Abstract

An analytical solution for the bending problem of micropolar plates is derived based on the symplectic approach. By applying Legendre's transformation, we obtain the Hamiltonian canonical equation for the bending problem of a micropolar plate. Utilizing the method of separation of variables, the homogeneous Hamiltonian canonical equation can be transformed into an eigenvalue problem of the Hamiltonian operator matrix. We derive the eigensolutions of the eigenvalue problem for the simply supported, free, and clamped boundary conditions at the two opposite sides. Based on the adjoint symplectic orthogonal relation of the eigensolutions, the solution of the bending problem of the micropolar plate is expressed as a series expansion of eigensolutions. Numerical results confirm the validity of the present approach for the bending problem of micropolar plates under various boundary conditions and demonstrate the capability of the proposed approach to capture the size-dependent behavior of micropolar plates.

References

1.
Hao
,
Z.
,
2008
, “
Thermoelastic Damping in the Contour-Mode Vibrations of Micro- and Nano-Electromechanical Circular Thin-Plate Resonators
,”
J. Sound Vib.
,
313
(
1–2
), pp.
77
96
.
2.
Cheng
,
C. L.
,
Chang
,
H. C.
,
Chang
,
C. I.
, and
Fang
,
W.
,
2015
, “
Development of a CMOS MEMS Pressure Sensor With a Mechanical Force-Displacement Transduction Structure
,”
J. Micromech. Microeng.
,
25
(
12
), p.
125024
.
3.
Vergara
,
A.
,
Tsukamoto
,
T.
,
Fang
,
W.
, and
Tanaka
,
S.
,
2022
, “
Design and Fabrication of Non-Resonant PZT MEMS Micromirror With Buried Piezoresistors for Closed Loop Position Control
,”
J. Micromech. Microeng.
,
33
(
1
), p.
014001
.
4.
Engel
,
U.
, and
Eckstein
,
R.
,
2002
, “
Microforming-From Basic Research to Its Realization
,”
J. Mater. Process. Technol.
,
125
, pp.
35
44
.
5.
Lakes
,
R. S.
,
1986
, “
Experimental Microelasticity of Two Porous Solids
,”
Int. J. Solids Struct.
,
22
(
1
), pp.
55
63
.
6.
Lakes
,
R.
, and
Drugan
,
W. J.
,
2015
, “
Bending of a Cosserat Elastic Bar of Square Cross Section: Theory and Experiment
,”
ASME J. Appl. Mech.
,
82
(
9
), p.
091002
.
7.
Eringen
,
A. C.
,
1966
, “
Linear Theory of Micropolar Elasticity
,”
Int. J. Math. Mech.
,
15
(
6
), pp.
909
923
.
8.
Kafadar
,
C. B.
, and
Eringen
,
A. C.
,
1971
, “
Micropolar Media-—I The Classical Theory
,”
Int. J. Eng. Sci.
,
9
(
3
), pp.
271
305
.
9.
Kafadar
,
C. B.
, and
Eringen
,
A. C.
,
1971
, “
Micropolar Media—II The Relativistic Theory
,”
Int. J. Eng. Sci.
,
9
(
3
), pp.
307
329
.
10.
Eringen
,
A. C.
, and
Kafadar
,
C. B.
,
1976
, “Polar Field Theories,”
Continuum Physics
,
A. C.
Eringen
, ed.,
Academic Press
,
New York
, pp.
1
73
.
11.
Ramezani
,
S.
, and
Naghdabadi
,
R.
,
2007
, “
Energy Pairs in the Micropolar Continuum
,”
Int. J. Solids Struct.
,
44
(
14–15
), pp.
4810
4818
.
12.
Ramezani
,
S.
,
Naghdabadi
,
R.
, and
Sohrabpour
,
S.
,
2009
, “
Analysis of Micropolar Elastic Beams
,”
Eur. J. Mech. A/Solids
,
28
(
2
), pp.
202
208
.
13.
Goda
,
I.
,
Assidi
,
M.
,
Belouettar
,
S.
, and
Ganghoffer
,
J. F.
,
2012
, “
A Micropolar Anisotropic Constitutive Model of Cancellous Bone From Discrete Homogenization
,”
J. Mech. Behav. Biomed. Mater.
,
16
, pp.
87
108
.
14.
Goda
,
I.
,
Rahouadj
,
R.
, and
Ganghoffer
,
J. F.
,
2013
, “
Size Dependent Static and Dynamic Behavior of Trabecular Bone Based on Micromechanical Models of the Trabecular Architecture
,”
Int. J. Eng. Sci.
,
72
, pp.
53
77
.
15.
Yoder
,
M.
,
Thompson
,
L.
, and
Summers
,
J.
,
2018
, “
Size Effects in Lattice Structures and a Comparison to Micropolar Elasticity
,”
Int. J. Solids Struct.
,
143
, pp.
245
261
.
16.
Mora
,
R. J.
, and
Waas
,
A. M.
,
2007
, “
Evaluation of the Micropolar Elasticity Constants for Honeycombs
,”
Acta Mech.
,
192
(
1
), pp.
1
16
.
17.
Huang
,
L.
,
Yuan
,
H.
, and
Zhao
,
H.
,
2023
, “
An FEM-Based Homogenization Method for Orthogonal Lattice Metamaterials Within Micropolar Elasticity
,”
Int. J. Mech. Sci.
,
238
(
2023
), p.
107836
.
18.
Eringen
,
A. C.
,
1967
, “
Theory of Micropolar Plates
,”
J. Appl. Math. Phys.
,
18
(
1
), pp.
12
30
.
19.
Wang
,
F. Y.
,
1990
, “
On the Solutions of Eringen's Micropolar Plate Equations and of Other Approximate Equations
,”
Int. J. Eng. Sci.
,
28
(
9
), pp.
919
925
.
20.
Constanda
,
C.
,
1977
, “
Complex Variable Treatment of Bending of Micropolar Plates
,”
Int. J. Eng. Sci.
,
15
(
11
), pp.
661
669
.
21.
Green
,
A. E.
, and
Naghdi
,
P. M.
,
1967
, “
Micropolar and Director Theories
,”
Q. J. Mech. Appl. Math.
,
20
(
2
), pp.
183
199
.
22.
Erbay
,
H. A.
,
2000
, “
An Asymptotic Theory of Thin Micropolar Plates
,”
Int. J. Eng. Sci.
,
38
(
13
), pp.
1497
1516
.
23.
Sargsyan
,
S. O.
,
2008
, “
Boundary-Value Problems of the Asymmetric Theory of Elasticity for Thin Plates
,”
J. Appl. Math. Mech.
,
72
(
1
), pp.
77
86
.
24.
Sarkisyan
,
S. O.
,
2012
, “
Mathematical Model of Micropolar Elastic Thin Plates and Their Strength and Stiffness Characteristics
,”
J. Appl. Mech. Tech. Phys.
,
53
(
2
), pp.
275
282
.
25.
Steinberg
,
L.
,
2010
, “
Deformation of Micropolar Plates of Moderate Thickness
,”
Int. J. Appl. Math. Mech.
,
6
(
17
), pp.
1
20
.
26.
Steinberg
,
L.
, and
Kvasov
,
R.
,
2013
, “
Enhanced Mathematical Model for Cosserat Plate Bending
,”
Thin-Walled Struct.
,
63
, pp.
51
62
.
27.
Hassanpour
,
S.
, and
Heppler
,
G. R.
,
2016
, “
Comprehensive and Easy-to-Use Torsion and Bending Theories for Micropolar Beams
,”
Int. J. Mech. Sci.
,
114
, pp.
71
87
.
28.
Carrera
,
E.
, and
Zozulya
,
V. V.
,
2020
, “
Carrera Unified Formulation (CUF) for the Micropolar Plates and Shells. I. Higher Order Theory
,”
Mech. Adv. Mater. Struc.
,
29
(
6
), pp.
773
795
.
29.
Carrera
,
E.
, and
Zozulua
,
V. V.
,
2020
, “
Carrera Unified Formulation (CUF) for the Micropolar Plates and Shells. II. Complete Linear Expansion Case
,”
Mech. Adv. Mater. Struc.
,
29
(
6
), pp.
796
815
.
30.
Zozulya
,
V. V.
, and
Carrera
,
E.
,
2021
, “
Carrera Unified Formulation (CUF) for the Micropolar Plates and Shells. III. Classical Models
,”
Mech. Adv. Mater. Struc.
,
29
(
27
), pp.
6336
6360
.
31.
Fares
,
M. E.
,
Salem
,
M. G.
,
Atta
,
D.
, and
Elmarghany
,
M. K.
,
2022
, “
Mixed Variational Principle for Micropolar Elasticity and an Accurate Two-Dimensional Plate Model
,”
Eur. J. Mech. A/Solids
,
99
, p.
104870
.
32.
Zhong
,
W. X.
,
1991
, “
Plane Elasticity in Strip Domain and Hamiltonian System
,”
J. Dalian Univ. Technol.
,
31
(
4
), pp.
373
384
.
33.
Zhong
,
W. X.
,
1994
, “
Plane Elasticity in Sectorial Domain and the Hamiltonian System
,”
Appl. Math. Mech.
,
15
(
12
), pp.
1113
1123
.
34.
Yao
,
W. A.
,
Zhong
,
W. X.
, and
Lim
,
C. W.
,
2009
,
Symplectic Elasticity
,
World Scientific Publishing Co. Pte. Ltd.
,
Singapore
.
35.
Lim
,
C. W.
,
Cui
,
S.
, and
Yao
,
W. A.
,
2007
, “
On New Symplectic Elasticity Approach for Exact Bending Solutions of Rectangular Thin Plates With Two Opposite Sides Simply Supported
,”
Int. J. Solids Struct.
,
44
(
16
), pp.
5396
5411
.
36.
Lim
,
C. W.
,
Lu
,
C. F.
,
Xiang
,
Y.
, and
Yao
,
W.
,
2009
, “
On New Symplectic Elasticity Approach for Exact Free Vibration Solutions of Rectangular Kirchhoff Plates
,”
Int. J. Eng. Sci.
,
47
(
1
), pp.
131
140
.
37.
Zhong
,
Y.
,
Li
,
R.
,
Liu
,
Y.
, and
Tian
,
B.
,
2009
, “
On New Symplectic Approach for Exact Bending Solutions of Moderately Thick Rectangular Plates With Two Opposite Edges Simply Supported
,”
Int. J. Solids Struct.
,
46
(
11
), pp.
2506
2513
.
38.
Zhong
,
Y.
, and
Li
,
R.
,
2009
, “
Exact Bending Analysis of Fully Clamped Rectangular Thin Plates Subjected to Arbitrary Loads by New Symplectic Approach
,”
Mech. Res. Commun.
,
36
(
6
), pp.
707
714
.
39.
Li
,
R.
,
Ni
,
X.
, and
Cheng
,
G.
,
2015
, “
Symplectic Superposition Method for Benchmark Flexure Solutions for Rectangular Thick Plates
,”
J. Eng. Mech.
,
141
(
2
), p.
04014119
.
40.
Xu
,
X.
,
Sun
,
J.
, and
Lim
,
C. W.
,
2013
, “
Dynamic Torsional Buckling of Cylindrical Shells in Hamiltonian System
,”
Thin-Walled Struct.
,
64
, pp.
23
30
.
41.
Jia
,
J.
,
Xu
,
X.
,
Li
,
Y.
,
Zhu
,
S.
,
Ni
,
Y.
,
Lai
,
A.
,
Tong
,
Z.
, and
Zhou
,
Z.
,
2023
, “
Free Vibration Characteristics of Piezoelectric Cylindrical Shells With Stepped Thickness Using an Analytical Symplectic Approach
,”
Appl. Math. Modell.
,
117
, pp.
726
740
.
42.
Sun
,
J.
,
Xu
,
X.
,
Lim
,
C. W.
, and
Tan
,
V. B. C.
,
2013
, “
An Energy Conservative Symplectic Methodology for Buckling of Cylindrical Shells Under Axial Compression
,”
Acta Mech.
,
224
(
8
), pp.
1579
1592
.
43.
Zheng
,
X.
,
Sun
,
Y.
,
Huang
,
M.
,
An
,
D.
,
Li
,
P.
,
Wang
,
B.
, and
Li
,
R.
,
2019
, “
Symplectic Superposition Method-Based New Analytic Bending Solutions of Cylindrical Shell Panels
,”
Int. J. Mech. Sci.
,
152
, pp.
432
442
.
44.
Li
,
R.
,
Wang
,
H.
,
Zheng
,
X.
,
Xiong
,
S.
,
Hu
,
Z.
,
Yan
,
X.
,
Xiao
,
Z.
,
Xu
,
H.
, and
Li
,
P.
,
2019
, “
New Analytic Buckling Solutions of Rectangular Thin Plates With Two Free Adjacent Edges by the Symplectic Superposition Method
,”
Eur. J. Mech. A/Solids
,
76
, pp.
247
262
.
45.
Li
,
R.
,
Wang
,
P.
,
Yang
,
Z.
,
Yang
,
J.
, and
Tong
,
L.
,
2018
, “
On New Analytic Free Vibration Solutions of Rectangular Thin Cantilever Plates in the Symplectic Space
,”
Appl. Math. Modell.
,
53
, pp.
310
318
.
46.
Li
,
X.
,
Yao
,
W.
,
Hu
,
X.
, and
Jin
,
Q.
,
2019
, “
Interfacial Crack Analysis Between Dissimilar Viscoelastic Media Using Symplectic Analytical Singular Element
,”
Eng. Fract. Mech.
,
219
, p.
106628
.
47.
Zhou
,
S.
,
Ma
,
Y.
,
Sun
,
Z.
, and
Hu
,
X.
,
2022
, “
A Novel Super Symplectic Analytical Singular Element for Crack Propagation Along a Bimaterial Interface
,”
Theor. Appl. Fract. Mech.
,
122
, p.
103565
.
48.
Xu
,
C.
,
Rong
,
D.
,
Zhou
,
Z.
,
Deng
,
Z.
, and
Lim
,
C. W.
,
2020
, “
Vibration and Buckling Characteristics of Cracked Natural Fiber Reinforced Composite Plates With Corner Point-Supports
,”
Eng. Struct.
,
214
, p.
110614
.
49.
Xu
,
C.
,
Rong
,
D.
,
Tong
,
Z.
,
Zhou
,
Z.
,
Hu
,
J.
, and
Xu
,
X.
,
2019
, “
Coupled Effect of In-Plane Magnetic Field and Size Effect on Vibration Properties of the Completely Free Double-Layered Nanoplate System
,”
Phys. E
,
108
, pp.
215
225
.
50.
Fan
,
J.
,
Rong
,
D.
,
Zhou
,
Z.
,
Xu
,
C.
, and
Xu
,
X.
,
2019
, “
Exact Solutions for Forced Vibration of Completely Free Orthotropic Rectangular Nanoplates Resting on Viscoelastic Foundation
,”
Eur. J. Mech. A/Solids
,
73
, pp.
22
33
.
51.
Lim
,
C. W.
, and
Xu
,
X. S.
,
2010
, “
Symplectic Elasticity: Theory and Applications
,”
ASME Appl. Mech. Rev.
,
63
(
5
), p.
050802
.
52.
Zhong
,
W.
, and
Yao
,
W.
,
1997
, “
The Saint Venant Solutions of Multi-Layered Composite Plates
,”
Adv. Struct. Eng.
,
1
(
2
), pp.
127
133
.
53.
Yao
,
W.
, and
Yang
,
H.
,
2001
, “
Hamiltonian System Based Saint Venant Solutions for Multi-Layered Composite Plane Anisotropic Plates
,”
Int. J. Solids Struct.
,
38
(
32
), pp.
5807
5817
.
54.
Golub
,
G. H.
, and
Van Loan
,
C. F.
,
2012
,
Matrix Computations
,
The Johns Hopkins University Press
,
Baltimore, MA
.
55.
Chen
,
P. Y.
, and
Yonatan
,
S.
,
2017
, “
Robust Location of Optical Fiber Modes via the Argument Principle Method
,”
Comput. Phys. Commun.
,
214
, pp.
105
116
.
You do not currently have access to this content.