (see author's paper, Equation [17]) 

D = - 5 ( A ) AP P . 

A U T H O R S ' C L O S U R E 

The authors wish to thank the discussers for their interesting 
comments and the valuable contribution of their thoughts and 
experience on the subject of ball-bearing friction, and they believe 
that the discussions enhance greatly the value of the paper and 
bring out more clearly some valuable points which, due to limita-
tion of space and other causes, were passed over rather hurriedly. 

As pointed out by Messrs. Anderson, Barish, Maclntyre, and 
Lynch, and Ruley, the assumptions made by the authors were of 
the most ideal type. They correspond to the simplest possible 
conditions, and the analysis based upon them leads to the smallest 
possible friction which the bearings can have. Since in practice 
these conditions are seldom satisfied, it is clear that the actual 

9 Professor of Technical Physics, Technical University, Prague, 
Czechoslovakia. 

10 " T h e o r y of Slipping Frict ion," by Z. Horak (in Czech) , 
Proceedings of the Masaryk A c a d e m y of Work , vol . 18, Prague, 
1944, pp. 150, 169. 

friction obtained will be both larger and variable. In practice 
neither the pivot nor the race will be a true surface of revolution, 
and they will be slightly misaligned; the balls' radii will differ 
slightly, nor will the balls be truly spherical. There will thus be 
friction due to the various geometric imperfections and misalign-
ments; there will be further friction due to the ball separator if 
there is one, or between the individual balls in case there is no 
ball separator. If the balls arc of slightly different size, they will 
travel at different speeds about the axis and will push up against 
each other, thus creating even more friction. Furthermore, 
even with perfect geometry, the ball centers may deviate from the 
ideal circular path, and the balls may possibly wedge themselves 
into a narrow space. This is conceivable since the centers of the 
two contact areas of a ball need not be at diametrically opposite 
points on the ball—the line joining them may make any angle with 
the radial direction at either center which is less than the angle of 
friction. There arc further friction effects due to squeezing out 
the oil film, and due to "solid damping" (the latter makes the 
balls always run "up-hill,") as well as effects due to particles of 
ordinary plain dirt. These arc some of the neglected items which 
are responsible for increasing the actual pivot frictions. 

Returning even to the ideal assumptions of the paper, as 
pointed out in connection with Figs. 1 to 3 of the paper, it is 
assumed there that the contact areas have negligible curvature. 
Thus on Fig. 3 of the paper it has been assumed that line A, yli is 
a straight line. Actually this is not the case and a very slight-
amount of slipping over the pivot contact will occur due to its 
curvature. This effect was termed a "second-order effect," and, 
as stated in the paper, was neglected. As pointed out by Messrs. 
Barish, Jones, and Rule}', for the case of radial bearings, these 
effects predominate. When the theory of the paper is applied to 
such radial bearings, so long as the curvature of the contact area 
is neglected, the contact area is flat, and no slipping need occur 
over the contact with either the inner or outer race, and the com-
puted friction torque vanishes. However, if the curvatures of 
the contact area are appreciable, no true rolling of the ball, say, 
over the stationary race, can take place; instead, there is a ten-
dency for slipping in opposite directions in the middle and outer 
portions of the contact band, as shown on Fig. 1 of the Barish 
discussion. It is gratifying to know that a study of this effect 
has been made by Messrs. Herwald and Barish; it is highly de-
sirable to have the results of such studies more widely publicized 
by presenting them at meetings of technical societies, and having 
them published, so that they will be available to the engineering 
profession. As noted in the paper, this effect may occur even for 
bearings of the pivot type, though it will not be very pronounced 
unless the curvatures of the pivot and the balls are very close to 
each other, whereupon the area of contact and the resulting 
stresses are not given too accurately by the Hertz theory, and the 
whole analysis requires substantial corrections. 

An interesting point brought out by Mr. Barish relates to the 
question of slipping over the contact areas. It may very well be, 
as pointed out by Mr. Barish, that over the inner part of the con-
tact ellipse between the ball and the race, where the prescribing 
slip is small and where the possible friction force is high (duo to 
the high normal pressure) the inner portions of the contact areas 
lock and twist. Over the peripheral portions of the contact 
areas slipping certainly does take place. This is an interesting 
phenomenon which deserves further study and experimentation. 
The analogous phenomenon of creep of a wheel over a rail has 
been studied by Carter,11 but the authors know of no correspond-
ing study for the ball contact problem. 

However, the authors believe that even when this aspect of the 
11 " O n the Action of a Locomot ive Driving Whee l , " by F. W . 

Carter, Proceedings of the Roya l Society, London , England, series 
A, vol. 112, 1926, p. 151. 
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contact phenomena lias been taken into account it will not lead 
to any substantial changes in the conclusions of the paper regard-
ing the geometric analysis of the ball motion or the friction 
torque, computed on the basis of slip motion. Referring to Figs. 
1 to 3 of the paper, it is a geometric fact that no matter how the 
ball pivots, the four circles on the ball through A, A,} C, C, on the 
ball at the edge of the contact bands and the corresponding cir-
cles over the pivot through A, At and over the race through C, C, 
cannot all have the same length ratios. Since at these extreme 
points of the contact bands (through C, C\) slipping must take 
place, the main conclusions obtained must be valid. 

The predicted ball motion has been verified experimentally, as 
stated in the paper, by rotating the outer race in the direction 
opposite to the pivot and at such a speed that the ball center was 
maintained at rest, and observing the motion of the ball with a 
low-power microscope. The rotation diameter of the ball was 
found by attaching small magnets to the ball surface. 

Again the torque was calculated by multiplying the local 
Hertz pressure by pi and by the lever arm about the pivot axis. 
This moment for the ball-pivot contact is larger than for ball-race 
contact; since the actual friction force may be less than the maxi-
mum value used, the conclusion was drawn that the actual fric-
tion moment is represented by the smaller of two moments, and 
that slipping will occur between the ball and the race. A more 
complicated motion at ball-race contact may occur—partly slip-
ping, part twisting and untwisting—but this does not change the 
magnitude of the computed maximum friction torque. The 
authors doubt whether the friction torque which would be com-
puted from the complete theory when the latter becomes available 
would be appreciably less than the torque computed in the paper. 
They cite the observed agreement with the minimum measured 
friction torque as a partial proof of this belief. 

It is pointed out in the Barish discussion, for the case of radial 
bearings one must add the friction between the ball and inner race 
as well as between the ball and the outer race. Contrariwise, in 
the paper such an addition was not carried out. The reason is 
very clear. If no slipping takes place between the ball and the 
pivot no energy can be lost in friction at that contact. More-
over, the friction torque over the contact between the ball and 
the race must be transmitted in turn to the contact between the 
ball and the pivot, by Newton's third law of equal action and 
reaction (neglecting gyroscopic effects for the balls for rapid rota-
tion.) In the radial bearing case the slipping is of an entirely dif-
ferent type and rotation takes place about the points A, A of 
Fig. 1 of the Barish discussion, and about two similar points over 
the contact with the outer race. 

In conclusion the authors thank Mr. Ilorak for the much 
shorter derivation of the final equation for the friction torque. 

On the Use of Power Laws in Stress 
Analysis Beyond the Elastic Range1 

S . B . B A T D O R F 2 A N D E . Z . S T O W E L L . 2 This paper shows that 
although desirable from the point of view of simplicity, a power 
law for the stress-strain relation in the theory of plastic deforma-
tion must be used with caution. The authors also show that the 
simplifications occur only if a single power law is applied over the 
whole range. However, the particular example chosen to illus-
trate these points may result in an unduly pessimistic impression 
as to the possibility of handling problems with satisfactory ap-
proximation by use of a power law. The purposes of this discUs-

1 B y Alice Winzer and W . Prager, published in the December, 1947, 
i s s u e o f t h e J O U R N A L OF A P P L I E D M E C H A N I C S , T r a n s . A S M E , v o l . 
09, p. A-281. 

! Langley Memorial Aeronautical Laboratory, Langley Field, Va. 

sion are to show that much better results can be achieved using a 
different law, and to call attention to certain considerations which 
may serve as a guide in the proper selection of the power law to be 
used. 

One should have a rough idea of the range of the stress-strain 
relation to be approximated. In the example of the paper, 
the power law used is shown as a dotted line, and the more 
realistic stress-strain curve as the solid line in Fig. 1 (the dashed 
curve will be discussed later). We have added, as points C and 
D (Fig. 1 of this discussion) the highest stresses occurring when 
the plastic domain extends to 10 r0/9 and 4 ro/3, respectively. It 
is clear that the dotted curve is a very bad approximation to the 
applicable portion of the solid curve in the first case and not too 
good in the second. 

O . 0 0 1 . 0 0 2 J 0 0 3 - 0 0 4 . 0 0 5 . 0 0 6 . 0 0 7 . 0 0 9 . 0 0 9 . 0 1 0 

F I G . 1 

In the second place it is desirable to assess the relative impor-
tance of good approximation in the elastic and plastic portions of 
the stress-strain curve. This can be done very roughly before-
hand, at least in such cases as the example of the paper. To do 
this, let us assume initially that the problem is a purely elastic 
one. One may now ask, what fraction of the applied load is ab-
sorbed in the immediate neighborhood of the applied force, i.e., 
r0<r< 10/9 r0 or r0<r< 4/3 r0? 

To answer this question we take m = 0 in Equations [20] and 
[25] of the paper and obtain a = 2, so that from Equation [21] 

S, = - ' = — (ro/r)2 

V 

The radial load at the distance r is 2<TI ; it follows that the 
initial load has dropped only 10 per cent at r — 10 ro/9 and 25 per 
cent at 4 ro/3. In the actual ease, the regions under considera-
tion are in a plastic state and therefore support less than the 10 
per cent and 25 per cent of the load just computed elastically. 
Since most of the load is absorbed elastically, it would seem more 
important to obtain a fair fit to the elastic than to the plastic part 
of the stress-strain curve. 

Applying these thoughts, a calculation was made on the as-
sumption that 

( Y* 
<r, = 45,000 ) 

\0.005/ 
which is given as the dashed curve in Fig. 1 of the present discus-
sion, and is a fair fit to the solid curve up to point C. The results 
of the application of this law are shown in Figs. 2 and 3 of this 
discussion, which correspond to Figs. 2 and 3 of the paper. The 
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