Abstract

In this study, a hybrid MMC-AABH plus approach is developed for the fast optimal design of shell-graded-infill structures. The key idea is to use a proper description about the graded microstructural infill and the coating shell. To this end, a set of moving morphable components is adopted to represent the boundary of the coating shell, while the graded-infill is embodied by spatially varying orthotropic porous configurations. Under such a treatment, with a small number of design variables, both the boundary of the coating shell and the graded microstructure infill can be optimized simultaneously. Other attractive features of the present study are summarized as follows. First, the smooth variation across the microstructural infill can be automatically satisfied based on the proposed approach compared with other similar methods. Second, with the use of the extreme value principle of Laplace equation, the minimum feature size can be explicitly controlled during the optimization. Finally, compared with other methods in the frontier, the approach proposed in the present study enjoys a considerable reduction in the computation cost and can obtain a near-optimal design of the coating structures. The effectiveness of the proposed approach is further demonstrated with numerical examples.

References

1.
Prathyusha
,
A. L. R.
, and
Raghu Babu
,
G.
,
2022
, “
A Review on Additive Manufacturing and Topology Optimization Process for Weight Reduction Studies in Various Industrial Applications
,”
Mater. Today Proc.
,
62
, pp.
109
117
.
2.
Langelaar
,
M.
,
2017
, “
An Additive Manufacturing Filter for Topology Optimization of Print-Ready Designs
,”
Struct. Multidiscipl. Optim.
,
55
(
3
), pp.
871
883
.
3.
Qian
,
X.
,
2017
, “
Undercut and Overhang Angle Control in Topology Optimization: A Density Gradient Based Integral Approach
,”
Int. J. Numer. Meth. Eng.
,
111
(
3
), pp.
247
272
.
4.
Zhang
,
W.
,
Li
,
D.
,
Zhang
,
J.
, and
Guo
,
X.
,
2016
, “
Minimum Length Scale Control in Structural Topology Optimization Based on the Moving Morphable Components (MMC) Approach
,”
Comput. Meth. Appl. Mech. Eng.
,
311
, pp.
327
355
.
5.
Guo
,
X.
,
Zhang
,
W.
, and
Zhong
,
W.
,
2014
, “
Explicit Feature Control in Structural Topology Optimization Via Level Set Method
,”
Comput. Meth. Appl. Mech. Eng.
,
272
, pp.
354
378
.
6.
Guo
,
X.
,
Zhou
,
J.
,
Zhang
,
W.
,
Du
,
Z.
,
Liu
,
C.
, and
Liu
,
Y.
,
2017
, “
Self-Supporting Structure Design in Additive Manufacturing Through Explicit Topology Optimization
,”
Comput. Meth. Appl. Mech. Eng.
,
323
, pp.
27
63
.
7.
Liu
,
J.
,
Gaynor
,
A. T.
,
Chen
,
S.
,
Kang
,
Z.
,
Suresh
,
K.
,
Takezawa
,
A.
,
Li
,
L.
,
Kato
,
J.
,
Tang
,
J.
,
Wang
,
C.C.L.
,
Cheng
,
L.
,
Liang
,
X.
, and
To
,
A.C.
,
2018
, “
Current and Future Trends in Topology Optimization for Additive Manufacturing
,”
Struct. Multidiscipl. Optim.
,
57
(
6
), pp.
2457
2483
.
8.
Gibson
,
I.
,
Rosen
,
D.
, and
Stucker
,
B.
,
2010
, “Design for Additive Manufacturing,”
Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing
,
Springer US
,
Boston, MA
, pp.
299
332
.
9.
Gao
,
W.
,
Zhang
,
Y.
,
Ramanujan
,
D.
,
Ramani
,
K.
,
Chen
,
Y.
,
Williams
,
C.B.
,
Wang
,
C.C.L
,
Shin
,
Y.C.
,
Zhang
,
S.
, and
Zavattieri
,
P.
,
2015
, “
The Status, Challenges, and Future of Additive Manufacturing in Engineering
,”
Comput. Aided Des.
,
69
, pp.
65
89
.
10.
Clausen
,
A.
,
Aage
,
N.
, and
Sigmund
,
O.
,
2015
, “
Topology Optimization of Coated Structures and Material Interface Problems
,”
Comput. Meth. Appl. Mech. Eng.
,
290
, pp.
524
541
.
11.
Gibson
,
L. J.
, and
Ashby
,
M. F.
,
1997
,
Cellular Solids : Structure and Properties
,
Cambridge University Press
,
Cambridge, MA
.
12.
Clausen
,
A.
,
Aage
,
N.
, and
Sigmund
,
O.
,
2016
, “
Exploiting Additive Manufacturing Infill in Topology Optimization for Improved Buckling Load
,”
Engineering
,
2
(
2
), pp.
250
257
.
13.
Wu
,
J.
,
Aage
,
N.
,
Westermann
,
R.
, and
Sigmund
,
O.
,
2018
, “
Infill Optimization for Additive Manufacturing – Approaching Bone-Like Porous Structures
,”
IEEE Trans. Visual Comput. Graph.
,
24
(
2
), pp.
1127
1140
.
14.
Liu
,
Z.
,
Meyers
,
M. A.
,
Zhang
,
Z.
, and
Ritchie
,
R. O.
,
2017
, “
Functional Gradients and Heterogeneities in Biological Materials: Design Principles, Functions, and Bioinspired Applications
,”
Prog. Mater. Sci.
,
88
, pp.
467
498
.
15.
Rho
,
J. Y.
,
Kuhn-Spearing
,
L.
, and
Zioupos
,
P.
,
1998
, “
Mechanical Properties and the Hierarchical Structure of Bone
,”
Med. Eng. Phys.
,
20
(
2
), pp.
92
102
.
16.
Liu
,
C.
,
Du
,
Z.
,
Zhang
,
W.
,
Zhu
,
Y.
, and
Guo
,
X.
,
2017
, “
Additive Manufacturing-Oriented Design of Graded Lattice Structures Through Explicit Topology Optimization
,”
ASME J. Appl. Mech.
,
84
(
8
), p.
081008
.
17.
Wang
,
Y.
,
Chen
,
F.
, and
Wang
,
M. Y.
,
2017
, “
Concurrent Design With Connectable Graded Microstructures
,”
Comput. Meth. Appl. Mech. Eng.
,
317
, pp.
84
101
.
18.
Cheng
,
L.
,
Bai
,
J.
, and
To
,
A. C.
,
2019
, “
Functionally Graded Lattice Structure Topology Optimization for the Design of Additive Manufactured Components With Stress Constraints
,”
Comput. Meth. Appl. Mech. Eng.
,
344
, pp.
334
359
.
19.
Vogiatzis
,
P.
,
Ma
,
M.
,
Chen
,
S.
, and
Gu
,
X. D.
,
2017
, “
Computational Design and Additive Manufacturing of Periodic Conformal Metasurfaces by Synthesizing Topology Optimization With Conformal Mapping
,”
Comput. Meth. Appl. Mech. Eng.
,
328
, pp.
477
497
.
20.
Groen
,
J. P.
, and
Sigmund
,
O.
,
2017
, “
Homogenization-Based Topology Optimization for High-Resolution Manufacturable Microstructures
,”
Int. J. Numer. Meth. Eng.
,
113
(
8
), pp.
1148
1163
.
21.
Wu
,
J.
,
Dick
,
C.
, and
Westermann
,
R.
,
2016
, “
A System for High-Resolution Topology Optimization
,”
IEEE Trans. Visual Comput. Graph.
,
22
(
3
), pp.
1195
1208
.
22.
Zhu
,
Y.
,
Li
,
S.
,
Du
,
Z.
,
Liu
,
C.
,
Guo
,
X.
, and
Zhang
,
W.
,
2019
, “
A Novel Asymptotic-Analysis-Based Homogenisation Approach Towards Fast Design of Infill Graded Microstructures
,”
J. Mech. Phys. Solids
,
124
, pp.
612
633
.
23.
Li
,
S.
,
Zhu
,
Y.
, and
Guo
,
X.
,
2022
, “
Optimisation of Spatially Varying Orthotropic Porous Structures Based on Conformal Mapping
,”
Comput. Meth. Appl. Mech. Eng.
,
391
, p.
114589
.
24.
Wang
,
Y.
, and
Kang
,
Z.
,
2018
, “
A Level Set Method for Shape and Topology Optimization of Coated Structures
,”
Comput. Meth. Appl. Mech. Eng.
,
329
, pp.
553
574
.
25.
Fu
,
J.
,
Li
,
H.
,
Xiao
,
M.
,
Gao
,
L.
, and
Chu
,
S.
,
2018
, “
Topology Optimization of Shell-Infill Structures Using a Distance Regularized Parametric Level-Set Method
,”
Struct. Multidiscipl. Optim.
,
59
(
1
), pp.
249
262
.
26.
Wadbro
,
E.
, and
Niu
,
B.
,
2019
, “
Multiscale Design for Additive Manufactured Structures With Solid Coating and Periodic Infill Pattern
,”
Comput. Meth. Appl. Mech. Eng.
,
357
, p.
112605
.
27.
Luo
,
Y.
,
Li
,
Q.
, and
Liu
,
S.
,
2019
, “
Topology Optimization of Shell-Infill Structures Using an Erosion-Based Interface Identification Method
,”
Comput. Meth. Appl. Mech. Eng.
,
355
, pp.
94
112
.
28.
Liu
,
C.
,
Du
,
Z.
,
Zhu
,
Y.
,
Zhang
,
W.
,
Zhang
,
X.
, and
Guo
,
X.
,
2020
, “
Optimal Design of Shell-Graded-Infill Structures by a Hybrid MMC-MMV Approach
,”
Comput. Meth. Appl. Mech. Eng.
,
369
, p.
113187
.
29.
Wu
,
J.
,
Clausen
,
A.
, and
Sigmund
,
O.
,
2017
, “
Minimum Compliance Topology Optimization of Shell-Infill Composites for Additive Manufacturing
,”
Comput. Meth. Appl. Mech. Eng.
,
326
, pp.
358
375
.
30.
Groen
,
J. P.
,
Wu
,
J.
, and
Sigmund
,
O.
,
2019
, “
Homogenization-Based Stiffness Optimization and Projection of 2D Coated Structures With Orthotropic Infill
,”
Comput. Meth. Appl. Mech. Eng.
,
349
, pp.
722
742
.
31.
Alexandersen
,
J.
, and
Lazarov
,
B. S.
,
2015
, “
Robust Topology Optimisation of Microstructural Details Without Length Scale Separation - Using a Spectral Coarse Basis Preconditioner
,”
Comput. Meth. Appl. Mech. Eng.
,
290
, pp.
156
182
.
32.
Xue
,
D.
,
Zhu
,
Y.
,
Li
,
S.
,
Liu
,
C.
, and
Guo
,
X.
,
2020
, “
On Speeding Up an Asymptotic-Analysis-Based Homogenisation Scheme for Designing Gradient Porous Structured Materials Using a Zoning Strategy
,”
Struct. Multidiscipl. Optim.
,
62
(
2
), pp.
457
473
.
33.
Xue
,
D.
,
Zhu
,
Y.
, and
Guo
,
X.
,
2020
, “
Generation of Smoothly-Varying Infill Configurations From a Continuous Menu of Cell Patterns and the Asymptotic Analysis of Its Mechanical Behaviour
,”
Comput. Meth. Appl. Mech. Eng.
,
366
, p.
113037
.
34.
Ma
,
C.
,
Xue
,
D.
,
Li
,
S.
,
Zhou
,
Z.
,
Zhu
,
Y.
, and
Guo
,
X.
,
2022
, “
Compliance Minimisation of Smoothly Varying Multiscale Structures Using Asymptotic Analysis and Machine Learning
,”
Comput. Meth. Appl. Mech. Eng.
,
395
, p.
114861
.
35.
Zhang
,
W.
,
Yuan
,
J.
,
Zhang
,
J.
, and
Guo
,
X.
,
2016
, “
A New Topology Optimization Approach Based on Moving Morphable Components (MMC) and the Ersatz Material Model
,”
Struct. Multidiscip. Optim.
,
53
(
6
), pp.
1243
1260
.
36.
Guo
,
X.
,
Zhang
,
W.
, and
Zhong
,
W.
,
2014
, “
Doing Topology Optimization Explicitly and Geometrically—A New Moving Morphable Components Based Framework
,”
ASME J. Appl. Mech.
,
81
(
8
), p.
081009
.
37.
Svanberg
,
K.
,
1987
, “
The Method of Moving Asymptotes-A New Method for Structural Optimization
,”
Int. J. Numer. Methods Eng.
,
24
(
2
), pp.
359
373
.
38.
Osorio
,
L.
,
Trujillo
,
E.
,
Van Vuure
,
A. W.
, and
Verpoest
,
I.
,
2011
, “
Morphological Aspects and Mechanical Properties of Single Bamboo Fibers and Flexural Characterization of Bamboo/ Epoxy Composites
,”
J. Reinf. Plast. Compos.
,
30
(
5
), pp.
396
408
.
39.
Sigmund
,
O.
,
Aage
,
N.
, and
Andreassen
,
E.
,
2016
, “
On the (Non-)Optimality of Michell Structures
,”
Struct. Multidiscip. Optim.
,
54
(
2
), pp.
361
373
.
You do not currently have access to this content.